Simultaneous Measurements of Thermal Conductivity and Diffusivity of Hen Egg-White Lysozyme Crystals Using a Transient Short Hot Wire Method and Magneto-Archimedes Effect

By using simultaneously the magnetic levitation technique and the transient short hot wire method, thermal conductivity and diffusivity of hen egg-white lysozyme (HEWL) crystals were measured for the first time. In order to attach the HEWL crystals onto the wire, crystal growth was carried out at th...

Full description

Saved in:
Bibliographic Details
Published inNetsu Bussei Vol. 30; no. 3; pp. 131 - 139
Main Authors Hagiwara, Masayuki, Tanaka, Seiichi, Fujiwara, Seiji, Maekawa, Ryunosuke, Maki, Syou
Format Journal Article
LanguageEnglish
Japanese
Published JAPAN SOCIETY OF THERMOPHYSICAL PROPERTIES 2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract By using simultaneously the magnetic levitation technique and the transient short hot wire method, thermal conductivity and diffusivity of hen egg-white lysozyme (HEWL) crystals were measured for the first time. In order to attach the HEWL crystals onto the wire, crystal growth was carried out at the air-liquid interface of the solution by the magneto-Archimedes effect. Gadolinium chloride (a paramagnetic subject) was used as a precipitant agent of crystallization. The thermal conductivity and diffusivity of the HEWL crystals at the applied magnetic field (H) of μ0H = 4.0 T and the temperature of 17.2 °C were determined to be 0.410 W/(m·K) and 3.77 × 10-8 m2/s 14 h later from the start of the crystal growth, and 0.438 W/(m·K) and 5.18 × 10-8 m2/s 20 h later, respectively. In this measurement, the concentrations of HEWL and GdCl3 were 6.53 wt% and 0.362 mol/kg, respectively, and the pH was 3.30.
AbstractList By using simultaneously the magnetic levitation technique and the transient short hot wire method, thermal conductivity and diffusivity of hen egg-white lysozyme (HEWL) crystals were measured for the first time. In order to attach the HEWL crystals onto the wire, crystal growth was carried out at the air-liquid interface of the solution by the magneto-Archimedes effect. Gadolinium chloride (a paramagnetic subject) was used as a precipitant agent of crystallization. The thermal conductivity and diffusivity of the HEWL crystals at the applied magnetic field (H) of μ0H = 4.0 T and the temperature of 17.2 °C were determined to be 0.410 W/(m·K) and 3.77 × 10-8 m2/s 14 h later from the start of the crystal growth, and 0.438 W/(m·K) and 5.18 × 10-8 m2/s 20 h later, respectively. In this measurement, the concentrations of HEWL and GdCl3 were 6.53 wt% and 0.362 mol/kg, respectively, and the pH was 3.30.
Author Maki, Syou
Hagiwara, Masayuki
Fujiwara, Seiji
Maekawa, Ryunosuke
Tanaka, Seiichi
Author_xml – sequence: 1
  fullname: Hagiwara, Masayuki
  organization: Center for Advanced High Magnetic Field Science, Graduate School of Science, Osaka University
– sequence: 1
  fullname: Tanaka, Seiichi
  organization: Department of Mechanical Engineering, National Institute of Technology, Akashi College
– sequence: 1
  fullname: Fujiwara, Seiji
  organization: Department of Mechanical Engineering, National Institute of Technology, Akashi College
– sequence: 1
  fullname: Maekawa, Ryunosuke
  organization: Department of Mechanical Engineering, National Institute of Technology, Akashi College
– sequence: 1
  fullname: Maki, Syou
  organization: Faculty of Pharmacy, Osaka Ohtani University
BookMark eNp1kM1q3DAURkVIINM0q7yA9sUTyfL4Z1MI02mnMKGLTEh25lq6sjXYUpDkgPtIfco4nTCLQlcXXZ3vXPg-kXPrLBJyw9kyrXJxezjEl6VgSy74GVnwsuRJxrPnc7JgFRdJleXPl-Q6BNMwlmZlVrB0Qf48mGHsI1h0Y6D3CGH0OKCNgTpN9x36AXq6dlaNMppXEycKVtFvRusxHN8zt0VLN22bPHUmIt1Nwf2eBqRrP4UIfaCPwdiWAt17sMHMdvrQOR_p1kX6ZDzOh2Pn1F_1PbQWo0vuvOzMgAoD3WiNMn4mF3qW4fXHvCKP3zf79TbZ_frxc323SyQvGE8gLXUhFOZKVUzACmSToVK5yppSqipnHPW84jrljagQi6xcQZFBk66aohArcUW-HL3SuxA86vrFmwH8VHNWvzddvzddC1bPTc80_4eWJkI0zkYPpv9P5usxc5jrafHkBx-N7PHEio_A6UN24Gu04g2NuKAl
CitedBy_id crossref_primary_10_3390_sym12081279
Cites_doi 10.1016/j.jfoodeng.2013.07.006
10.1007/BF02575164
10.1246/cl.2000.1294
10.1143/JJAP.41.L726
10.1068/htjr069
10.7567/JJAP.55.035505
10.1107/S0907444902019741
10.1140/epje/i2007-10225-1
10.1109/TASC.2010.2040161
10.1016/j.physb.2004.01.063
10.1093/protein/9.10.927
10.1143/JJAP.43.6264
10.1038/422579a
10.2514/3.392
10.1016/0022-0248(96)00356-9
10.1016/j.jcrysgro.2003.09.033
10.1016/S0022-0248(98)00542-9
10.1016/0022-0248(91)90898-F
10.1080/14786444708645886
10.1021/ac020496y
10.1038/31619
ContentType Journal Article
Copyright 2016 The Japan Society of Thermophysical Properties
Copyright_xml – notice: 2016 The Japan Society of Thermophysical Properties
DBID AAYXX
CITATION
DOI 10.2963/jjtp.30.131
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1881-414X
EndPage 139
ExternalDocumentID 10_2963_jjtp_30_131
article_jjtp_30_3_30_131_article_char_en
GroupedDBID 123
2WC
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CS3
JSF
KQ8
OK1
RJT
AAYXX
CITATION
ID FETCH-LOGICAL-c1701-a28f73de6dd903a5acb4edd6d4b8cd9601efcb41f21b39ee7485a74ab25b77353
ISSN 0913-946X
IngestDate Thu Apr 24 22:55:13 EDT 2025
Tue Jul 01 01:19:53 EDT 2025
Wed Sep 03 06:29:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1701-a28f73de6dd903a5acb4edd6d4b8cd9601efcb41f21b39ee7485a74ab25b77353
OpenAccessLink https://www.jstage.jst.go.jp/article/jjtp/30/3/30_131/_article/-char/en
PageCount 9
ParticipantIDs crossref_primary_10_2963_jjtp_30_131
crossref_citationtrail_10_2963_jjtp_30_131
jstage_primary_article_jjtp_30_3_30_131_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016
2016-00-00
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle Netsu Bussei
PublicationTitleAlternate Jpn. J. Thermophys. Prop.
PublicationYear 2016
Publisher JAPAN SOCIETY OF THERMOPHYSICAL PROPERTIES
Publisher_xml – name: JAPAN SOCIETY OF THERMOPHYSICAL PROPERTIES
References [18] Y. Ikezoe, N. Hirota, J. Nakagawa, K. Kitazawa; “Making Water Levitate”, Nature 393, (1998) 749-750.
[7] S. K. Chung, E. H. Trinh; “Containerless Protein Crystal Growth in Rotating Levitated Drops”, J. Cryst. Growth 194, (1998) 384-397.
[12] S. Maki; “Effects of Magneto-Archimedes Levitation on the Quality of HEWL Crystals: Evaluation with White X-ray Topography”, Biomedical Soft Computing and Human Sciences 19, (2014) 7-15.
[11] 「無容器結晶成長法」特許第4273222号, 特願2002-360069, 出願日平成14年12月12日, 発明者安宅光雄, 牧祥, 権利者名独立行政法人産業技術総合研究所.
[2] B. Lorber, R. Giegé; “Containerless Protein Crystallization in Floating Drops: Application to Crystal Growth Monitoring under Reduced Nucleation Conditions”, J. Cryst. Growth 168, (1996) 204-215.
[13] M. Fujii, X. Zhang, N. Imaishi, S. Fujiwara, T. Sakamoto; “Simultaneous Measurements of Thermal Conductivity and Thermal Diffusivity of Liquids under Microgravity Conditions”, Int. J. Thermophys. 18, (1997) 327-339.
[28] 岡部孝裕,岡島淳之介, 小宮敦樹, 高橋一郎,円山重直; “逆問題解析を用いた軟質材料及び液体の熱伝導率推定手法”, 日本機械学会論文集 B 79, (2013) 2264-2274.
[8] S. Santesson, E. S. Cedergren-Zeppezauer, T. Johansson, T. Laurell, J. Nilsson, S. Nilsson; “Screening of Nucleation Conditions Using Levitated Drops for Protein Crystallization”, Analytical Chem. 75, (2003) 1733-1740.
[1] Terese M. Bergfors, “Protein Crystallization 2nd ed. (IUL Biotechnology Series)” (2009), pp. 27, International University Line, La Jolla, CA 92038-2525, USA, ISBN 978-0-9720774-4-6.
[4] H. Adachi, T. Watanabe, M. Yoshimura, Y. Mori, T. Sasaki; “Growth of Protein Crystal at Interface between Two Liquids Using Slow Cooling Method”, Jpn. J. Appl. Phys. 41, (2002) L 726-728.
[19] T. Kimura, S. Mamada, M. Yamato; “Separation of Solid Polymers by Magneto-Archimedes Levitation”, Chem. Lett., 29, (2000) 1294-1295.
[16] X. Zhang, H. Wicaksono, S. Fujiwara, M. Fujii; “Accurate Measurements of Thermal Conductivity and Thermal Diffusivity of Molten Carbonates”, High Temperatures High Pressures 34, (2002) 617-625.
[9] W. K. Rhim, S. K. Chung; “Containerless Protein Crystal Growth Method”, J. Cryst. Growth 110, (1991) 293-301.
[25] S. Maki, Y. Tanimoto, C. Udagawa, S. Morimoto, M. Hagiwara; “In Situ Observation of Containerless Protein Crystallization by Magnetically Levitating Crystal Growth”, Jpn. J. Appl. Phys. 55, (2016) 035505-1-6.
[24] S. Maki, N. Hirota; “Magnetic Separation Technique on Binary Mixtures of Sorbitol and Sucrose”, Journal of Food Engineering 120 C, (2014) 31-36.
[17] M. Faraday; “On the Diamagnetic Conditions of Flame and Gases”, Philos. Mag., 31 (210), (1847) 401-421.
[10] S. Maki, Y. Oda, M. Ataka; “High-Quality Crystallization of Lysozyme by Magneto-Archimedes Levitation in a Superconducting Magnet”, J. Cryst. Growth 261, (2004) 557-565.
[3] N. E. Chayen; “A Novel Technique for Containerless Protein Crystallization”, Protein Engineering 9, (1996) 927-929.
[15] X. Zhang, S. Mikeda, H. Wicaksono, S. Fujiwara, M. Fujii; “Measurements of Thermal Conductivity and Thermal Diffusivity of Polymers”, Proc. of the 6th Asian Thermophysical Properties Conference, Guwahati, India, Vol. 1, (2001) 36–40.
[22] P. López-Alcaraz, A. T. Catherall, R. J. Hill, M. C. Leaper, M. R. Swift, P. J. King; “Magneto-Vibratory Separation of Glass and Bronze Granular Mixtures Immersed in a Paramagnetic Liquid”, Eur. Phys. J. E 24, (2007). 145-156.
[14] 富村寿夫, 牧祥, 張興, 藤井丕夫; “非定常短線加熱法による代替冷媒の液相での熱伝導率と熱拡散率の測定”, 熱物性15, (2001) 9-14.
[27] 日本熱物性学会編, 「新編熱物性ハンドブック」, 編集委員長長島昭, 編集副委員長荒木信幸, 編集幹事馬場哲也 (2008), p.72, 養賢堂, 東京都文京区本郷, ISBN 978-4-8425-0426-1.
[20] A. T. Catherall, L. Eaves, P. J. King, S. R. Booth; “Magnetic Levitation: Floating Gold in Cryogenic Oxygen”, Nature 422, (2003) 579.
[5] H. Adachi, K. Takano, M. Morikawa, S. Kanaya, M. Yoshimura, Y. Mori, T. Sasaki; “Application of A Two-Lquid System to Sitting-Drop Vapour-Diffusion Protein Crystallization”, Acta Cryst. D 59, (2002) 194-196.
[29] J. Liu, W-J. Yang; “Thermophysical Properties of Lysozyme (Protein) Solutions”, J. Thermophys. Heat Transf. 6, (1992) 531-536.
[21] N. Hirota, M. Kurashige, M. Iwasaka, M. Ikehata, H. Uetake, T. Takayama, H. Nakamura, Y. Ikezoe, S. Ueno, K. Kitazawa; “Magneto-Archimedes Separation and Its Application to the Separation of Biological Materials”, Physica B 346, (2004) 267-271.
[6] H. Adachi, A. Niino, H. Matsumura, K. Takano, T. Inoue, Y. Mori, T. Sasaki; “Novel and Simple Methods for Protein Crystallization by Vapor Diffusion Rate Control”, Jpn. J. Appl. Phys 43, (2004) 6264-6267.
[23] S. Hayashi, F. Mishima, Y. Akiyama, S. Nishijima; “Development of High Gradient Magnetic Separation System for a Highly Viscous Fluid”, IEEE Trans. Appl. Supercond. 20, No.3, (2010) 945-948.
[26] 日本磁気科学会公式 HP http://www.magneto-science.jp
11
22
12
23
13
24
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
10
21
References_xml – reference: [24] S. Maki, N. Hirota; “Magnetic Separation Technique on Binary Mixtures of Sorbitol and Sucrose”, Journal of Food Engineering 120 C, (2014) 31-36.
– reference: [13] M. Fujii, X. Zhang, N. Imaishi, S. Fujiwara, T. Sakamoto; “Simultaneous Measurements of Thermal Conductivity and Thermal Diffusivity of Liquids under Microgravity Conditions”, Int. J. Thermophys. 18, (1997) 327-339.
– reference: [2] B. Lorber, R. Giegé; “Containerless Protein Crystallization in Floating Drops: Application to Crystal Growth Monitoring under Reduced Nucleation Conditions”, J. Cryst. Growth 168, (1996) 204-215.
– reference: [4] H. Adachi, T. Watanabe, M. Yoshimura, Y. Mori, T. Sasaki; “Growth of Protein Crystal at Interface between Two Liquids Using Slow Cooling Method”, Jpn. J. Appl. Phys. 41, (2002) L 726-728.
– reference: [9] W. K. Rhim, S. K. Chung; “Containerless Protein Crystal Growth Method”, J. Cryst. Growth 110, (1991) 293-301.
– reference: [6] H. Adachi, A. Niino, H. Matsumura, K. Takano, T. Inoue, Y. Mori, T. Sasaki; “Novel and Simple Methods for Protein Crystallization by Vapor Diffusion Rate Control”, Jpn. J. Appl. Phys 43, (2004) 6264-6267.
– reference: [5] H. Adachi, K. Takano, M. Morikawa, S. Kanaya, M. Yoshimura, Y. Mori, T. Sasaki; “Application of A Two-Lquid System to Sitting-Drop Vapour-Diffusion Protein Crystallization”, Acta Cryst. D 59, (2002) 194-196.
– reference: [25] S. Maki, Y. Tanimoto, C. Udagawa, S. Morimoto, M. Hagiwara; “In Situ Observation of Containerless Protein Crystallization by Magnetically Levitating Crystal Growth”, Jpn. J. Appl. Phys. 55, (2016) 035505-1-6.
– reference: [26] 日本磁気科学会公式 HP http://www.magneto-science.jp/
– reference: [18] Y. Ikezoe, N. Hirota, J. Nakagawa, K. Kitazawa; “Making Water Levitate”, Nature 393, (1998) 749-750.
– reference: [23] S. Hayashi, F. Mishima, Y. Akiyama, S. Nishijima; “Development of High Gradient Magnetic Separation System for a Highly Viscous Fluid”, IEEE Trans. Appl. Supercond. 20, No.3, (2010) 945-948.
– reference: [10] S. Maki, Y. Oda, M. Ataka; “High-Quality Crystallization of Lysozyme by Magneto-Archimedes Levitation in a Superconducting Magnet”, J. Cryst. Growth 261, (2004) 557-565.
– reference: [14] 富村寿夫, 牧祥, 張興, 藤井丕夫; “非定常短線加熱法による代替冷媒の液相での熱伝導率と熱拡散率の測定”, 熱物性15, (2001) 9-14.
– reference: [11] 「無容器結晶成長法」特許第4273222号, 特願2002-360069, 出願日平成14年12月12日, 発明者安宅光雄, 牧祥, 権利者名独立行政法人産業技術総合研究所.
– reference: [28] 岡部孝裕,岡島淳之介, 小宮敦樹, 高橋一郎,円山重直; “逆問題解析を用いた軟質材料及び液体の熱伝導率推定手法”, 日本機械学会論文集 B 79, (2013) 2264-2274.
– reference: [12] S. Maki; “Effects of Magneto-Archimedes Levitation on the Quality of HEWL Crystals: Evaluation with White X-ray Topography”, Biomedical Soft Computing and Human Sciences 19, (2014) 7-15.
– reference: [20] A. T. Catherall, L. Eaves, P. J. King, S. R. Booth; “Magnetic Levitation: Floating Gold in Cryogenic Oxygen”, Nature 422, (2003) 579.
– reference: [27] 日本熱物性学会編, 「新編熱物性ハンドブック」, 編集委員長長島昭, 編集副委員長荒木信幸, 編集幹事馬場哲也 (2008), p.72, 養賢堂, 東京都文京区本郷, ISBN 978-4-8425-0426-1.
– reference: [29] J. Liu, W-J. Yang; “Thermophysical Properties of Lysozyme (Protein) Solutions”, J. Thermophys. Heat Transf. 6, (1992) 531-536.
– reference: [7] S. K. Chung, E. H. Trinh; “Containerless Protein Crystal Growth in Rotating Levitated Drops”, J. Cryst. Growth 194, (1998) 384-397.
– reference: [8] S. Santesson, E. S. Cedergren-Zeppezauer, T. Johansson, T. Laurell, J. Nilsson, S. Nilsson; “Screening of Nucleation Conditions Using Levitated Drops for Protein Crystallization”, Analytical Chem. 75, (2003) 1733-1740.
– reference: [22] P. López-Alcaraz, A. T. Catherall, R. J. Hill, M. C. Leaper, M. R. Swift, P. J. King; “Magneto-Vibratory Separation of Glass and Bronze Granular Mixtures Immersed in a Paramagnetic Liquid”, Eur. Phys. J. E 24, (2007). 145-156.
– reference: [15] X. Zhang, S. Mikeda, H. Wicaksono, S. Fujiwara, M. Fujii; “Measurements of Thermal Conductivity and Thermal Diffusivity of Polymers”, Proc. of the 6th Asian Thermophysical Properties Conference, Guwahati, India, Vol. 1, (2001) 36–40.
– reference: [3] N. E. Chayen; “A Novel Technique for Containerless Protein Crystallization”, Protein Engineering 9, (1996) 927-929.
– reference: [19] T. Kimura, S. Mamada, M. Yamato; “Separation of Solid Polymers by Magneto-Archimedes Levitation”, Chem. Lett., 29, (2000) 1294-1295.
– reference: [17] M. Faraday; “On the Diamagnetic Conditions of Flame and Gases”, Philos. Mag., 31 (210), (1847) 401-421.
– reference: [21] N. Hirota, M. Kurashige, M. Iwasaka, M. Ikehata, H. Uetake, T. Takayama, H. Nakamura, Y. Ikezoe, S. Ueno, K. Kitazawa; “Magneto-Archimedes Separation and Its Application to the Separation of Biological Materials”, Physica B 346, (2004) 267-271.
– reference: [1] Terese M. Bergfors, “Protein Crystallization 2nd ed. (IUL Biotechnology Series)” (2009), pp. 27, International University Line, La Jolla, CA 92038-2525, USA, ISBN 978-0-9720774-4-6.
– reference: [16] X. Zhang, H. Wicaksono, S. Fujiwara, M. Fujii; “Accurate Measurements of Thermal Conductivity and Thermal Diffusivity of Molten Carbonates”, High Temperatures High Pressures 34, (2002) 617-625.
– ident: 22
  doi: 10.1016/j.jfoodeng.2013.07.006
– ident: 12
  doi: 10.1007/BF02575164
– ident: 17
  doi: 10.1246/cl.2000.1294
– ident: 4
  doi: 10.1143/JJAP.41.L726
– ident: 1
– ident: 14
  doi: 10.1068/htjr069
– ident: 23
  doi: 10.7567/JJAP.55.035505
– ident: 5
  doi: 10.1107/S0907444902019741
– ident: 20
  doi: 10.1140/epje/i2007-10225-1
– ident: 11
– ident: 21
  doi: 10.1109/TASC.2010.2040161
– ident: 13
– ident: 19
  doi: 10.1016/j.physb.2004.01.063
– ident: 3
  doi: 10.1093/protein/9.10.927
– ident: 6
  doi: 10.1143/JJAP.43.6264
– ident: 18
  doi: 10.1038/422579a
– ident: 24
  doi: 10.2514/3.392
– ident: 2
  doi: 10.1016/0022-0248(96)00356-9
– ident: 10
  doi: 10.1016/j.jcrysgro.2003.09.033
– ident: 7
  doi: 10.1016/S0022-0248(98)00542-9
– ident: 9
  doi: 10.1016/0022-0248(91)90898-F
– ident: 15
  doi: 10.1080/14786444708645886
– ident: 8
  doi: 10.1021/ac020496y
– ident: 16
  doi: 10.1038/31619
SSID ssib002484702
ssj0069118
ssib000961622
Score 1.9368113
Snippet By using simultaneously the magnetic levitation technique and the transient short hot wire method, thermal conductivity and diffusivity of hen egg-white...
SourceID crossref
jstage
SourceType Enrichment Source
Index Database
Publisher
StartPage 131
SubjectTerms lysozyme
magnetic levitation
magneto-Archimedes effect
transient hot wire method
Title Simultaneous Measurements of Thermal Conductivity and Diffusivity of Hen Egg-White Lysozyme Crystals Using a Transient Short Hot Wire Method and Magneto-Archimedes Effect
URI https://www.jstage.jst.go.jp/article/jjtp/30/3/30_131/_article/-char/en
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Netsu Bussei, 2016, Vol.30(3), pp.131-139
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZWBSQuiKcoL_nQE1EKiZ3XEVVFK6CV0G6l3lZ2Yi_ZLUnVJKq2P4l_wT9jxk68AfZQuEQb79hJdr6dV8YzhBzIXDKe6dyPCi58niexL8FO9hWoqijQoEHMG92T03h6xj-dR-eTyc9R1lLXysP8Zue-kv_hKowBX3GX7D9w1i0KA_AZ-AtH4DAcb8XjWYn5gKJSmMd6so32mfQMAAAIXQwNVFjT1TaJMInHpdZdY88xjK8q73i59E2rPO_LpqlvNt-Vd3S1AcPxovFsUoGwZdBx96Q3-wY2uzetW5M7CxfGJtR9xsayUm3tm3q2oGdV49nyyGMb-FS1TYfdLxtVbgPitn32bFN3DlLdqrwWpg8SiLRyNSJWa3Ftrd5NV9VNt3bwnItKrIcpJdzFOKxh91sOkcmA-Rk3DQ5BRVm5nKbg6gY2mXMQ3P0LnXLs1xspHPSKRfVn2S5dEYLoQV2xai8PGfb_CLYqcUgD-ENTuvxF8Jxw-gInLxi-EwQH_E4Ingrqhs9fRxZuFgdx6CqaxaBbjHEwPKPdMoqLvRvdyW9G0t0VsHvIMTRmz_whedD7K_SDBd8jMlHVY3LP5A3nzRPyYwxBOoYgrTXtIUjHEKSAEzqCINIBBKmDIB0gSAcIUgNBKqiDIDUQpABBihCkFoJm6b8hSC0En5Kzj8fzo6nft__wc2wS4Isw1QkrVFwU2XsmIpFLrrABGpdpXoDnHSgNQ4EOA8kypRKeRiLhQoaRTBIWsWdkr6or9ZxQCXM1R3O7iLjO4lQwmQrJteYsASt5n7wdfu9F3tfGxxYtF4sdnN4nB4740paE2U2WWMY5ol5OOCLWU7ovcKMlyLUXt7vAS3If_zg2HviK7LVXnXoNFnIr3xgM_gIbusez
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+Measurements+of+Thermal+Conductivity+and+Diffusivity+of+Hen+Egg-White+Lysozyme+Crystals+Using+a+Transient+Short+Hot+Wire+Method+and+Magneto-Archimedes+Effect&rft.jtitle=Netsu+bussei&rft.au=Maki%2C+Syou&rft.au=Fujiwara%2C+Seiji&rft.au=Maekawa%2C+Ryunosuke&rft.au=Tanaka%2C+Seiichi&rft.date=2016&rft.issn=0913-946X&rft.eissn=1881-414X&rft.volume=30&rft.issue=3&rft.spage=131&rft.epage=139&rft_id=info:doi/10.2963%2Fjjtp.30.131&rft.externalDBID=n%2Fa&rft.externalDocID=10_2963_jjtp_30_131
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0913-946X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0913-946X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0913-946X&client=summon