Utilizing physics‐augmented neural networks to predict the material behavior according to Yeoh's law
This article discusses physics‐augmented neural network approaches in the field of hyperelastic material modeling. Physical conditions such as objectivity, material symmetry, or a stress– and energy‐free reference configuration are considered in the construction of the neural networks. In addition,...
Saved in:
Published in | Proceedings in applied mathematics and mechanics Vol. 24; no. 4 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.12.2024
|
Online Access | Get full text |
ISSN | 1617-7061 1617-7061 |
DOI | 10.1002/pamm.202400213 |
Cover
Loading…
Abstract | This article discusses physics‐augmented neural network approaches in the field of hyperelastic material modeling. Physical conditions such as objectivity, material symmetry, or a stress– and energy‐free reference configuration are considered in the construction of the neural networks. In addition, a new approach for stress normalization is proposed. The neural network is used to learn the behavior of Yeoh's constitutive model with sparse data. Finally, the trained networks are incorporated into a three‐dimensional finite element framework and compared with the classical material model in terms of accuracy. The paper demonstrates the ability of physics‐augmented neural networks to model hyperelastic materials using a small amount of data that could be generated by experiments. Compared to the classical constitutive laws of Yeoh's model, our trained material showed no material instabilities that could occur due to poorly chosen material parameters. |
---|---|
AbstractList | This article discusses physics‐augmented neural network approaches in the field of hyperelastic material modeling. Physical conditions such as objectivity, material symmetry, or a stress– and energy‐free reference configuration are considered in the construction of the neural networks. In addition, a new approach for stress normalization is proposed. The neural network is used to learn the behavior of Yeoh's constitutive model with sparse data. Finally, the trained networks are incorporated into a three‐dimensional finite element framework and compared with the classical material model in terms of accuracy. The paper demonstrates the ability of physics‐augmented neural networks to model hyperelastic materials using a small amount of data that could be generated by experiments. Compared to the classical constitutive laws of Yeoh's model, our trained material showed no material instabilities that could occur due to poorly chosen material parameters. |
Author | Maurer, Lukas Kalina, Karl Eisenträger, Sascha Juhre, Daniel |
Author_xml | – sequence: 1 givenname: Lukas orcidid: 0000-0002-5490-7981 surname: Maurer fullname: Maurer, Lukas email: lukas.maurer@ovgu.de organization: Otto von Guericke University Magdeburg – sequence: 2 givenname: Sascha orcidid: 0000-0001-8774-9732 surname: Eisenträger fullname: Eisenträger, Sascha organization: Otto von Guericke University Magdeburg – sequence: 3 givenname: Karl orcidid: 0000-0001-6170-4069 surname: Kalina fullname: Kalina, Karl organization: Technische Universität Dresden – sequence: 4 givenname: Daniel orcidid: 0000-0001-8997-3818 surname: Juhre fullname: Juhre, Daniel organization: Otto von Guericke University Magdeburg |
BookMark | eNqFkL1OwzAURi1UJNrCyuyNKcXXcWIyVhV_UisY6MAUOY7TGJI4sl2qMPEIPCNPQqIihJAQ071XOue70jdBo8Y0CqFTIDMghJ63oq5nlFDWHxAeoDHEwANOYhj92I_QxLmnAYlDMkbF2utKv-pmg9uyc1q6j7d3sd3UqvEqx43aWlH1w--MfXbYG9xalWvpsS8VroVXVvdApkrxoo3FQkpj8yGuRx-VKc8crsTuGB0WonLq5GtO0frq8mFxEyzvrm8X82UggRMIKM2KjPKECUGTi5xmEeEQRzkjUjGaUJpwyWgkJWc8EiHP4yQjPctBSQKChFM02-dKa5yzqkhbq2thuxRIOrSUDi2l3y31AvslSO2F16bxVujqby3aaztdqe6fJ-n9fLUCCgzCT4dCgG8 |
CitedBy_id | crossref_primary_10_1007_s00707_025_04235_7 |
Cites_doi | 10.1016/j.jmps.2023.105363 10.1017/dce.2023.21 10.1016/j.mechrescom.2022.103993 10.1007/978-3-7091-0174-2_4 10.1016/S0020-7683(03)00086-6 10.5254/1.3538343 10.1016/j.jmps.2023.105416 10.1016/j.cma.2023.115930 10.1016/j.ijimpeng.2008.09.008 10.1016/j.cma.2022.115248 10.1007/s10659-015-9524-7 10.1016/j.compstruc.2006.01.010 10.1016/j.jcp.2023.112704 10.1007/s00466-024-02477-1 10.1016/j.cma.2022.115731 10.1016/j.jmps.2021.104703 10.1016/j.cma.2021.113695 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Proceedings in Applied Mathematics and Mechanics published by Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 The Author(s). Proceedings in Applied Mathematics and Mechanics published by Wiley‐VCH GmbH. |
DBID | 24P AAYXX CITATION |
DOI | 10.1002/pamm.202400213 |
DatabaseName | Wiley Online Library Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1617-7061 |
EndPage | n/a |
ExternalDocumentID | 10_1002_pamm_202400213 PAMM12141 |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 24P 31~ 33P 3SF 50Y 50Z 51W 51X 52M 52N 52O 52P 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACCZN ACGFS ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OK1 P2W P2X P4D Q.N Q11 QB0 R.K RNS ROL RWI RX1 SUPJJ TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX ABJNI ADMLS AEYWJ AGHNM AGYGG AMVHM CITATION |
ID | FETCH-LOGICAL-c1701-22bfb2794aa298d2b507165d40ce4292297c425cc7475a37d69b0aa271ec01a03 |
IEDL.DBID | 24P |
ISSN | 1617-7061 |
IngestDate | Thu Apr 24 23:11:41 EDT 2025 Tue Jul 01 03:56:34 EDT 2025 Wed Jan 22 17:14:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1701-22bfb2794aa298d2b507165d40ce4292297c425cc7475a37d69b0aa271ec01a03 |
ORCID | 0000-0002-5490-7981 0000-0001-8774-9732 0000-0001-6170-4069 0000-0001-8997-3818 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpamm.202400213 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1002_pamm_202400213 crossref_citationtrail_10_1002_pamm_202400213 wiley_primary_10_1002_pamm_202400213_PAMM12141 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2024 2024-12-00 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings in applied mathematics and mechanics |
PublicationYear | 2024 |
References | 2022; 398 2009; 36 2023; 180 2017; 70 2006; 84 2021; 377 2023; 4 2010 2023; 179 1993; 66 2015; 121 2023; 403 2023; 499 2023; 407 2015 2014 2024 2003; 40 2022; 159 2022; 125 Belytschko T. (e_1_2_6_12_1) 2014 e_1_2_6_21_1 e_1_2_6_10_1 e_1_2_6_20_1 Bergström J. S. (e_1_2_6_14_1) 2015 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_13_1 e_1_2_6_3_1 e_1_2_6_11_1 Amos B. (e_1_2_6_19_1) 2017; 70 e_1_2_6_2_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 |
References_xml | – volume: 499 year: 2023 article-title: Viscoelastic constitutive artificial neural networks (vCANNs) – A framework for data‐driven anisotropic nonlinear finite viscoelasticity publication-title: Journal of Computational Physics – volume: 179 year: 2023 article-title: Neural networks meet hyperelasticity: A guide to enforcing physics publication-title: Journal of the Mechanics and Physics of Solids – volume: 180 year: 2023 article-title: Thermodynamically consistent neural network plasticity modeling and discovery of evolution laws publication-title: Journal of the Mechanics and Physics of Solids – volume: 121 start-page: 143 issue: 2 year: 2015 end-page: 234 article-title: The exponentiated Hencky‐logarithmic strain energy: Part I: Constitutive issues and rank‐one convexity publication-title: Journal of Elasticity – volume: 159 year: 2022 article-title: Polyconvex anisotropic hyperelasticity with neural networks publication-title: Journal of the Mechanics and Physics of Solids – volume: 70 start-page: 146 year: 2017 end-page: 155 article-title: Input convex neural networks publication-title: Proceedings of Machine Learning Research – volume: 398 year: 2022 article-title: Data‐driven tissue mechanics with polyconvex neural ordinary differential equations publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 125 year: 2022 article-title: Polyconvex neural networks for hyperelastic constitutive models: A rectification approach publication-title: Mechanics Research Communications – volume: 66 start-page: 754 issue: 5 year: 1993 end-page: 771 article-title: Some forms of the strain energy function for rubber publication-title: Rubber Chemistry and Technology – volume: 84 start-page: 1151 issue: 17‐18 year: 2006 end-page: 1163 article-title: Sliding behaviour of simplified tire tread patterns investigated by means of FEM publication-title: Computers & Structures – volume: 36 start-page: 659 issue: 5 year: 2009 end-page: 666 article-title: The Yeoh model applied to the modeling of large deformation contact/impact problems publication-title: International Journal of Impact Engineering – volume: 407 year: 2023 article-title: Modular machine learning‐based elastoplasticity: generalization in the context of limited data publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 377 year: 2021 article-title: Sobolev training of thermodynamic‐informed neural networks for interpretable elasto‐plasticity models with level set hardening publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 4 year: 2023 article-title: Parametrized polyconvex hyperelasticity with physics‐augmented neural networks publication-title: Data‐Centric Engineering – volume: 403 year: 2023 article-title: A new family of constitutive artificial neural networks towards automated model discovery publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 40 start-page: 2767 issue: 11 year: 2003 end-page: 2791 article-title: Polyconvexity of generalized polynomial‐type hyperelastic strain energy functions for near‐incompressibility publication-title: International Journal of Solids and Structures – year: 2014 – year: 2015 – year: 2024 article-title: Viscoelasticty with physics‐augmented neural networks: Model formulation and training methods without prescribed internal variables publication-title: Computational Mechanics – year: 2010 – ident: e_1_2_6_5_1 doi: 10.1016/j.jmps.2023.105363 – volume-title: Mechanics of solid polymers: theory and computational modeling year: 2015 ident: e_1_2_6_14_1 – ident: e_1_2_6_17_1 doi: 10.1017/dce.2023.21 – ident: e_1_2_6_2_1 doi: 10.1016/j.mechrescom.2022.103993 – ident: e_1_2_6_15_1 doi: 10.1007/978-3-7091-0174-2_4 – ident: e_1_2_6_18_1 doi: 10.1016/S0020-7683(03)00086-6 – ident: e_1_2_6_11_1 doi: 10.5254/1.3538343 – ident: e_1_2_6_8_1 doi: 10.1016/j.jmps.2023.105416 – ident: e_1_2_6_7_1 doi: 10.1016/j.cma.2023.115930 – ident: e_1_2_6_21_1 doi: 10.1016/j.ijimpeng.2008.09.008 – ident: e_1_2_6_3_1 doi: 10.1016/j.cma.2022.115248 – ident: e_1_2_6_16_1 doi: 10.1007/s10659-015-9524-7 – ident: e_1_2_6_20_1 doi: 10.1016/j.compstruc.2006.01.010 – ident: e_1_2_6_9_1 doi: 10.1016/j.jcp.2023.112704 – ident: e_1_2_6_10_1 doi: 10.1007/s00466-024-02477-1 – ident: e_1_2_6_13_1 doi: 10.1016/j.cma.2022.115731 – volume-title: Nonlinear finite elements for continua and structures year: 2014 ident: e_1_2_6_12_1 – volume: 70 start-page: 146 year: 2017 ident: e_1_2_6_19_1 article-title: Input convex neural networks publication-title: Proceedings of Machine Learning Research – ident: e_1_2_6_4_1 doi: 10.1016/j.jmps.2021.104703 – ident: e_1_2_6_6_1 doi: 10.1016/j.cma.2021.113695 |
SSID | ssj0021630 |
Score | 2.2756767 |
Snippet | This article discusses physics‐augmented neural network approaches in the field of hyperelastic material modeling. Physical conditions such as objectivity,... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
Title | Utilizing physics‐augmented neural networks to predict the material behavior according to Yeoh's law |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpamm.202400213 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kXvQgPrG-2IPQ09LN5tUci1qKEClioZ7CPhIt1LQ0KYInf4K_0V_iTLaN9iDiJYcwO4d5ZGY2M98QchmZjPuGcyY6gWKeMS6TQSaZGxkTaI_rSOE9ZHwX9Ife7cgf_Zjit_gQ9YUbekb1vUYHl6pof4OGzuQLTpJjD6TAtbWbOF-Lli68QV1yQbZRjURCnGYhhK4VbCMX7fXza2HpZ5paxZneLtlZJoi0azW6RzbSfJ9sxzW6anFAsmE5nozfIOhQezFRfL5_yMVTha9pKEJUAofcNngXtJzS2Rz_x5QUmFDgUlkdXU3oU6mxBEV2QPqYTp9bBZ3I10My7N08XPXZcl8C04iqzoRQmRLgYFKKqGOEwlwv8A1IPMWtVCIKNbio1lBC-NINTRApDrShk2ruSO4ekUY-zdNjQkFHAjtmPAfx9jMulQNa01EgpRdI4zcJW4kr0UswcdxpMUksDLJIULxJLd4madX0Mwuj8Sul1fofZMmgG8eOcDzn5L8HTskWvrU9KWekUc4X6TlkFqW6qIwHntf34gsDfsix |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELYQDMCA-BXl1wNSJ6uO4zjNWCGqAk3VoZVgihw7gUolrZpUSEw8As_Ik-CL20AHhNg_33Dny50vd98hdBXolHqaUsKaIiZca5dIkUriBloLxakKYqhDhj3RGfK7B2_ZTQizMJYfoiq4gWeU32twcChIN75ZQ6fyBUbJoQmSwd7aDS6YD9sbGO9Xby6TbpQzkSZQE9_EriVvI2WN1fMrcelnnloGmvYu2llkiLhlTbqH1pJsH22HFb1qfoDSYTEaj95M1MG2MpF_vn_I-VNJsKkxcFQaCZnt8M5xMcHTGfyQKbARgo2U8trh5Yg-lgreoCDOQB-TyXM9x2P5eoiG7ZvBdYcsFiYQBbTqhLE4jZnxMClZ0NQshmRPeNqoPIG1VCzwlfFRpcwbwpOur0UQU4P1nURRR1L3CK1nkyw5RtgYiUHLDHeAcD-lMnaM2VQgpORCaq-GyFJdkVqwicNSi3FkeZBZBOqNKvXWUL3CTy2Pxq9Ia_Y_YFG_FYYOc7hz8t8Dl2izMwi7Ufe2d3-KtgBhG1TO0HoxmyfnJs0o4ovyIn0BLCvLNA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQkRAMiKcoTw9Inaw6TuI0YwVU5ZGqA5XKFDl2ApVKGjWpkJj4CfxGfgm-uA3tgBD7-YY7n-_hu-8QuvRVQl1FKWEtHhFHKZsInghi-0px6VDpR1CHDHq8O3Duhu5waYrf4ENUBTewjPK9BgPPVNL8AQ3NxCtMkkMPJIO1tevw4wd3nDn9KuXS0UY5Eqn9NPG061rANlLWXD2_4paWw9TSz3R20PY8QMRto9FdtBane2grqNBV832UDIrRePSunQ42hYn86-NTzJ5LfE2FAaJSc0hNg3eOiwnOpvAfU2DNBGsu5a3Diwl9LCSkoMBOkz7Fk5dGjsfi7QANOjePV10y35dAJKCqE8aiJGLawIRgfkuxCGI97iot8Ri2UjHfk9pEpdQphCtsT3E_oprWs2JJLUHtQ1RLJ2l8hLDWEYOOGccCvP2EisjSWpM-F8LhQrl1RBbiCuUcTBx2WoxDA4PMQhBvWIm3jhoVfWZgNH6lNFr_gyzst4PAYpZjHf_3wAXa6F93wofb3v0J2gQC055yimrFdBaf6SCjiM7Le_QNKC3KZg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilizing+physics%E2%80%90augmented+neural+networks+to+predict+the+material+behavior+according+to+Yeoh%27s+law&rft.jtitle=Proceedings+in+applied+mathematics+and+mechanics&rft.au=Maurer%2C+Lukas&rft.au=Eisentr%C3%A4ger%2C+Sascha&rft.au=Kalina%2C+Karl&rft.au=Juhre%2C+Daniel&rft.date=2024-12-01&rft.issn=1617-7061&rft.eissn=1617-7061&rft.volume=24&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fpamm.202400213&rft.externalDBID=10.1002%252Fpamm.202400213&rft.externalDocID=PAMM12141 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-7061&client=summon |