Beyond Born–Oppenheimer constructed diabatic potential energy surfaces for F + H2 reaction

First principles based beyond Born–Oppenheimer theory has been implemented on the F + H2 system for constructing multistate global diabatic Potential Energy Surfaces (PESs) through the incorporation of Nonadiabatic Coupling Terms (NACTs) explicitly. The spin–orbit (SO) coupling effect on the collisi...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 153; no. 17; pp. 174301 - 174320
Main Authors Mukherjee, Bijit, Naskar, Koushik, Mukherjee, Soumya, Ravi, Satyam, Shamasundar, K. R., Mukhopadhyay, Debasis, Adhikari, Satrajit
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 07.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract First principles based beyond Born–Oppenheimer theory has been implemented on the F + H2 system for constructing multistate global diabatic Potential Energy Surfaces (PESs) through the incorporation of Nonadiabatic Coupling Terms (NACTs) explicitly. The spin–orbit (SO) coupling effect on the collision process of the F + H2 reaction has been included as a perturbation to the non-relativistic electronic Hamiltonian. Adiabatic PESs and NACTs for the lowest three electronic states (12A′, 22A′, and 12A″) are determined in hyperspherical coordinates as functions of hyperangles for a grid of fixed values of the hyperradius. Jahn–Teller (JT) type conical intersections between the two A′ states translate along C2v and linear geometries in F + H2. In addition, A′ and A″ states undergo Renner–Teller (RT) interaction at collinear configurations of this system. Both JT and RT couplings are validated by integrating NACTs along properly chosen contours. Subsequently, we have solved adiabatic-to-diabatic transformation (ADT) equations to evaluate the ADT angles for constructing the diabatic potential matrix of F + H2, including the SO coupling terms. The newly calculated diabatic PESs are found to be smooth, single-valued, continuous, and symmetric and can be invoked for performing accurate scattering calculations on the F + H2 system.
AbstractList First principles based beyond Born–Oppenheimer theory has been implemented on the F + H2 system for constructing multistate global diabatic Potential Energy Surfaces (PESs) through the incorporation of Nonadiabatic Coupling Terms (NACTs) explicitly. The spin–orbit (SO) coupling effect on the collision process of the F + H2 reaction has been included as a perturbation to the non-relativistic electronic Hamiltonian. Adiabatic PESs and NACTs for the lowest three electronic states (12A′, 22A′, and 12A″) are determined in hyperspherical coordinates as functions of hyperangles for a grid of fixed values of the hyperradius. Jahn–Teller (JT) type conical intersections between the two A′ states translate along C2v and linear geometries in F + H2. In addition, A′ and A″ states undergo Renner–Teller (RT) interaction at collinear configurations of this system. Both JT and RT couplings are validated by integrating NACTs along properly chosen contours. Subsequently, we have solved adiabatic-to-diabatic transformation (ADT) equations to evaluate the ADT angles for constructing the diabatic potential matrix of F + H2, including the SO coupling terms. The newly calculated diabatic PESs are found to be smooth, single-valued, continuous, and symmetric and can be invoked for performing accurate scattering calculations on the F + H2 system.
First principles based beyond Born-Oppenheimer theory has been implemented on the F + H2 system for constructing multistate global diabatic Potential Energy Surfaces (PESs) through the incorporation of Nonadiabatic Coupling Terms (NACTs) explicitly. The spin-orbit (SO) coupling effect on the collision process of the F + H2 reaction has been included as a perturbation to the non-relativistic electronic Hamiltonian. Adiabatic PESs and NACTs for the lowest three electronic states (12A', 22A', and 12A″) are determined in hyperspherical coordinates as functions of hyperangles for a grid of fixed values of the hyperradius. Jahn-Teller (JT) type conical intersections between the two A' states translate along C2v and linear geometries in F + H2. In addition, A' and A″ states undergo Renner-Teller (RT) interaction at collinear configurations of this system. Both JT and RT couplings are validated by integrating NACTs along properly chosen contours. Subsequently, we have solved adiabatic-to-diabatic transformation (ADT) equations to evaluate the ADT angles for constructing the diabatic potential matrix of F + H2, including the SO coupling terms. The newly calculated diabatic PESs are found to be smooth, single-valued, continuous, and symmetric and can be invoked for performing accurate scattering calculations on the F + H2 system.First principles based beyond Born-Oppenheimer theory has been implemented on the F + H2 system for constructing multistate global diabatic Potential Energy Surfaces (PESs) through the incorporation of Nonadiabatic Coupling Terms (NACTs) explicitly. The spin-orbit (SO) coupling effect on the collision process of the F + H2 reaction has been included as a perturbation to the non-relativistic electronic Hamiltonian. Adiabatic PESs and NACTs for the lowest three electronic states (12A', 22A', and 12A″) are determined in hyperspherical coordinates as functions of hyperangles for a grid of fixed values of the hyperradius. Jahn-Teller (JT) type conical intersections between the two A' states translate along C2v and linear geometries in F + H2. In addition, A' and A″ states undergo Renner-Teller (RT) interaction at collinear configurations of this system. Both JT and RT couplings are validated by integrating NACTs along properly chosen contours. Subsequently, we have solved adiabatic-to-diabatic transformation (ADT) equations to evaluate the ADT angles for constructing the diabatic potential matrix of F + H2, including the SO coupling terms. The newly calculated diabatic PESs are found to be smooth, single-valued, continuous, and symmetric and can be invoked for performing accurate scattering calculations on the F + H2 system.
Author Naskar, Koushik
Ravi, Satyam
Mukherjee, Bijit
Mukherjee, Soumya
Mukhopadhyay, Debasis
Adhikari, Satrajit
Shamasundar, K. R.
Author_xml – sequence: 1
  givenname: Bijit
  surname: Mukherjee
  fullname: Mukherjee, Bijit
  organization: School of Chemical Sciences, Indian Association for the Cultivation of Science
– sequence: 2
  givenname: Koushik
  surname: Naskar
  fullname: Naskar, Koushik
  organization: School of Chemical Sciences, Indian Association for the Cultivation of Science
– sequence: 3
  givenname: Soumya
  surname: Mukherjee
  fullname: Mukherjee, Soumya
  organization: School of Chemical Sciences, Indian Association for the Cultivation of Science
– sequence: 4
  givenname: Satyam
  surname: Ravi
  fullname: Ravi, Satyam
  organization: School of Chemical Sciences, Indian Association for the Cultivation of Science
– sequence: 5
  givenname: K. R.
  surname: Shamasundar
  fullname: Shamasundar, K. R.
  organization: Department of Chemical Science, Indian Institute of Science Education and Research
– sequence: 6
  givenname: Debasis
  surname: Mukhopadhyay
  fullname: Mukhopadhyay, Debasis
  organization: Department of Chemistry, University of Calcutta
– sequence: 7
  givenname: Satrajit
  surname: Adhikari
  fullname: Adhikari, Satrajit
  organization: School of Chemical Sciences, Indian Association for the Cultivation of Science
BookMark eNp90MFq3DAQBmBREugmzSFvIOilTXEyklfS-tgsTVMI5JLcAkYejxMtXsmV5MPe-g59wzxJvOz2spScBoZvhpn_hB354ImxcwGXAnR5pS4BpFgs1Ac2E7CoCqMrOGKzbbeoNOiP7CSlFQAII-cz9nRNm-Bbfh2if_3z934YyL-QW1PkGHzKccRMLW-dbWx2yIeQyWdne06e4vOGpzF2FinxLkR-w7_xW8kjWcwu-E_suLN9orN9PWWPNz8elrfF3f3PX8vvdwUKA6qQpq1IGSpbNA1oC2UnpOhkU2qSiGXb6LZBi502AttGVJIEotKgJKCRVJ6yL7u9Qwy_R0q5XruE1PfWUxhTLeeqKudmAeVEPx_QVRijn67bKq2MnrKb1NedwhhSitTVQ3RrGze1gHqbc63qfc6TvTqw6LLdvp-jdf1_Jy52E-mffGf9G0r9jps
CODEN JCPSA6
CitedBy_id crossref_primary_10_1088_1742_6596_2769_1_012012
crossref_primary_10_1039_D0CP04052E
crossref_primary_10_1039_D4CP02866J
crossref_primary_10_1002_qua_26675
crossref_primary_10_1063_5_0177186
crossref_primary_10_1002_qua_27212
crossref_primary_10_1021_acs_jpca_1c08912
crossref_primary_10_1002_cphc_202200482
crossref_primary_10_1016_j_chemphys_2022_111588
crossref_primary_10_1039_D1CP04733G
crossref_primary_10_1063_5_0040361
crossref_primary_10_1021_acs_jpca_3c05590
crossref_primary_10_1021_acs_jpca_2c04319
crossref_primary_10_1021_acs_jctc_0c01336
crossref_primary_10_1021_acs_jpca_2c01209
Cites_doi 10.1063/1.1678438
10.1002/qua.23272
10.1080/00268970500417937
10.1021/jp311597c
10.1080/00268976.2017.1340680
10.1063/1.448255
10.1021/acs.jpca.7b04592
10.1063/1.1540622
10.1080/00268979200100231
10.1039/dc9776200267
10.1016/0009-2614(94)00435-8
10.1016/j.chemphys.2012.12.007
10.1063/1.1679799
10.1073/pnas.0710840105
10.1063/1.1781155
10.1063/1.467718
10.1073/pnas.0709974105
10.1103/physrevlett.85.1206
10.1063/1.471373
10.1063/1.5064519
10.1063/1.2178789
10.1016/0009-2614(94)00014-X
10.1063/1.4901986
10.1080/00268970009483386
10.1021/acs.jctc.9b00948
10.1063/1.476445
10.1063/1.1677911
10.1021/jp311014z
10.1063/1.445970
10.1016/j.cplett.2011.09.072
10.1063/1.457352
10.1063/1.4938526
10.1126/science.1123452
10.1063/1.479360
10.1016/s0009-2614(97)01209-8
10.1063/1.452463
10.1021/jp992742o
10.1063/1.4998406
10.1063/1.1674500
10.1103/physreva.62.032507
10.1080/0144235x.2019.1672987
10.1063/1.2170089
10.1016/0301-0104(76)80109-7
10.1063/1.3236839
10.1063/1.480823
10.1002/9780470142813.ch2
10.1016/j.chemphys.2018.09.017
10.1063/1.2778421
10.1063/1.474498
10.1021/jp8029709
10.1063/1.3603453
10.1063/1.481041
10.1360/cjcp2006.19(2).96.3
10.1002/andp.19273892002
10.1063/1.454971
10.1039/c0cp02738c
10.2307/41170252
10.1140/epjd/e2011-20297-6
10.1063/1.472748
10.1063/1.460197
10.1063/1.471372
10.1016/0009-2614(75)85599-0
10.1063/1.448254
10.1063/1.4904546
10.1016/0009-2614(88)87115-x
10.1016/0009-2614(93)85411-g
10.1063/1.471648
10.1140/epjd/e2014-50445-3
10.1063/1.4704789
10.1063/1.3679406
10.1063/1.448781
10.1063/1.1326850
10.1016/s0370-1573(01)00052-7
10.1126/science.176.4042.1412
10.1063/1.3660686
ContentType Journal Article
Copyright Author(s)
2020 Author(s). Published under license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2020 Author(s). Published under license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
7X8
DOI 10.1063/5.0021885
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 10_1063_5_0021885
jcp
GrantInformation_xml – fundername: Science and Engineering Research Board
  grantid: CRG/2019/000793; EMR/2016/000684
  funderid: https://doi.org/10.13039/501100001843
– fundername: Council of Scientific and Industrial Research, India
  grantid: SPM-07/080(0250)/2016-EMR-I; 09/080(1068)/2018-EMR-I
  funderid: https://doi.org/10.13039/501100001412
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c1705-27d9e57e3dc7b06a03f121f2b36e2cc3db6dbcacf671cdb192e1cc560520c72e3
ISSN 0021-9606
1089-7690
IngestDate Thu Jul 10 23:29:03 EDT 2025
Sun Jun 29 15:44:29 EDT 2025
Tue Jul 01 00:27:47 EDT 2025
Thu Apr 24 23:02:30 EDT 2025
Fri Jun 21 00:14:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License 0021-9606/2020/153(17)/174301/20/$30.00
Published under license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1705-27d9e57e3dc7b06a03f121f2b36e2cc3db6dbcacf671cdb192e1cc560520c72e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8653-254X
0000-0002-2462-4892
PQID 2456576885
PQPubID 2050685
PageCount 20
ParticipantIDs proquest_miscellaneous_2459347803
crossref_primary_10_1063_5_0021885
proquest_journals_2456576885
scitation_primary_10_1063_5_0021885
crossref_citationtrail_10_1063_5_0021885
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201107
2020-11-07
PublicationDateYYYYMMDD 2020-11-07
PublicationDate_xml – month: 11
  year: 2020
  text: 20201107
  day: 07
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle The Journal of chemical physics
PublicationYear 2020
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Mukherjee, Mukherjee, Adhikari (c66) 2017; 121
Mukherjee, Naskar, Mukherjee, Ghosh, Sahoo, Adhikari (c73) 2019; 38
Berning, Schweizer, Werner, Knowles, Palmieri (c76) 2000; 98
Das, Sahoo, Mukhopadhyay, Adhikari, Baer (c40) 2012; 136
Aoiz, Bañares, Herrero, Sáez Rábanos, Stark, Werner (c27) 1994; 223
Polanyi, Schreiber (c5) 1977; 62
Neumark, Wodtke, Robinson, Hayden, Shobatake, Sparks, Schafer, Lee (c8) 1985; 82
Csehi, Bende, Halász, Vibók, Das, Mukhopadhyay, Mukherjee, Adhikari, Baer (c41) 2013; 117
Werner, Follmeg, Alexander (c79) 1988; 89
Das, Mukhopadhyay, Adhikari, Baer (c37) 2011; 517
Johnson (c43) 1983; 79
Lique, Li, Werner, Alexander (c36) 2011; 134
Mukherjee, Mukherjee, Sardar, Shamasundar, Adhikari (c69) 2017; 115
Lynch, Steckler, Schwenke, Varandas, Truhlar, Garrett (c22) 1991; 94
Coombe, Pimentel (c2) 1973; 59
Varandas, Xu (c49) 2000; 112
Evenhuis, Martínez (c58) 2011; 135
Baer (c60) 1975; 35
Ghosh, Mukherjee, Mukherjee, Mandal, Sharma, Chaudhury, Adhikari (c72) 2017; 147
Köppel, Schubert (c57) 2006; 104
Baer, Faubel, Martinez-Haya, Rusin, Tappe, Toennies, Stark, Werner (c10) 1996; 104
Polanyi, Woodall (c3) 1972; 57
Wang, Dong, Qiu, Ren, Che, Dai, Wang, Yang, Sun, Fu, Lee, Xu, Zhang (c15) 2008; 105
Chen, Sun, Zhang (c33) 2015; 142
Skodje, Skouteris, Manolopoulos, Lee, Dong, Liu (c12) 2000; 85
Das, Mukhopadhyay, Adhikari, Baer (c38) 2011; 65
Parker, Pimental (c1) 1969; 51
Castillo, Manolopoulos, Stark, Werner (c26) 1996; 104
Takayanagi, Sato (c20) 1988; 144
Das, Mukhopadhyay, Adhikari, Baer (c39) 2012; 112
Bender, O’Neil, Pearson, Schaefer (c17) 1972; 176
Alijah, Baer (c64) 2000; 104
Sarkar, Adhikari (c51) 2006; 124
Bender, Pearson, O’Neil, Schaefer (c18) 1972; 56
Neumark, Wodtke, Robinson, Hayden, Lee (c7) 1985; 82
Ren, Che, Qiu, Wang, Dong, Dai, Wang, Yang, Sun, Fu, Lee, Xu, Zhang (c16) 2008; 105
Xu, Xie, Zhang (c32) 2006; 19
Faubel, Rusin, Schlemmer, Sondermann, Tappe, Toennies (c9) 1994; 101
Mukherjee, Mukhopadhyay, Adhikari (c71) 2014; 141
Varandas, Brown, Mead, Truhlar, Blais (c55) 1987; 86
Baer, Faubel, Mart, nez-Haya, Rusin, Tappe, Toennies (c11) 1998; 108
Fazio, Lucas, Aquilanti, Cavalli (c28) 2011; 13
Born, Oppenheimer (c44) 1927; 389
Halász, Vibók, Baer, Baer (c78) 2006; 124
Das, Mukhopadhyay (c42) 2013; 412
Mukherjee, Mukherjee, Sardar, Shamasundar, Adhikari (c70) 2018; 515
Hartke, Werner (c29) 1997; 280
Zhu, Yarkony (c59) 2012; 136
Schafer, Siska, Parson, Tully, Wong, Lee (c6) 1970; 53
Tzeng, Alexander (c35) 2004; 121
Mielke, Lynch, Truhlar, Schwenke (c23) 1993; 213
Qiu, Ren, Che, Dai, Harich, Wang, Yang, Xu, Xie, Gustafsson, Skodje, Sun, Zhang (c14) 2006; 311
Alexander, Manolopoulos, Werner (c30) 2000; 113
Sarkar, Adhikari (c52) 2008; 112
Köppel, Domcke, Cederbaum (c54) 1984; 57
Naskar, Mukherjee, Mukherjee, Ravi, Mukherjee, Sardar, Adhikari (c80) 2020; 16
Li, Song, Varandas (c34) 2015; 69
Paul, Sardar, Sarkar, Adhikari (c53) 2009; 131
Baer (c61) 2002; 358
Li, Werner, Lique, Alexander (c31) 2007; 127
Adhikari, Billing, Alijah, Lin, Baer (c50) 2000; 62
Stark, Werner (c25) 1996; 104
Adhikari, Billing (c48) 1999; 111
Aoiz, Bañares, Herrero, Sáez Rábanos (c24) 1994; 218
Baer, Englman (c63) 1992; 75
Brown, Steckler, Schwenke, Truhlar, Garrett (c21) 1985; 82
Mukherjee, Dutta, Mukherjee, Sardar, Adhikari (c67) 2019; 150
Billing, Muckerman (c74) 1989; 91
Baer, Charutz, Kosloff, Baer (c47) 1996; 105
Last, Gilibert, Baer (c46) 1997; 107
Perry, Polanyi (c4) 1976; 12
Mukherjee, Bandyopadhyay, Paul, Adhikari (c65) 2013; 117
Mukherjee, Mukherjee, Sardar, Adhikari (c68) 2015; 143
Skodje, Skouteris, Manolopoulos, Lee, Dong, Liu (c13) 2000; 112
Nakamura, Truhlar (c56) 2003; 118
(2023080804032874700_c45) 1954
(2023080804032874700_c56) 2003; 118
(2023080804032874700_c55) 1987; 86
(2023080804032874700_c63) 1992; 75
(2023080804032874700_c5) 1977; 62
(2023080804032874700_c41) 2013; 117
(2023080804032874700_c80) 2020; 16
(2023080804032874700_c34) 2015; 69
(2023080804032874700_c74) 1989; 91
(2023080804032874700_c7) 1985; 82
(2023080804032874700_c26) 1996; 104
(2023080804032874700_c33) 2015; 142
(2023080804032874700_c69) 2017; 115
(2023080804032874700_c2) 1973; 59
(2023080804032874700_c67) 2019; 150
(2023080804032874700_c44) 1927; 389
(2023080804032874700_c66) 2017; 121
(2023080804032874700_c58) 2011; 135
(2023080804032874700_c12) 2000; 85
(2023080804032874700_c4) 1976; 12
(2023080804032874700_c23) 1993; 213
(2023080804032874700_c8) 1985; 82
(2023080804032874700_c42) 2013; 412
(2023080804032874700_c14) 2006; 311
(2023080804032874700_c20) 1988; 144
(2023080804032874700_c47) 1996; 105
(2023080804032874700_c75) 2018
(2023080804032874700_c40) 2012; 136
(2023080804032874700_c18) 1972; 56
(2023080804032874700_c68) 2015; 143
(2023080804032874700_c10) 1996; 104
(2023080804032874700_c43) 1983; 79
(2023080804032874700_c59) 2012; 136
(2023080804032874700_c38) 2011; 65
(2023080804032874700_c78) 2006; 124
(2023080804032874700_c24) 1994; 218
(2023080804032874700_c54) 1984; 57
(2023080804032874700_c51) 2006; 124
(2023080804032874700_c76) 2000; 98
(2023080804032874700_c3) 1972; 57
(2023080804032874700_c13) 2000; 112
(2023080804032874700_c60) 1975; 35
(2023080804032874700_c36) 2011; 134
(2023080804032874700_c32) 2006; 19
(2023080804032874700_c49) 2000; 112
(2023080804032874700_c79) 1988; 89
(2023080804032874700_c64) 2000; 104
(2023080804032874700_c22) 1991; 94
(2023080804032874700_c57) 2006; 104
(2023080804032874700_c50) 2000; 62
(2023080804032874700_c37) 2011; 517
(2023080804032874700_c9) 1994; 101
(2023080804032874700_c25) 1996; 104
(2023080804032874700_c30) 2000; 113
(2023080804032874700_c35) 2004; 121
(2023080804032874700_c27) 1994; 223
(2023080804032874700_c73) 2019; 38
(2023080804032874700_c19) 1981
(2023080804032874700_c77) 2012
(2023080804032874700_c15) 2008; 105
(2023080804032874700_c65) 2013; 117
(2023080804032874700_c52) 2008; 112
(2023080804032874700_c61) 2002; 358
(2023080804032874700_c72) 2017; 147
(2023080804032874700_c6) 1970; 53
(2023080804032874700_c28) 2011; 13
(2023080804032874700_c29) 1997; 280
(2023080804032874700_c31) 2007; 127
(2023080804032874700_c46) 1997; 107
(2023080804032874700_c70) 2018; 515
(2023080804032874700_c21) 1985; 82
(2023080804032874700_c48) 1999; 111
(2023080804032874700_c71) 2014; 141
(2023080804032874700_c39) 2012; 112
(2023080804032874700_c16) 2008; 105
(2023080804032874700_c17) 1972; 176
(2023080804032874700_c53) 2009; 131
(2023080804032874700_c62) 2006
(2023080804032874700_c11) 1998; 108
(2023080804032874700_c1) 1969; 51
References_xml – volume: 105
  start-page: 12662
  year: 2008
  ident: c16
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 105
  start-page: 6227
  year: 2008
  ident: c15
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 38
  start-page: 287
  year: 2019
  ident: c73
  publication-title: Int. Rev. Phys. Chem.
– volume: 51
  start-page: 91
  year: 1969
  ident: c1
  publication-title: J. Chem. Phys.
– volume: 112
  start-page: 2121
  year: 2000
  ident: c49
  publication-title: J. Chem. Phys.
– volume: 112
  start-page: 9868
  year: 2008
  ident: c52
  publication-title: J. Phys. Chem. A
– volume: 389
  start-page: 457
  year: 1927
  ident: c44
  publication-title: Ann. Phys.
– volume: 124
  start-page: 081106
  year: 2006
  ident: c78
  publication-title: J. Phys. Chem.
– volume: 104
  start-page: 6531
  year: 1996
  ident: c26
  publication-title: J. Chem. Phys.
– volume: 121
  start-page: 5183
  year: 2004
  ident: c35
  publication-title: J. Chem. Phys.
– volume: 104
  start-page: 1069
  year: 2006
  ident: c57
  publication-title: Mol. Phys.
– volume: 19
  start-page: 96
  year: 2006
  ident: c32
  publication-title: Chin. J. Chem. Phys.
– volume: 69
  start-page: 22
  year: 2015
  ident: c34
  publication-title: Eur. Phys. J. D
– volume: 108
  start-page: 9694
  year: 1998
  ident: c11
  publication-title: J. Chem. Phys.
– volume: 176
  start-page: 1412
  year: 1972
  ident: c17
  publication-title: Science
– volume: 115
  start-page: 2833
  year: 2017
  ident: c69
  publication-title: Mol. Phys.
– volume: 147
  start-page: 074105
  year: 2017
  ident: c72
  publication-title: J. Chem. Phys.
– volume: 358
  start-page: 75
  year: 2002
  ident: c61
  publication-title: Phys. Rep.
– volume: 412
  start-page: 51
  year: 2013
  ident: c42
  publication-title: Chem. Phys.
– volume: 89
  start-page: 3139
  year: 1988
  ident: c79
  publication-title: J. Chem. Phys.
– volume: 121
  start-page: 6314
  year: 2017
  ident: c66
  publication-title: J. Phys. Chem. A
– volume: 141
  start-page: 204306
  year: 2014
  ident: c71
  publication-title: J. Chem. Phys.
– volume: 82
  start-page: 3067
  year: 1985
  ident: c8
  publication-title: J. Chem. Phys.
– volume: 111
  start-page: 40
  year: 1999
  ident: c48
  publication-title: J. Chem. Phys.
– volume: 127
  start-page: 174302
  year: 2007
  ident: c31
  publication-title: J. Chem. Phys.
– volume: 75
  start-page: 293
  year: 1992
  ident: c63
  publication-title: Mol. Phys.
– volume: 16
  start-page: 1666
  year: 2020
  ident: c80
  publication-title: J. Chem. Theory Comput.
– volume: 134
  start-page: 231101
  year: 2011
  ident: c36
  publication-title: J. Chem. Phys.
– volume: 57
  start-page: 1574
  year: 1972
  ident: c3
  publication-title: J. Chem. Phys.
– volume: 150
  start-page: 064308
  year: 2019
  ident: c67
  publication-title: J. Chem. Phys.
– volume: 62
  start-page: 267
  year: 1977
  ident: c5
  publication-title: Faraday Discuss. Chem. Soc.
– volume: 104
  start-page: 2743
  year: 1996
  ident: c10
  publication-title: J. Chem. Phys.
– volume: 118
  start-page: 6816
  year: 2003
  ident: c56
  publication-title: J. Chem. Phys.
– volume: 144
  start-page: 191
  year: 1988
  ident: c20
  publication-title: Chem. Phys. Lett.
– volume: 59
  start-page: 251
  year: 1973
  ident: c2
  publication-title: J. Chem. Phys.
– volume: 113
  start-page: 11084
  year: 2000
  ident: c30
  publication-title: J. Chem. Phys.
– volume: 117
  start-page: 3475
  year: 2013
  ident: c65
  publication-title: J. Phys. Chem. A
– volume: 12
  start-page: 37
  year: 1976
  ident: c4
  publication-title: Chem. Phys.
– volume: 136
  start-page: 054104
  year: 2012
  ident: c40
  publication-title: J. Chem. Phys.
– volume: 101
  start-page: 2106
  year: 1994
  ident: c9
  publication-title: J. Chem. Phys.
– volume: 56
  start-page: 4626
  year: 1972
  ident: c18
  publication-title: J. Chem. Phys.
– volume: 107
  start-page: 1451
  year: 1997
  ident: c46
  publication-title: J. Chem. Phys.
– volume: 515
  start-page: 350
  year: 2018
  ident: c70
  publication-title: Chem. Phys.
– volume: 218
  start-page: 422
  year: 1994
  ident: c24
  publication-title: Chem. Phys. Lett.
– volume: 142
  start-page: 024303
  year: 2015
  ident: c33
  publication-title: J. Chem. Phys.
– volume: 13
  start-page: 8571
  year: 2011
  ident: c28
  publication-title: Phys. Chem. Chem. Phys.
– volume: 104
  start-page: 389
  year: 2000
  ident: c64
  publication-title: J. Phys. Chem. A
– volume: 62
  start-page: 32507
  year: 2000
  ident: c50
  publication-title: Phys. Rev. A
– volume: 104
  start-page: 6515
  year: 1996
  ident: c25
  publication-title: J. Chem. Phys.
– volume: 131
  start-page: 124312
  year: 2009
  ident: c53
  publication-title: J. Chem. Phys.
– volume: 82
  start-page: 188
  year: 1985
  ident: c21
  publication-title: J. Chem. Phys.
– volume: 143
  start-page: 244307
  year: 2015
  ident: c68
  publication-title: J. Chem. Phys.
– volume: 135
  start-page: 224110
  year: 2011
  ident: c58
  publication-title: J. Chem. Phys.
– volume: 136
  start-page: 174110
  year: 2012
  ident: c59
  publication-title: J. Chem. Phys.
– volume: 91
  start-page: 6830
  year: 1989
  ident: c74
  publication-title: J. Chem. Phys.
– volume: 105
  start-page: 9141
  year: 1996
  ident: c47
  publication-title: J. Chem. Phys.
– volume: 57
  start-page: 59
  year: 1984
  ident: c54
  publication-title: Adv. Chem. Phys.
– volume: 98
  start-page: 1823
  year: 2000
  ident: c76
  publication-title: Mol. Phys.
– volume: 82
  start-page: 3045
  year: 1985
  ident: c7
  publication-title: J. Chem. Phys.
– volume: 53
  start-page: 3385
  year: 1970
  ident: c6
  publication-title: J. Chem. Phys.
– volume: 79
  start-page: 1916
  year: 1983
  ident: c43
  publication-title: J. Chem. Phys.
– volume: 112
  start-page: 2561
  year: 2012
  ident: c39
  publication-title: Int. J. Quantum Chem.
– volume: 124
  start-page: 074101
  year: 2006
  ident: c51
  publication-title: J. Chem. Phys.
– volume: 85
  start-page: 1206
  year: 2000
  ident: c12
  publication-title: Phys. Rev. Lett.
– volume: 517
  start-page: 92
  year: 2011
  ident: c37
  publication-title: Chem. Phys. Lett.
– volume: 94
  start-page: 7136
  year: 1991
  ident: c22
  publication-title: J. Chem. Phys.
– volume: 311
  start-page: 1440
  year: 2006
  ident: c14
  publication-title: Science
– volume: 213
  start-page: 10
  year: 1993
  ident: c23
  publication-title: Chem. Phys. Lett.
– volume: 117
  start-page: 8497
  year: 2013
  ident: c41
  publication-title: J. Phys. Chem. A
– volume: 280
  start-page: 430
  year: 1997
  ident: c29
  publication-title: Chem. Phys. Lett.
– volume: 35
  start-page: 112
  year: 1975
  ident: c60
  publication-title: Chem. Phys. Lett.
– volume: 112
  start-page: 4536
  year: 2000
  ident: c13
  publication-title: J. Chem. Phys.
– volume: 223
  start-page: 215
  year: 1994
  ident: c27
  publication-title: Chem. Phys. Lett.
– volume: 86
  start-page: 6258
  year: 1987
  ident: c55
  publication-title: J. Chem. Phys.
– volume: 65
  start-page: 373
  year: 2011
  ident: c38
  publication-title: Eur. Phys. J. D
– volume: 57
  start-page: 1574
  year: 1972
  ident: 2023080804032874700_c3
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1678438
– volume: 112
  start-page: 2561
  year: 2012
  ident: 2023080804032874700_c39
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.23272
– volume: 104
  start-page: 1069
  year: 2006
  ident: 2023080804032874700_c57
  publication-title: Mol. Phys.
  doi: 10.1080/00268970500417937
– volume: 117
  start-page: 3475
  year: 2013
  ident: 2023080804032874700_c65
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp311597c
– volume: 115
  start-page: 2833
  year: 2017
  ident: 2023080804032874700_c69
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2017.1340680
– volume: 82
  start-page: 3067
  year: 1985
  ident: 2023080804032874700_c8
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448255
– volume: 121
  start-page: 6314
  year: 2017
  ident: 2023080804032874700_c66
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.7b04592
– year: 2012
  ident: 2023080804032874700_c77
– volume: 118
  start-page: 6816
  year: 2003
  ident: 2023080804032874700_c56
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1540622
– volume: 75
  start-page: 293
  year: 1992
  ident: 2023080804032874700_c63
  publication-title: Mol. Phys.
  doi: 10.1080/00268979200100231
– volume: 62
  start-page: 267
  year: 1977
  ident: 2023080804032874700_c5
  publication-title: Faraday Discuss. Chem. Soc.
  doi: 10.1039/dc9776200267
– volume: 223
  start-page: 215
  year: 1994
  ident: 2023080804032874700_c27
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(94)00435-8
– volume: 412
  start-page: 51
  year: 2013
  ident: 2023080804032874700_c42
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2012.12.007
– volume: 59
  start-page: 251
  year: 1973
  ident: 2023080804032874700_c2
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1679799
– volume: 105
  start-page: 6227
  year: 2008
  ident: 2023080804032874700_c15
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0710840105
– volume: 121
  start-page: 5183
  year: 2004
  ident: 2023080804032874700_c35
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1781155
– volume: 101
  start-page: 2106
  year: 1994
  ident: 2023080804032874700_c9
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.467718
– volume: 105
  start-page: 12662
  year: 2008
  ident: 2023080804032874700_c16
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0709974105
– volume-title: Dynamical Theory of Crystal Lattices
  year: 1954
  ident: 2023080804032874700_c45
– volume: 85
  start-page: 1206
  year: 2000
  ident: 2023080804032874700_c12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.85.1206
– volume: 104
  start-page: 6531
  year: 1996
  ident: 2023080804032874700_c26
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.471373
– volume: 150
  start-page: 064308
  year: 2019
  ident: 2023080804032874700_c67
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5064519
– volume: 124
  start-page: 081106
  year: 2006
  ident: 2023080804032874700_c78
  publication-title: J. Phys. Chem.
  doi: 10.1063/1.2178789
– volume: 218
  start-page: 422
  year: 1994
  ident: 2023080804032874700_c24
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(94)00014-X
– volume: 141
  start-page: 204306
  year: 2014
  ident: 2023080804032874700_c71
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4901986
– volume: 98
  start-page: 1823
  year: 2000
  ident: 2023080804032874700_c76
  publication-title: Mol. Phys.
  doi: 10.1080/00268970009483386
– volume: 16
  start-page: 1666
  year: 2020
  ident: 2023080804032874700_c80
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.9b00948
– volume: 108
  start-page: 9694
  year: 1998
  ident: 2023080804032874700_c11
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.476445
– volume: 56
  start-page: 4626
  year: 1972
  ident: 2023080804032874700_c18
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1677911
– volume: 117
  start-page: 8497
  year: 2013
  ident: 2023080804032874700_c41
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp311014z
– volume: 79
  start-page: 1916
  year: 1983
  ident: 2023080804032874700_c43
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445970
– volume: 517
  start-page: 92
  year: 2011
  ident: 2023080804032874700_c37
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2011.09.072
– volume: 91
  start-page: 6830
  year: 1989
  ident: 2023080804032874700_c74
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.457352
– volume: 143
  start-page: 244307
  year: 2015
  ident: 2023080804032874700_c68
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4938526
– volume: 311
  start-page: 1440
  year: 2006
  ident: 2023080804032874700_c14
  publication-title: Science
  doi: 10.1126/science.1123452
– volume: 111
  start-page: 40
  year: 1999
  ident: 2023080804032874700_c48
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.479360
– volume: 280
  start-page: 430
  year: 1997
  ident: 2023080804032874700_c29
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/s0009-2614(97)01209-8
– volume: 86
  start-page: 6258
  year: 1987
  ident: 2023080804032874700_c55
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.452463
– volume: 104
  start-page: 389
  year: 2000
  ident: 2023080804032874700_c64
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp992742o
– volume: 147
  start-page: 074105
  year: 2017
  ident: 2023080804032874700_c72
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4998406
– volume: 53
  start-page: 3385
  year: 1970
  ident: 2023080804032874700_c6
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1674500
– volume: 62
  start-page: 32507
  year: 2000
  ident: 2023080804032874700_c50
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.62.032507
– volume: 38
  start-page: 287
  year: 2019
  ident: 2023080804032874700_c73
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/0144235x.2019.1672987
– volume: 124
  start-page: 074101
  year: 2006
  ident: 2023080804032874700_c51
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2170089
– volume: 12
  start-page: 37
  year: 1976
  ident: 2023080804032874700_c4
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(76)80109-7
– volume: 131
  start-page: 124312
  year: 2009
  ident: 2023080804032874700_c53
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3236839
– volume: 112
  start-page: 2121
  year: 2000
  ident: 2023080804032874700_c49
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.480823
– volume: 57
  start-page: 59
  year: 1984
  ident: 2023080804032874700_c54
  publication-title: Adv. Chem. Phys.
  doi: 10.1002/9780470142813.ch2
– volume: 515
  start-page: 350
  year: 2018
  ident: 2023080804032874700_c70
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2018.09.017
– volume: 127
  start-page: 174302
  year: 2007
  ident: 2023080804032874700_c31
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2778421
– volume: 107
  start-page: 1451
  year: 1997
  ident: 2023080804032874700_c46
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.474498
– volume: 112
  start-page: 9868
  year: 2008
  ident: 2023080804032874700_c52
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp8029709
– volume: 134
  start-page: 231101
  year: 2011
  ident: 2023080804032874700_c36
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3603453
– start-page: 1
  volume-title: Theoretical Chemistry Advances and Perspectives
  year: 1981
  ident: 2023080804032874700_c19
– volume: 112
  start-page: 4536
  year: 2000
  ident: 2023080804032874700_c13
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.481041
– volume: 19
  start-page: 96
  year: 2006
  ident: 2023080804032874700_c32
  publication-title: Chin. J. Chem. Phys.
  doi: 10.1360/cjcp2006.19(2).96.3
– volume: 389
  start-page: 457
  year: 1927
  ident: 2023080804032874700_c44
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19273892002
– volume: 89
  start-page: 3139
  year: 1988
  ident: 2023080804032874700_c79
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.454971
– volume: 13
  start-page: 8571
  year: 2011
  ident: 2023080804032874700_c28
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp02738c
– volume: 51
  start-page: 91
  year: 1969
  ident: 2023080804032874700_c1
  publication-title: J. Chem. Phys.
  doi: 10.2307/41170252
– volume: 65
  start-page: 373
  year: 2011
  ident: 2023080804032874700_c38
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2011-20297-6
– volume: 105
  start-page: 9141
  year: 1996
  ident: 2023080804032874700_c47
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.472748
– volume: 94
  start-page: 7136
  year: 1991
  ident: 2023080804032874700_c22
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.460197
– volume-title: Beyond Born-Oppenheimer: Conical Intersections and Electronic Nonadiabatic Coupling Terms
  year: 2006
  ident: 2023080804032874700_c62
– volume: 104
  start-page: 6515
  year: 1996
  ident: 2023080804032874700_c25
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.471372
– volume: 35
  start-page: 112
  year: 1975
  ident: 2023080804032874700_c60
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(75)85599-0
– volume: 82
  start-page: 3045
  year: 1985
  ident: 2023080804032874700_c7
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448254
– volume: 142
  start-page: 024303
  year: 2015
  ident: 2023080804032874700_c33
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4904546
– year: 2018
  ident: 2023080804032874700_c75
– volume: 144
  start-page: 191
  year: 1988
  ident: 2023080804032874700_c20
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(88)87115-x
– volume: 213
  start-page: 10
  year: 1993
  ident: 2023080804032874700_c23
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(93)85411-g
– volume: 104
  start-page: 2743
  year: 1996
  ident: 2023080804032874700_c10
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.471648
– volume: 69
  start-page: 22
  year: 2015
  ident: 2023080804032874700_c34
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2014-50445-3
– volume: 136
  start-page: 174110
  year: 2012
  ident: 2023080804032874700_c59
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4704789
– volume: 136
  start-page: 054104
  year: 2012
  ident: 2023080804032874700_c40
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3679406
– volume: 82
  start-page: 188
  year: 1985
  ident: 2023080804032874700_c21
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448781
– volume: 113
  start-page: 11084
  year: 2000
  ident: 2023080804032874700_c30
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1326850
– volume: 358
  start-page: 75
  year: 2002
  ident: 2023080804032874700_c61
  publication-title: Phys. Rep.
  doi: 10.1016/s0370-1573(01)00052-7
– volume: 176
  start-page: 1412
  year: 1972
  ident: 2023080804032874700_c17
  publication-title: Science
  doi: 10.1126/science.176.4042.1412
– volume: 135
  start-page: 224110
  year: 2011
  ident: 2023080804032874700_c58
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3660686
SSID ssj0001724
Score 2.3418102
Snippet First principles based beyond Born–Oppenheimer theory has been implemented on the F + H2 system for constructing multistate global diabatic Potential Energy...
First principles based beyond Born-Oppenheimer theory has been implemented on the F + H2 system for constructing multistate global diabatic Potential Energy...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 174301
SubjectTerms Adiabatic flow
Angles (geometry)
Couplings
Electron states
First principles
Intersections
Jahn-Teller effect
Mathematical analysis
Perturbation
Physics
Potential energy
Title Beyond Born–Oppenheimer constructed diabatic potential energy surfaces for F + H2 reaction
URI http://dx.doi.org/10.1063/5.0021885
https://www.proquest.com/docview/2456576885
https://www.proquest.com/docview/2459347803
Volume 153
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKJjReJhggygYyHw9IVVhip07zuA6qCthAbJP2gBTZjqOlpWnVtIjxxH_gH_JLuI5jN4MiDV6iKnGayOfk-tzr62uEnuuS7CElgdeLwV0NUyU8HovU44yDfvYzxXy9GvnomA3Pwjfn3fNW62sja2m5EC_lt7XrSv4HVTgHuOpVsv-ArPtTOAG_AV84AsJwvBbG9fKT_nRe2KQF-n42U8WFyidqrlPKTX1YUJU6yFpVZ51NFzpDCKBRZt1fuZxnVWKWzjgcABf6nSHpgJiUDrTRilMNBSttsQETHilX4I2BCSOT4tPPR7lLrTnm5dhkdL-dLsuLfLz2lpPpcnLphouP_EtuYteLSz5pRinAJdWR16hpeXUqCPPrstfG2Pq92IuY2S7UWWNTO9jSLlpr5kFXATZVNCzomS1_rpbS_m2Ic4mH1ZQ7o0k3qW-9gTYJOBhgITcPXh29O3GjOAi7uoK3eW9blYrRfffcq1pm5aBsgXoxiRQNrXJ6G23XEOEDw5g7qKWKHbR1aPf220E3PxjE7qJPhkNYc-jn9x8N9uAGe7BlD3bswYY92LIHA3vwAHfwkGDLnXvobPD69HDo1TtueFKXVfJIlMaqGymaykj4jPs0C0iQEUGZIlLSVLBUSC4zFgUyFeAdqEBKEM1d4suIKHofbRTTQj1A2OcgjeIszUQahaynQGnqUpQpDRl4-IFqoxe27xLbW3pXlM_JHxi10VPXdGZqsKxrtGcBSOpPtEzMrD6rLj9xl6Gv9awYLxRQXbeJKVgsn7bRMwfc3x_08Dpvs4turb6CPbQBaKlHoF4X4nFNtF_-ypjL
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+Born%E2%80%93Oppenheimer+constructed+diabatic+potential+energy+surfaces+for+F+%2B+H2+reaction&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Mukherjee%2C+Bijit&rft.au=Naskar%2C+Koushik&rft.au=Mukherjee%2C+Soumya&rft.au=Ravi%2C+Satyam&rft.date=2020-11-07&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=153&rft.issue=17&rft_id=info:doi/10.1063%2F5.0021885&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0021885
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon