Beyond Born–Oppenheimer constructed diabatic potential energy surfaces for F + H2 reaction
First principles based beyond Born–Oppenheimer theory has been implemented on the F + H2 system for constructing multistate global diabatic Potential Energy Surfaces (PESs) through the incorporation of Nonadiabatic Coupling Terms (NACTs) explicitly. The spin–orbit (SO) coupling effect on the collisi...
Saved in:
Published in | The Journal of chemical physics Vol. 153; no. 17; pp. 174301 - 174320 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
07.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | First principles based beyond Born–Oppenheimer theory has been implemented on the F + H2 system for constructing multistate global diabatic Potential Energy Surfaces (PESs) through the incorporation of Nonadiabatic Coupling Terms (NACTs) explicitly. The spin–orbit (SO) coupling effect on the collision process of the F + H2 reaction has been included as a perturbation to the non-relativistic electronic Hamiltonian. Adiabatic PESs and NACTs for the lowest three electronic states (12A′, 22A′, and 12A″) are determined in hyperspherical coordinates as functions of hyperangles for a grid of fixed values of the hyperradius. Jahn–Teller (JT) type conical intersections between the two A′ states translate along C2v and linear geometries in F + H2. In addition, A′ and A″ states undergo Renner–Teller (RT) interaction at collinear configurations of this system. Both JT and RT couplings are validated by integrating NACTs along properly chosen contours. Subsequently, we have solved adiabatic-to-diabatic transformation (ADT) equations to evaluate the ADT angles for constructing the diabatic potential matrix of F + H2, including the SO coupling terms. The newly calculated diabatic PESs are found to be smooth, single-valued, continuous, and symmetric and can be invoked for performing accurate scattering calculations on the F + H2 system. |
---|---|
AbstractList | First principles based beyond Born–Oppenheimer theory has been implemented on the F + H2 system for constructing multistate global diabatic Potential Energy Surfaces (PESs) through the incorporation of Nonadiabatic Coupling Terms (NACTs) explicitly. The spin–orbit (SO) coupling effect on the collision process of the F + H2 reaction has been included as a perturbation to the non-relativistic electronic Hamiltonian. Adiabatic PESs and NACTs for the lowest three electronic states (12A′, 22A′, and 12A″) are determined in hyperspherical coordinates as functions of hyperangles for a grid of fixed values of the hyperradius. Jahn–Teller (JT) type conical intersections between the two A′ states translate along C2v and linear geometries in F + H2. In addition, A′ and A″ states undergo Renner–Teller (RT) interaction at collinear configurations of this system. Both JT and RT couplings are validated by integrating NACTs along properly chosen contours. Subsequently, we have solved adiabatic-to-diabatic transformation (ADT) equations to evaluate the ADT angles for constructing the diabatic potential matrix of F + H2, including the SO coupling terms. The newly calculated diabatic PESs are found to be smooth, single-valued, continuous, and symmetric and can be invoked for performing accurate scattering calculations on the F + H2 system. First principles based beyond Born-Oppenheimer theory has been implemented on the F + H2 system for constructing multistate global diabatic Potential Energy Surfaces (PESs) through the incorporation of Nonadiabatic Coupling Terms (NACTs) explicitly. The spin-orbit (SO) coupling effect on the collision process of the F + H2 reaction has been included as a perturbation to the non-relativistic electronic Hamiltonian. Adiabatic PESs and NACTs for the lowest three electronic states (12A', 22A', and 12A″) are determined in hyperspherical coordinates as functions of hyperangles for a grid of fixed values of the hyperradius. Jahn-Teller (JT) type conical intersections between the two A' states translate along C2v and linear geometries in F + H2. In addition, A' and A″ states undergo Renner-Teller (RT) interaction at collinear configurations of this system. Both JT and RT couplings are validated by integrating NACTs along properly chosen contours. Subsequently, we have solved adiabatic-to-diabatic transformation (ADT) equations to evaluate the ADT angles for constructing the diabatic potential matrix of F + H2, including the SO coupling terms. The newly calculated diabatic PESs are found to be smooth, single-valued, continuous, and symmetric and can be invoked for performing accurate scattering calculations on the F + H2 system.First principles based beyond Born-Oppenheimer theory has been implemented on the F + H2 system for constructing multistate global diabatic Potential Energy Surfaces (PESs) through the incorporation of Nonadiabatic Coupling Terms (NACTs) explicitly. The spin-orbit (SO) coupling effect on the collision process of the F + H2 reaction has been included as a perturbation to the non-relativistic electronic Hamiltonian. Adiabatic PESs and NACTs for the lowest three electronic states (12A', 22A', and 12A″) are determined in hyperspherical coordinates as functions of hyperangles for a grid of fixed values of the hyperradius. Jahn-Teller (JT) type conical intersections between the two A' states translate along C2v and linear geometries in F + H2. In addition, A' and A″ states undergo Renner-Teller (RT) interaction at collinear configurations of this system. Both JT and RT couplings are validated by integrating NACTs along properly chosen contours. Subsequently, we have solved adiabatic-to-diabatic transformation (ADT) equations to evaluate the ADT angles for constructing the diabatic potential matrix of F + H2, including the SO coupling terms. The newly calculated diabatic PESs are found to be smooth, single-valued, continuous, and symmetric and can be invoked for performing accurate scattering calculations on the F + H2 system. |
Author | Naskar, Koushik Ravi, Satyam Mukherjee, Bijit Mukherjee, Soumya Mukhopadhyay, Debasis Adhikari, Satrajit Shamasundar, K. R. |
Author_xml | – sequence: 1 givenname: Bijit surname: Mukherjee fullname: Mukherjee, Bijit organization: School of Chemical Sciences, Indian Association for the Cultivation of Science – sequence: 2 givenname: Koushik surname: Naskar fullname: Naskar, Koushik organization: School of Chemical Sciences, Indian Association for the Cultivation of Science – sequence: 3 givenname: Soumya surname: Mukherjee fullname: Mukherjee, Soumya organization: School of Chemical Sciences, Indian Association for the Cultivation of Science – sequence: 4 givenname: Satyam surname: Ravi fullname: Ravi, Satyam organization: School of Chemical Sciences, Indian Association for the Cultivation of Science – sequence: 5 givenname: K. R. surname: Shamasundar fullname: Shamasundar, K. R. organization: Department of Chemical Science, Indian Institute of Science Education and Research – sequence: 6 givenname: Debasis surname: Mukhopadhyay fullname: Mukhopadhyay, Debasis organization: Department of Chemistry, University of Calcutta – sequence: 7 givenname: Satrajit surname: Adhikari fullname: Adhikari, Satrajit organization: School of Chemical Sciences, Indian Association for the Cultivation of Science |
BookMark | eNp90MFq3DAQBmBREugmzSFvIOilTXEyklfS-tgsTVMI5JLcAkYejxMtXsmV5MPe-g59wzxJvOz2spScBoZvhpn_hB354ImxcwGXAnR5pS4BpFgs1Ac2E7CoCqMrOGKzbbeoNOiP7CSlFQAII-cz9nRNm-Bbfh2if_3z934YyL-QW1PkGHzKccRMLW-dbWx2yIeQyWdne06e4vOGpzF2FinxLkR-w7_xW8kjWcwu-E_suLN9orN9PWWPNz8elrfF3f3PX8vvdwUKA6qQpq1IGSpbNA1oC2UnpOhkU2qSiGXb6LZBi502AttGVJIEotKgJKCRVJ6yL7u9Qwy_R0q5XruE1PfWUxhTLeeqKudmAeVEPx_QVRijn67bKq2MnrKb1NedwhhSitTVQ3RrGze1gHqbc63qfc6TvTqw6LLdvp-jdf1_Jy52E-mffGf9G0r9jps |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1088_1742_6596_2769_1_012012 crossref_primary_10_1039_D0CP04052E crossref_primary_10_1039_D4CP02866J crossref_primary_10_1002_qua_26675 crossref_primary_10_1063_5_0177186 crossref_primary_10_1002_qua_27212 crossref_primary_10_1021_acs_jpca_1c08912 crossref_primary_10_1002_cphc_202200482 crossref_primary_10_1016_j_chemphys_2022_111588 crossref_primary_10_1039_D1CP04733G crossref_primary_10_1063_5_0040361 crossref_primary_10_1021_acs_jpca_3c05590 crossref_primary_10_1021_acs_jpca_2c04319 crossref_primary_10_1021_acs_jctc_0c01336 crossref_primary_10_1021_acs_jpca_2c01209 |
Cites_doi | 10.1063/1.1678438 10.1002/qua.23272 10.1080/00268970500417937 10.1021/jp311597c 10.1080/00268976.2017.1340680 10.1063/1.448255 10.1021/acs.jpca.7b04592 10.1063/1.1540622 10.1080/00268979200100231 10.1039/dc9776200267 10.1016/0009-2614(94)00435-8 10.1016/j.chemphys.2012.12.007 10.1063/1.1679799 10.1073/pnas.0710840105 10.1063/1.1781155 10.1063/1.467718 10.1073/pnas.0709974105 10.1103/physrevlett.85.1206 10.1063/1.471373 10.1063/1.5064519 10.1063/1.2178789 10.1016/0009-2614(94)00014-X 10.1063/1.4901986 10.1080/00268970009483386 10.1021/acs.jctc.9b00948 10.1063/1.476445 10.1063/1.1677911 10.1021/jp311014z 10.1063/1.445970 10.1016/j.cplett.2011.09.072 10.1063/1.457352 10.1063/1.4938526 10.1126/science.1123452 10.1063/1.479360 10.1016/s0009-2614(97)01209-8 10.1063/1.452463 10.1021/jp992742o 10.1063/1.4998406 10.1063/1.1674500 10.1103/physreva.62.032507 10.1080/0144235x.2019.1672987 10.1063/1.2170089 10.1016/0301-0104(76)80109-7 10.1063/1.3236839 10.1063/1.480823 10.1002/9780470142813.ch2 10.1016/j.chemphys.2018.09.017 10.1063/1.2778421 10.1063/1.474498 10.1021/jp8029709 10.1063/1.3603453 10.1063/1.481041 10.1360/cjcp2006.19(2).96.3 10.1002/andp.19273892002 10.1063/1.454971 10.1039/c0cp02738c 10.2307/41170252 10.1140/epjd/e2011-20297-6 10.1063/1.472748 10.1063/1.460197 10.1063/1.471372 10.1016/0009-2614(75)85599-0 10.1063/1.448254 10.1063/1.4904546 10.1016/0009-2614(88)87115-x 10.1016/0009-2614(93)85411-g 10.1063/1.471648 10.1140/epjd/e2014-50445-3 10.1063/1.4704789 10.1063/1.3679406 10.1063/1.448781 10.1063/1.1326850 10.1016/s0370-1573(01)00052-7 10.1126/science.176.4042.1412 10.1063/1.3660686 |
ContentType | Journal Article |
Copyright | Author(s) 2020 Author(s). Published under license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2020 Author(s). Published under license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M 7X8 |
DOI | 10.1063/5.0021885 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 10_1063_5_0021885 jcp |
GrantInformation_xml | – fundername: Science and Engineering Research Board grantid: CRG/2019/000793; EMR/2016/000684 funderid: https://doi.org/10.13039/501100001843 – fundername: Council of Scientific and Industrial Research, India grantid: SPM-07/080(0250)/2016-EMR-I; 09/080(1068)/2018-EMR-I funderid: https://doi.org/10.13039/501100001412 |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M 7X8 |
ID | FETCH-LOGICAL-c1705-27d9e57e3dc7b06a03f121f2b36e2cc3db6dbcacf671cdb192e1cc560520c72e3 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Thu Jul 10 23:29:03 EDT 2025 Sun Jun 29 15:44:29 EDT 2025 Tue Jul 01 00:27:47 EDT 2025 Thu Apr 24 23:02:30 EDT 2025 Fri Jun 21 00:14:03 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | 0021-9606/2020/153(17)/174301/20/$30.00 Published under license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1705-27d9e57e3dc7b06a03f121f2b36e2cc3db6dbcacf671cdb192e1cc560520c72e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8653-254X 0000-0002-2462-4892 |
PQID | 2456576885 |
PQPubID | 2050685 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2459347803 crossref_primary_10_1063_5_0021885 proquest_journals_2456576885 scitation_primary_10_1063_5_0021885 crossref_citationtrail_10_1063_5_0021885 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201107 2020-11-07 |
PublicationDateYYYYMMDD | 2020-11-07 |
PublicationDate_xml | – month: 11 year: 2020 text: 20201107 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationYear | 2020 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Mukherjee, Mukherjee, Adhikari (c66) 2017; 121 Mukherjee, Naskar, Mukherjee, Ghosh, Sahoo, Adhikari (c73) 2019; 38 Berning, Schweizer, Werner, Knowles, Palmieri (c76) 2000; 98 Das, Sahoo, Mukhopadhyay, Adhikari, Baer (c40) 2012; 136 Aoiz, Bañares, Herrero, Sáez Rábanos, Stark, Werner (c27) 1994; 223 Polanyi, Schreiber (c5) 1977; 62 Neumark, Wodtke, Robinson, Hayden, Shobatake, Sparks, Schafer, Lee (c8) 1985; 82 Csehi, Bende, Halász, Vibók, Das, Mukhopadhyay, Mukherjee, Adhikari, Baer (c41) 2013; 117 Werner, Follmeg, Alexander (c79) 1988; 89 Das, Mukhopadhyay, Adhikari, Baer (c37) 2011; 517 Johnson (c43) 1983; 79 Lique, Li, Werner, Alexander (c36) 2011; 134 Mukherjee, Mukherjee, Sardar, Shamasundar, Adhikari (c69) 2017; 115 Lynch, Steckler, Schwenke, Varandas, Truhlar, Garrett (c22) 1991; 94 Coombe, Pimentel (c2) 1973; 59 Varandas, Xu (c49) 2000; 112 Evenhuis, Martínez (c58) 2011; 135 Baer (c60) 1975; 35 Ghosh, Mukherjee, Mukherjee, Mandal, Sharma, Chaudhury, Adhikari (c72) 2017; 147 Köppel, Schubert (c57) 2006; 104 Baer, Faubel, Martinez-Haya, Rusin, Tappe, Toennies, Stark, Werner (c10) 1996; 104 Polanyi, Woodall (c3) 1972; 57 Wang, Dong, Qiu, Ren, Che, Dai, Wang, Yang, Sun, Fu, Lee, Xu, Zhang (c15) 2008; 105 Chen, Sun, Zhang (c33) 2015; 142 Skodje, Skouteris, Manolopoulos, Lee, Dong, Liu (c12) 2000; 85 Das, Mukhopadhyay, Adhikari, Baer (c38) 2011; 65 Parker, Pimental (c1) 1969; 51 Castillo, Manolopoulos, Stark, Werner (c26) 1996; 104 Takayanagi, Sato (c20) 1988; 144 Das, Mukhopadhyay, Adhikari, Baer (c39) 2012; 112 Bender, O’Neil, Pearson, Schaefer (c17) 1972; 176 Alijah, Baer (c64) 2000; 104 Sarkar, Adhikari (c51) 2006; 124 Bender, Pearson, O’Neil, Schaefer (c18) 1972; 56 Neumark, Wodtke, Robinson, Hayden, Lee (c7) 1985; 82 Ren, Che, Qiu, Wang, Dong, Dai, Wang, Yang, Sun, Fu, Lee, Xu, Zhang (c16) 2008; 105 Xu, Xie, Zhang (c32) 2006; 19 Faubel, Rusin, Schlemmer, Sondermann, Tappe, Toennies (c9) 1994; 101 Mukherjee, Mukhopadhyay, Adhikari (c71) 2014; 141 Varandas, Brown, Mead, Truhlar, Blais (c55) 1987; 86 Baer, Faubel, Mart, nez-Haya, Rusin, Tappe, Toennies (c11) 1998; 108 Fazio, Lucas, Aquilanti, Cavalli (c28) 2011; 13 Born, Oppenheimer (c44) 1927; 389 Halász, Vibók, Baer, Baer (c78) 2006; 124 Das, Mukhopadhyay (c42) 2013; 412 Mukherjee, Mukherjee, Sardar, Shamasundar, Adhikari (c70) 2018; 515 Hartke, Werner (c29) 1997; 280 Zhu, Yarkony (c59) 2012; 136 Schafer, Siska, Parson, Tully, Wong, Lee (c6) 1970; 53 Tzeng, Alexander (c35) 2004; 121 Mielke, Lynch, Truhlar, Schwenke (c23) 1993; 213 Qiu, Ren, Che, Dai, Harich, Wang, Yang, Xu, Xie, Gustafsson, Skodje, Sun, Zhang (c14) 2006; 311 Alexander, Manolopoulos, Werner (c30) 2000; 113 Sarkar, Adhikari (c52) 2008; 112 Köppel, Domcke, Cederbaum (c54) 1984; 57 Naskar, Mukherjee, Mukherjee, Ravi, Mukherjee, Sardar, Adhikari (c80) 2020; 16 Li, Song, Varandas (c34) 2015; 69 Paul, Sardar, Sarkar, Adhikari (c53) 2009; 131 Baer (c61) 2002; 358 Li, Werner, Lique, Alexander (c31) 2007; 127 Adhikari, Billing, Alijah, Lin, Baer (c50) 2000; 62 Stark, Werner (c25) 1996; 104 Adhikari, Billing (c48) 1999; 111 Aoiz, Bañares, Herrero, Sáez Rábanos (c24) 1994; 218 Baer, Englman (c63) 1992; 75 Brown, Steckler, Schwenke, Truhlar, Garrett (c21) 1985; 82 Mukherjee, Dutta, Mukherjee, Sardar, Adhikari (c67) 2019; 150 Billing, Muckerman (c74) 1989; 91 Baer, Charutz, Kosloff, Baer (c47) 1996; 105 Last, Gilibert, Baer (c46) 1997; 107 Perry, Polanyi (c4) 1976; 12 Mukherjee, Bandyopadhyay, Paul, Adhikari (c65) 2013; 117 Mukherjee, Mukherjee, Sardar, Adhikari (c68) 2015; 143 Skodje, Skouteris, Manolopoulos, Lee, Dong, Liu (c13) 2000; 112 Nakamura, Truhlar (c56) 2003; 118 (2023080804032874700_c45) 1954 (2023080804032874700_c56) 2003; 118 (2023080804032874700_c55) 1987; 86 (2023080804032874700_c63) 1992; 75 (2023080804032874700_c5) 1977; 62 (2023080804032874700_c41) 2013; 117 (2023080804032874700_c80) 2020; 16 (2023080804032874700_c34) 2015; 69 (2023080804032874700_c74) 1989; 91 (2023080804032874700_c7) 1985; 82 (2023080804032874700_c26) 1996; 104 (2023080804032874700_c33) 2015; 142 (2023080804032874700_c69) 2017; 115 (2023080804032874700_c2) 1973; 59 (2023080804032874700_c67) 2019; 150 (2023080804032874700_c44) 1927; 389 (2023080804032874700_c66) 2017; 121 (2023080804032874700_c58) 2011; 135 (2023080804032874700_c12) 2000; 85 (2023080804032874700_c4) 1976; 12 (2023080804032874700_c23) 1993; 213 (2023080804032874700_c8) 1985; 82 (2023080804032874700_c42) 2013; 412 (2023080804032874700_c14) 2006; 311 (2023080804032874700_c20) 1988; 144 (2023080804032874700_c47) 1996; 105 (2023080804032874700_c75) 2018 (2023080804032874700_c40) 2012; 136 (2023080804032874700_c18) 1972; 56 (2023080804032874700_c68) 2015; 143 (2023080804032874700_c10) 1996; 104 (2023080804032874700_c43) 1983; 79 (2023080804032874700_c59) 2012; 136 (2023080804032874700_c38) 2011; 65 (2023080804032874700_c78) 2006; 124 (2023080804032874700_c24) 1994; 218 (2023080804032874700_c54) 1984; 57 (2023080804032874700_c51) 2006; 124 (2023080804032874700_c76) 2000; 98 (2023080804032874700_c3) 1972; 57 (2023080804032874700_c13) 2000; 112 (2023080804032874700_c60) 1975; 35 (2023080804032874700_c36) 2011; 134 (2023080804032874700_c32) 2006; 19 (2023080804032874700_c49) 2000; 112 (2023080804032874700_c79) 1988; 89 (2023080804032874700_c64) 2000; 104 (2023080804032874700_c22) 1991; 94 (2023080804032874700_c57) 2006; 104 (2023080804032874700_c50) 2000; 62 (2023080804032874700_c37) 2011; 517 (2023080804032874700_c9) 1994; 101 (2023080804032874700_c25) 1996; 104 (2023080804032874700_c30) 2000; 113 (2023080804032874700_c35) 2004; 121 (2023080804032874700_c27) 1994; 223 (2023080804032874700_c73) 2019; 38 (2023080804032874700_c19) 1981 (2023080804032874700_c77) 2012 (2023080804032874700_c15) 2008; 105 (2023080804032874700_c65) 2013; 117 (2023080804032874700_c52) 2008; 112 (2023080804032874700_c61) 2002; 358 (2023080804032874700_c72) 2017; 147 (2023080804032874700_c6) 1970; 53 (2023080804032874700_c28) 2011; 13 (2023080804032874700_c29) 1997; 280 (2023080804032874700_c31) 2007; 127 (2023080804032874700_c46) 1997; 107 (2023080804032874700_c70) 2018; 515 (2023080804032874700_c21) 1985; 82 (2023080804032874700_c48) 1999; 111 (2023080804032874700_c71) 2014; 141 (2023080804032874700_c39) 2012; 112 (2023080804032874700_c16) 2008; 105 (2023080804032874700_c17) 1972; 176 (2023080804032874700_c53) 2009; 131 (2023080804032874700_c62) 2006 (2023080804032874700_c11) 1998; 108 (2023080804032874700_c1) 1969; 51 |
References_xml | – volume: 105 start-page: 12662 year: 2008 ident: c16 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 105 start-page: 6227 year: 2008 ident: c15 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 38 start-page: 287 year: 2019 ident: c73 publication-title: Int. Rev. Phys. Chem. – volume: 51 start-page: 91 year: 1969 ident: c1 publication-title: J. Chem. Phys. – volume: 112 start-page: 2121 year: 2000 ident: c49 publication-title: J. Chem. Phys. – volume: 112 start-page: 9868 year: 2008 ident: c52 publication-title: J. Phys. Chem. A – volume: 389 start-page: 457 year: 1927 ident: c44 publication-title: Ann. Phys. – volume: 124 start-page: 081106 year: 2006 ident: c78 publication-title: J. Phys. Chem. – volume: 104 start-page: 6531 year: 1996 ident: c26 publication-title: J. Chem. Phys. – volume: 121 start-page: 5183 year: 2004 ident: c35 publication-title: J. Chem. Phys. – volume: 104 start-page: 1069 year: 2006 ident: c57 publication-title: Mol. Phys. – volume: 19 start-page: 96 year: 2006 ident: c32 publication-title: Chin. J. Chem. Phys. – volume: 69 start-page: 22 year: 2015 ident: c34 publication-title: Eur. Phys. J. D – volume: 108 start-page: 9694 year: 1998 ident: c11 publication-title: J. Chem. Phys. – volume: 176 start-page: 1412 year: 1972 ident: c17 publication-title: Science – volume: 115 start-page: 2833 year: 2017 ident: c69 publication-title: Mol. Phys. – volume: 147 start-page: 074105 year: 2017 ident: c72 publication-title: J. Chem. Phys. – volume: 358 start-page: 75 year: 2002 ident: c61 publication-title: Phys. Rep. – volume: 412 start-page: 51 year: 2013 ident: c42 publication-title: Chem. Phys. – volume: 89 start-page: 3139 year: 1988 ident: c79 publication-title: J. Chem. Phys. – volume: 121 start-page: 6314 year: 2017 ident: c66 publication-title: J. Phys. Chem. A – volume: 141 start-page: 204306 year: 2014 ident: c71 publication-title: J. Chem. Phys. – volume: 82 start-page: 3067 year: 1985 ident: c8 publication-title: J. Chem. Phys. – volume: 111 start-page: 40 year: 1999 ident: c48 publication-title: J. Chem. Phys. – volume: 127 start-page: 174302 year: 2007 ident: c31 publication-title: J. Chem. Phys. – volume: 75 start-page: 293 year: 1992 ident: c63 publication-title: Mol. Phys. – volume: 16 start-page: 1666 year: 2020 ident: c80 publication-title: J. Chem. Theory Comput. – volume: 134 start-page: 231101 year: 2011 ident: c36 publication-title: J. Chem. Phys. – volume: 57 start-page: 1574 year: 1972 ident: c3 publication-title: J. Chem. Phys. – volume: 150 start-page: 064308 year: 2019 ident: c67 publication-title: J. Chem. Phys. – volume: 62 start-page: 267 year: 1977 ident: c5 publication-title: Faraday Discuss. Chem. Soc. – volume: 104 start-page: 2743 year: 1996 ident: c10 publication-title: J. Chem. Phys. – volume: 118 start-page: 6816 year: 2003 ident: c56 publication-title: J. Chem. Phys. – volume: 144 start-page: 191 year: 1988 ident: c20 publication-title: Chem. Phys. Lett. – volume: 59 start-page: 251 year: 1973 ident: c2 publication-title: J. Chem. Phys. – volume: 113 start-page: 11084 year: 2000 ident: c30 publication-title: J. Chem. Phys. – volume: 117 start-page: 3475 year: 2013 ident: c65 publication-title: J. Phys. Chem. A – volume: 12 start-page: 37 year: 1976 ident: c4 publication-title: Chem. Phys. – volume: 136 start-page: 054104 year: 2012 ident: c40 publication-title: J. Chem. Phys. – volume: 101 start-page: 2106 year: 1994 ident: c9 publication-title: J. Chem. Phys. – volume: 56 start-page: 4626 year: 1972 ident: c18 publication-title: J. Chem. Phys. – volume: 107 start-page: 1451 year: 1997 ident: c46 publication-title: J. Chem. Phys. – volume: 515 start-page: 350 year: 2018 ident: c70 publication-title: Chem. Phys. – volume: 218 start-page: 422 year: 1994 ident: c24 publication-title: Chem. Phys. Lett. – volume: 142 start-page: 024303 year: 2015 ident: c33 publication-title: J. Chem. Phys. – volume: 13 start-page: 8571 year: 2011 ident: c28 publication-title: Phys. Chem. Chem. Phys. – volume: 104 start-page: 389 year: 2000 ident: c64 publication-title: J. Phys. Chem. A – volume: 62 start-page: 32507 year: 2000 ident: c50 publication-title: Phys. Rev. A – volume: 104 start-page: 6515 year: 1996 ident: c25 publication-title: J. Chem. Phys. – volume: 131 start-page: 124312 year: 2009 ident: c53 publication-title: J. Chem. Phys. – volume: 82 start-page: 188 year: 1985 ident: c21 publication-title: J. Chem. Phys. – volume: 143 start-page: 244307 year: 2015 ident: c68 publication-title: J. Chem. Phys. – volume: 135 start-page: 224110 year: 2011 ident: c58 publication-title: J. Chem. Phys. – volume: 136 start-page: 174110 year: 2012 ident: c59 publication-title: J. Chem. Phys. – volume: 91 start-page: 6830 year: 1989 ident: c74 publication-title: J. Chem. Phys. – volume: 105 start-page: 9141 year: 1996 ident: c47 publication-title: J. Chem. Phys. – volume: 57 start-page: 59 year: 1984 ident: c54 publication-title: Adv. Chem. Phys. – volume: 98 start-page: 1823 year: 2000 ident: c76 publication-title: Mol. Phys. – volume: 82 start-page: 3045 year: 1985 ident: c7 publication-title: J. Chem. Phys. – volume: 53 start-page: 3385 year: 1970 ident: c6 publication-title: J. Chem. Phys. – volume: 79 start-page: 1916 year: 1983 ident: c43 publication-title: J. Chem. Phys. – volume: 112 start-page: 2561 year: 2012 ident: c39 publication-title: Int. J. Quantum Chem. – volume: 124 start-page: 074101 year: 2006 ident: c51 publication-title: J. Chem. Phys. – volume: 85 start-page: 1206 year: 2000 ident: c12 publication-title: Phys. Rev. Lett. – volume: 517 start-page: 92 year: 2011 ident: c37 publication-title: Chem. Phys. Lett. – volume: 94 start-page: 7136 year: 1991 ident: c22 publication-title: J. Chem. Phys. – volume: 311 start-page: 1440 year: 2006 ident: c14 publication-title: Science – volume: 213 start-page: 10 year: 1993 ident: c23 publication-title: Chem. Phys. Lett. – volume: 117 start-page: 8497 year: 2013 ident: c41 publication-title: J. Phys. Chem. A – volume: 280 start-page: 430 year: 1997 ident: c29 publication-title: Chem. Phys. Lett. – volume: 35 start-page: 112 year: 1975 ident: c60 publication-title: Chem. Phys. Lett. – volume: 112 start-page: 4536 year: 2000 ident: c13 publication-title: J. Chem. Phys. – volume: 223 start-page: 215 year: 1994 ident: c27 publication-title: Chem. Phys. Lett. – volume: 86 start-page: 6258 year: 1987 ident: c55 publication-title: J. Chem. Phys. – volume: 65 start-page: 373 year: 2011 ident: c38 publication-title: Eur. Phys. J. D – volume: 57 start-page: 1574 year: 1972 ident: 2023080804032874700_c3 publication-title: J. Chem. Phys. doi: 10.1063/1.1678438 – volume: 112 start-page: 2561 year: 2012 ident: 2023080804032874700_c39 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.23272 – volume: 104 start-page: 1069 year: 2006 ident: 2023080804032874700_c57 publication-title: Mol. Phys. doi: 10.1080/00268970500417937 – volume: 117 start-page: 3475 year: 2013 ident: 2023080804032874700_c65 publication-title: J. Phys. Chem. A doi: 10.1021/jp311597c – volume: 115 start-page: 2833 year: 2017 ident: 2023080804032874700_c69 publication-title: Mol. Phys. doi: 10.1080/00268976.2017.1340680 – volume: 82 start-page: 3067 year: 1985 ident: 2023080804032874700_c8 publication-title: J. Chem. Phys. doi: 10.1063/1.448255 – volume: 121 start-page: 6314 year: 2017 ident: 2023080804032874700_c66 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.7b04592 – year: 2012 ident: 2023080804032874700_c77 – volume: 118 start-page: 6816 year: 2003 ident: 2023080804032874700_c56 publication-title: J. Chem. Phys. doi: 10.1063/1.1540622 – volume: 75 start-page: 293 year: 1992 ident: 2023080804032874700_c63 publication-title: Mol. Phys. doi: 10.1080/00268979200100231 – volume: 62 start-page: 267 year: 1977 ident: 2023080804032874700_c5 publication-title: Faraday Discuss. Chem. Soc. doi: 10.1039/dc9776200267 – volume: 223 start-page: 215 year: 1994 ident: 2023080804032874700_c27 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(94)00435-8 – volume: 412 start-page: 51 year: 2013 ident: 2023080804032874700_c42 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2012.12.007 – volume: 59 start-page: 251 year: 1973 ident: 2023080804032874700_c2 publication-title: J. Chem. Phys. doi: 10.1063/1.1679799 – volume: 105 start-page: 6227 year: 2008 ident: 2023080804032874700_c15 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0710840105 – volume: 121 start-page: 5183 year: 2004 ident: 2023080804032874700_c35 publication-title: J. Chem. Phys. doi: 10.1063/1.1781155 – volume: 101 start-page: 2106 year: 1994 ident: 2023080804032874700_c9 publication-title: J. Chem. Phys. doi: 10.1063/1.467718 – volume: 105 start-page: 12662 year: 2008 ident: 2023080804032874700_c16 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0709974105 – volume-title: Dynamical Theory of Crystal Lattices year: 1954 ident: 2023080804032874700_c45 – volume: 85 start-page: 1206 year: 2000 ident: 2023080804032874700_c12 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.85.1206 – volume: 104 start-page: 6531 year: 1996 ident: 2023080804032874700_c26 publication-title: J. Chem. Phys. doi: 10.1063/1.471373 – volume: 150 start-page: 064308 year: 2019 ident: 2023080804032874700_c67 publication-title: J. Chem. Phys. doi: 10.1063/1.5064519 – volume: 124 start-page: 081106 year: 2006 ident: 2023080804032874700_c78 publication-title: J. Phys. Chem. doi: 10.1063/1.2178789 – volume: 218 start-page: 422 year: 1994 ident: 2023080804032874700_c24 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(94)00014-X – volume: 141 start-page: 204306 year: 2014 ident: 2023080804032874700_c71 publication-title: J. Chem. Phys. doi: 10.1063/1.4901986 – volume: 98 start-page: 1823 year: 2000 ident: 2023080804032874700_c76 publication-title: Mol. Phys. doi: 10.1080/00268970009483386 – volume: 16 start-page: 1666 year: 2020 ident: 2023080804032874700_c80 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b00948 – volume: 108 start-page: 9694 year: 1998 ident: 2023080804032874700_c11 publication-title: J. Chem. Phys. doi: 10.1063/1.476445 – volume: 56 start-page: 4626 year: 1972 ident: 2023080804032874700_c18 publication-title: J. Chem. Phys. doi: 10.1063/1.1677911 – volume: 117 start-page: 8497 year: 2013 ident: 2023080804032874700_c41 publication-title: J. Phys. Chem. A doi: 10.1021/jp311014z – volume: 79 start-page: 1916 year: 1983 ident: 2023080804032874700_c43 publication-title: J. Chem. Phys. doi: 10.1063/1.445970 – volume: 517 start-page: 92 year: 2011 ident: 2023080804032874700_c37 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2011.09.072 – volume: 91 start-page: 6830 year: 1989 ident: 2023080804032874700_c74 publication-title: J. Chem. Phys. doi: 10.1063/1.457352 – volume: 143 start-page: 244307 year: 2015 ident: 2023080804032874700_c68 publication-title: J. Chem. Phys. doi: 10.1063/1.4938526 – volume: 311 start-page: 1440 year: 2006 ident: 2023080804032874700_c14 publication-title: Science doi: 10.1126/science.1123452 – volume: 111 start-page: 40 year: 1999 ident: 2023080804032874700_c48 publication-title: J. Chem. Phys. doi: 10.1063/1.479360 – volume: 280 start-page: 430 year: 1997 ident: 2023080804032874700_c29 publication-title: Chem. Phys. Lett. doi: 10.1016/s0009-2614(97)01209-8 – volume: 86 start-page: 6258 year: 1987 ident: 2023080804032874700_c55 publication-title: J. Chem. Phys. doi: 10.1063/1.452463 – volume: 104 start-page: 389 year: 2000 ident: 2023080804032874700_c64 publication-title: J. Phys. Chem. A doi: 10.1021/jp992742o – volume: 147 start-page: 074105 year: 2017 ident: 2023080804032874700_c72 publication-title: J. Chem. Phys. doi: 10.1063/1.4998406 – volume: 53 start-page: 3385 year: 1970 ident: 2023080804032874700_c6 publication-title: J. Chem. Phys. doi: 10.1063/1.1674500 – volume: 62 start-page: 32507 year: 2000 ident: 2023080804032874700_c50 publication-title: Phys. Rev. A doi: 10.1103/physreva.62.032507 – volume: 38 start-page: 287 year: 2019 ident: 2023080804032874700_c73 publication-title: Int. Rev. Phys. Chem. doi: 10.1080/0144235x.2019.1672987 – volume: 124 start-page: 074101 year: 2006 ident: 2023080804032874700_c51 publication-title: J. Chem. Phys. doi: 10.1063/1.2170089 – volume: 12 start-page: 37 year: 1976 ident: 2023080804032874700_c4 publication-title: Chem. Phys. doi: 10.1016/0301-0104(76)80109-7 – volume: 131 start-page: 124312 year: 2009 ident: 2023080804032874700_c53 publication-title: J. Chem. Phys. doi: 10.1063/1.3236839 – volume: 112 start-page: 2121 year: 2000 ident: 2023080804032874700_c49 publication-title: J. Chem. Phys. doi: 10.1063/1.480823 – volume: 57 start-page: 59 year: 1984 ident: 2023080804032874700_c54 publication-title: Adv. Chem. Phys. doi: 10.1002/9780470142813.ch2 – volume: 515 start-page: 350 year: 2018 ident: 2023080804032874700_c70 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2018.09.017 – volume: 127 start-page: 174302 year: 2007 ident: 2023080804032874700_c31 publication-title: J. Chem. Phys. doi: 10.1063/1.2778421 – volume: 107 start-page: 1451 year: 1997 ident: 2023080804032874700_c46 publication-title: J. Chem. Phys. doi: 10.1063/1.474498 – volume: 112 start-page: 9868 year: 2008 ident: 2023080804032874700_c52 publication-title: J. Phys. Chem. A doi: 10.1021/jp8029709 – volume: 134 start-page: 231101 year: 2011 ident: 2023080804032874700_c36 publication-title: J. Chem. Phys. doi: 10.1063/1.3603453 – start-page: 1 volume-title: Theoretical Chemistry Advances and Perspectives year: 1981 ident: 2023080804032874700_c19 – volume: 112 start-page: 4536 year: 2000 ident: 2023080804032874700_c13 publication-title: J. Chem. Phys. doi: 10.1063/1.481041 – volume: 19 start-page: 96 year: 2006 ident: 2023080804032874700_c32 publication-title: Chin. J. Chem. Phys. doi: 10.1360/cjcp2006.19(2).96.3 – volume: 389 start-page: 457 year: 1927 ident: 2023080804032874700_c44 publication-title: Ann. Phys. doi: 10.1002/andp.19273892002 – volume: 89 start-page: 3139 year: 1988 ident: 2023080804032874700_c79 publication-title: J. Chem. Phys. doi: 10.1063/1.454971 – volume: 13 start-page: 8571 year: 2011 ident: 2023080804032874700_c28 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp02738c – volume: 51 start-page: 91 year: 1969 ident: 2023080804032874700_c1 publication-title: J. Chem. Phys. doi: 10.2307/41170252 – volume: 65 start-page: 373 year: 2011 ident: 2023080804032874700_c38 publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2011-20297-6 – volume: 105 start-page: 9141 year: 1996 ident: 2023080804032874700_c47 publication-title: J. Chem. Phys. doi: 10.1063/1.472748 – volume: 94 start-page: 7136 year: 1991 ident: 2023080804032874700_c22 publication-title: J. Chem. Phys. doi: 10.1063/1.460197 – volume-title: Beyond Born-Oppenheimer: Conical Intersections and Electronic Nonadiabatic Coupling Terms year: 2006 ident: 2023080804032874700_c62 – volume: 104 start-page: 6515 year: 1996 ident: 2023080804032874700_c25 publication-title: J. Chem. Phys. doi: 10.1063/1.471372 – volume: 35 start-page: 112 year: 1975 ident: 2023080804032874700_c60 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(75)85599-0 – volume: 82 start-page: 3045 year: 1985 ident: 2023080804032874700_c7 publication-title: J. Chem. Phys. doi: 10.1063/1.448254 – volume: 142 start-page: 024303 year: 2015 ident: 2023080804032874700_c33 publication-title: J. Chem. Phys. doi: 10.1063/1.4904546 – year: 2018 ident: 2023080804032874700_c75 – volume: 144 start-page: 191 year: 1988 ident: 2023080804032874700_c20 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(88)87115-x – volume: 213 start-page: 10 year: 1993 ident: 2023080804032874700_c23 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(93)85411-g – volume: 104 start-page: 2743 year: 1996 ident: 2023080804032874700_c10 publication-title: J. Chem. Phys. doi: 10.1063/1.471648 – volume: 69 start-page: 22 year: 2015 ident: 2023080804032874700_c34 publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2014-50445-3 – volume: 136 start-page: 174110 year: 2012 ident: 2023080804032874700_c59 publication-title: J. Chem. Phys. doi: 10.1063/1.4704789 – volume: 136 start-page: 054104 year: 2012 ident: 2023080804032874700_c40 publication-title: J. Chem. Phys. doi: 10.1063/1.3679406 – volume: 82 start-page: 188 year: 1985 ident: 2023080804032874700_c21 publication-title: J. Chem. Phys. doi: 10.1063/1.448781 – volume: 113 start-page: 11084 year: 2000 ident: 2023080804032874700_c30 publication-title: J. Chem. Phys. doi: 10.1063/1.1326850 – volume: 358 start-page: 75 year: 2002 ident: 2023080804032874700_c61 publication-title: Phys. Rep. doi: 10.1016/s0370-1573(01)00052-7 – volume: 176 start-page: 1412 year: 1972 ident: 2023080804032874700_c17 publication-title: Science doi: 10.1126/science.176.4042.1412 – volume: 135 start-page: 224110 year: 2011 ident: 2023080804032874700_c58 publication-title: J. Chem. Phys. doi: 10.1063/1.3660686 |
SSID | ssj0001724 |
Score | 2.3418102 |
Snippet | First principles based beyond Born–Oppenheimer theory has been implemented on the F + H2 system for constructing multistate global diabatic Potential Energy... First principles based beyond Born-Oppenheimer theory has been implemented on the F + H2 system for constructing multistate global diabatic Potential Energy... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 174301 |
SubjectTerms | Adiabatic flow Angles (geometry) Couplings Electron states First principles Intersections Jahn-Teller effect Mathematical analysis Perturbation Physics Potential energy |
Title | Beyond Born–Oppenheimer constructed diabatic potential energy surfaces for F + H2 reaction |
URI | http://dx.doi.org/10.1063/5.0021885 https://www.proquest.com/docview/2456576885 https://www.proquest.com/docview/2459347803 |
Volume | 153 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKJjReJhggygYyHw9IVVhip07zuA6qCthAbJP2gBTZjqOlpWnVtIjxxH_gH_JLuI5jN4MiDV6iKnGayOfk-tzr62uEnuuS7CElgdeLwV0NUyU8HovU44yDfvYzxXy9GvnomA3Pwjfn3fNW62sja2m5EC_lt7XrSv4HVTgHuOpVsv-ArPtTOAG_AV84AsJwvBbG9fKT_nRe2KQF-n42U8WFyidqrlPKTX1YUJU6yFpVZ51NFzpDCKBRZt1fuZxnVWKWzjgcABf6nSHpgJiUDrTRilMNBSttsQETHilX4I2BCSOT4tPPR7lLrTnm5dhkdL-dLsuLfLz2lpPpcnLphouP_EtuYteLSz5pRinAJdWR16hpeXUqCPPrstfG2Pq92IuY2S7UWWNTO9jSLlpr5kFXATZVNCzomS1_rpbS_m2Ic4mH1ZQ7o0k3qW-9gTYJOBhgITcPXh29O3GjOAi7uoK3eW9blYrRfffcq1pm5aBsgXoxiRQNrXJ6G23XEOEDw5g7qKWKHbR1aPf220E3PxjE7qJPhkNYc-jn9x8N9uAGe7BlD3bswYY92LIHA3vwAHfwkGDLnXvobPD69HDo1TtueFKXVfJIlMaqGymaykj4jPs0C0iQEUGZIlLSVLBUSC4zFgUyFeAdqEBKEM1d4suIKHofbRTTQj1A2OcgjeIszUQahaynQGnqUpQpDRl4-IFqoxe27xLbW3pXlM_JHxi10VPXdGZqsKxrtGcBSOpPtEzMrD6rLj9xl6Gv9awYLxRQXbeJKVgsn7bRMwfc3x_08Dpvs4turb6CPbQBaKlHoF4X4nFNtF_-ypjL |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+Born%E2%80%93Oppenheimer+constructed+diabatic+potential+energy+surfaces+for+F+%2B+H2+reaction&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Mukherjee%2C+Bijit&rft.au=Naskar%2C+Koushik&rft.au=Mukherjee%2C+Soumya&rft.au=Ravi%2C+Satyam&rft.date=2020-11-07&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=153&rft.issue=17&rft_id=info:doi/10.1063%2F5.0021885&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0021885 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |