Utilizing physics‐augmented neural networks to predict the material behavior according to Yeoh's law

This article discusses physics‐augmented neural network approaches in the field of hyperelastic material modeling. Physical conditions such as objectivity, material symmetry, or a stress– and energy‐free reference configuration are considered in the construction of the neural networks. In addition,...

Full description

Saved in:
Bibliographic Details
Published inProceedings in applied mathematics and mechanics Vol. 24; no. 4
Main Authors Maurer, Lukas, Eisenträger, Sascha, Kalina, Karl, Juhre, Daniel
Format Journal Article
LanguageEnglish
Published 01.12.2024
Online AccessGet full text
ISSN1617-7061
1617-7061
DOI10.1002/pamm.202400213

Cover

Loading…
Abstract This article discusses physics‐augmented neural network approaches in the field of hyperelastic material modeling. Physical conditions such as objectivity, material symmetry, or a stress– and energy‐free reference configuration are considered in the construction of the neural networks. In addition, a new approach for stress normalization is proposed. The neural network is used to learn the behavior of Yeoh's constitutive model with sparse data. Finally, the trained networks are incorporated into a three‐dimensional finite element framework and compared with the classical material model in terms of accuracy. The paper demonstrates the ability of physics‐augmented neural networks to model hyperelastic materials using a small amount of data that could be generated by experiments. Compared to the classical constitutive laws of Yeoh's model, our trained material showed no material instabilities that could occur due to poorly chosen material parameters.
AbstractList This article discusses physics‐augmented neural network approaches in the field of hyperelastic material modeling. Physical conditions such as objectivity, material symmetry, or a stress– and energy‐free reference configuration are considered in the construction of the neural networks. In addition, a new approach for stress normalization is proposed. The neural network is used to learn the behavior of Yeoh's constitutive model with sparse data. Finally, the trained networks are incorporated into a three‐dimensional finite element framework and compared with the classical material model in terms of accuracy. The paper demonstrates the ability of physics‐augmented neural networks to model hyperelastic materials using a small amount of data that could be generated by experiments. Compared to the classical constitutive laws of Yeoh's model, our trained material showed no material instabilities that could occur due to poorly chosen material parameters.
Author Maurer, Lukas
Kalina, Karl
Eisenträger, Sascha
Juhre, Daniel
Author_xml – sequence: 1
  givenname: Lukas
  orcidid: 0000-0002-5490-7981
  surname: Maurer
  fullname: Maurer, Lukas
  email: lukas.maurer@ovgu.de
  organization: Otto von Guericke University Magdeburg
– sequence: 2
  givenname: Sascha
  orcidid: 0000-0001-8774-9732
  surname: Eisenträger
  fullname: Eisenträger, Sascha
  organization: Otto von Guericke University Magdeburg
– sequence: 3
  givenname: Karl
  orcidid: 0000-0001-6170-4069
  surname: Kalina
  fullname: Kalina, Karl
  organization: Technische Universität Dresden
– sequence: 4
  givenname: Daniel
  orcidid: 0000-0001-8997-3818
  surname: Juhre
  fullname: Juhre, Daniel
  organization: Otto von Guericke University Magdeburg
BookMark eNqFkL1OwzAURi1UJNrCyuyNKcXXcWIyVhV_UisY6MAUOY7TGJI4sl2qMPEIPCNPQqIihJAQ071XOue70jdBo8Y0CqFTIDMghJ63oq5nlFDWHxAeoDHEwANOYhj92I_QxLmnAYlDMkbF2utKv-pmg9uyc1q6j7d3sd3UqvEqx43aWlH1w--MfXbYG9xalWvpsS8VroVXVvdApkrxoo3FQkpj8yGuRx-VKc8crsTuGB0WonLq5GtO0frq8mFxEyzvrm8X82UggRMIKM2KjPKECUGTi5xmEeEQRzkjUjGaUJpwyWgkJWc8EiHP4yQjPctBSQKChFM02-dKa5yzqkhbq2thuxRIOrSUDi2l3y31AvslSO2F16bxVujqby3aaztdqe6fJ-n9fLUCCgzCT4dCgG8
CitedBy_id crossref_primary_10_1007_s00707_025_04235_7
Cites_doi 10.1016/j.jmps.2023.105363
10.1017/dce.2023.21
10.1016/j.mechrescom.2022.103993
10.1007/978-3-7091-0174-2_4
10.1016/S0020-7683(03)00086-6
10.5254/1.3538343
10.1016/j.jmps.2023.105416
10.1016/j.cma.2023.115930
10.1016/j.ijimpeng.2008.09.008
10.1016/j.cma.2022.115248
10.1007/s10659-015-9524-7
10.1016/j.compstruc.2006.01.010
10.1016/j.jcp.2023.112704
10.1007/s00466-024-02477-1
10.1016/j.cma.2022.115731
10.1016/j.jmps.2021.104703
10.1016/j.cma.2021.113695
ContentType Journal Article
Copyright 2024 The Author(s). Proceedings in Applied Mathematics and Mechanics published by Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 The Author(s). Proceedings in Applied Mathematics and Mechanics published by Wiley‐VCH GmbH.
DBID 24P
AAYXX
CITATION
DOI 10.1002/pamm.202400213
DatabaseName Wiley Online Library Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1617-7061
EndPage n/a
ExternalDocumentID 10_1002_pamm_202400213
PAMM12141
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
24P
31~
33P
3SF
50Y
50Z
51W
51X
52M
52N
52O
52P
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OK1
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RNS
ROL
RWI
RX1
SUPJJ
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
ABJNI
ADMLS
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
ID FETCH-LOGICAL-c1701-22bfb2794aa298d2b507165d40ce4292297c425cc7475a37d69b0aa271ec01a03
IEDL.DBID 24P
ISSN 1617-7061
IngestDate Thu Apr 24 23:11:41 EDT 2025
Tue Jul 01 03:56:34 EDT 2025
Wed Jan 22 17:14:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1701-22bfb2794aa298d2b507165d40ce4292297c425cc7475a37d69b0aa271ec01a03
ORCID 0000-0002-5490-7981
0000-0001-8774-9732
0000-0001-6170-4069
0000-0001-8997-3818
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpamm.202400213
PageCount 11
ParticipantIDs crossref_primary_10_1002_pamm_202400213
crossref_citationtrail_10_1002_pamm_202400213
wiley_primary_10_1002_pamm_202400213_PAMM12141
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Proceedings in applied mathematics and mechanics
PublicationYear 2024
References 2022; 398
2009; 36
2023; 180
2017; 70
2006; 84
2021; 377
2023; 4
2010
2023; 179
1993; 66
2015; 121
2023; 403
2023; 499
2023; 407
2015
2014
2024
2003; 40
2022; 159
2022; 125
Belytschko T. (e_1_2_6_12_1) 2014
e_1_2_6_21_1
e_1_2_6_10_1
e_1_2_6_20_1
Bergström J. S. (e_1_2_6_14_1) 2015
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_13_1
e_1_2_6_3_1
e_1_2_6_11_1
Amos B. (e_1_2_6_19_1) 2017; 70
e_1_2_6_2_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
References_xml – volume: 499
  year: 2023
  article-title: Viscoelastic constitutive artificial neural networks (vCANNs) – A framework for data‐driven anisotropic nonlinear finite viscoelasticity
  publication-title: Journal of Computational Physics
– volume: 179
  year: 2023
  article-title: Neural networks meet hyperelasticity: A guide to enforcing physics
  publication-title: Journal of the Mechanics and Physics of Solids
– volume: 180
  year: 2023
  article-title: Thermodynamically consistent neural network plasticity modeling and discovery of evolution laws
  publication-title: Journal of the Mechanics and Physics of Solids
– volume: 121
  start-page: 143
  issue: 2
  year: 2015
  end-page: 234
  article-title: The exponentiated Hencky‐logarithmic strain energy: Part I: Constitutive issues and rank‐one convexity
  publication-title: Journal of Elasticity
– volume: 159
  year: 2022
  article-title: Polyconvex anisotropic hyperelasticity with neural networks
  publication-title: Journal of the Mechanics and Physics of Solids
– volume: 70
  start-page: 146
  year: 2017
  end-page: 155
  article-title: Input convex neural networks
  publication-title: Proceedings of Machine Learning Research
– volume: 398
  year: 2022
  article-title: Data‐driven tissue mechanics with polyconvex neural ordinary differential equations
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 125
  year: 2022
  article-title: Polyconvex neural networks for hyperelastic constitutive models: A rectification approach
  publication-title: Mechanics Research Communications
– volume: 66
  start-page: 754
  issue: 5
  year: 1993
  end-page: 771
  article-title: Some forms of the strain energy function for rubber
  publication-title: Rubber Chemistry and Technology
– volume: 84
  start-page: 1151
  issue: 17‐18
  year: 2006
  end-page: 1163
  article-title: Sliding behaviour of simplified tire tread patterns investigated by means of FEM
  publication-title: Computers & Structures
– volume: 36
  start-page: 659
  issue: 5
  year: 2009
  end-page: 666
  article-title: The Yeoh model applied to the modeling of large deformation contact/impact problems
  publication-title: International Journal of Impact Engineering
– volume: 407
  year: 2023
  article-title: Modular machine learning‐based elastoplasticity: generalization in the context of limited data
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 377
  year: 2021
  article-title: Sobolev training of thermodynamic‐informed neural networks for interpretable elasto‐plasticity models with level set hardening
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 4
  year: 2023
  article-title: Parametrized polyconvex hyperelasticity with physics‐augmented neural networks
  publication-title: Data‐Centric Engineering
– volume: 403
  year: 2023
  article-title: A new family of constitutive artificial neural networks towards automated model discovery
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 40
  start-page: 2767
  issue: 11
  year: 2003
  end-page: 2791
  article-title: Polyconvexity of generalized polynomial‐type hyperelastic strain energy functions for near‐incompressibility
  publication-title: International Journal of Solids and Structures
– year: 2014
– year: 2015
– year: 2024
  article-title: Viscoelasticty with physics‐augmented neural networks: Model formulation and training methods without prescribed internal variables
  publication-title: Computational Mechanics
– year: 2010
– ident: e_1_2_6_5_1
  doi: 10.1016/j.jmps.2023.105363
– volume-title: Mechanics of solid polymers: theory and computational modeling
  year: 2015
  ident: e_1_2_6_14_1
– ident: e_1_2_6_17_1
  doi: 10.1017/dce.2023.21
– ident: e_1_2_6_2_1
  doi: 10.1016/j.mechrescom.2022.103993
– ident: e_1_2_6_15_1
  doi: 10.1007/978-3-7091-0174-2_4
– ident: e_1_2_6_18_1
  doi: 10.1016/S0020-7683(03)00086-6
– ident: e_1_2_6_11_1
  doi: 10.5254/1.3538343
– ident: e_1_2_6_8_1
  doi: 10.1016/j.jmps.2023.105416
– ident: e_1_2_6_7_1
  doi: 10.1016/j.cma.2023.115930
– ident: e_1_2_6_21_1
  doi: 10.1016/j.ijimpeng.2008.09.008
– ident: e_1_2_6_3_1
  doi: 10.1016/j.cma.2022.115248
– ident: e_1_2_6_16_1
  doi: 10.1007/s10659-015-9524-7
– ident: e_1_2_6_20_1
  doi: 10.1016/j.compstruc.2006.01.010
– ident: e_1_2_6_9_1
  doi: 10.1016/j.jcp.2023.112704
– ident: e_1_2_6_10_1
  doi: 10.1007/s00466-024-02477-1
– ident: e_1_2_6_13_1
  doi: 10.1016/j.cma.2022.115731
– volume-title: Nonlinear finite elements for continua and structures
  year: 2014
  ident: e_1_2_6_12_1
– volume: 70
  start-page: 146
  year: 2017
  ident: e_1_2_6_19_1
  article-title: Input convex neural networks
  publication-title: Proceedings of Machine Learning Research
– ident: e_1_2_6_4_1
  doi: 10.1016/j.jmps.2021.104703
– ident: e_1_2_6_6_1
  doi: 10.1016/j.cma.2021.113695
SSID ssj0021630
Score 2.2756767
Snippet This article discusses physics‐augmented neural network approaches in the field of hyperelastic material modeling. Physical conditions such as objectivity,...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
Title Utilizing physics‐augmented neural networks to predict the material behavior according to Yeoh's law
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpamm.202400213
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kXvQgPrG-2IPQ09LN5tUci1qKEClioZ7CPhIt1LQ0KYInf4K_0V_iTLaN9iDiJYcwO4d5ZGY2M98QchmZjPuGcyY6gWKeMS6TQSaZGxkTaI_rSOE9ZHwX9Ife7cgf_Zjit_gQ9YUbekb1vUYHl6pof4OGzuQLTpJjD6TAtbWbOF-Lli68QV1yQbZRjURCnGYhhK4VbCMX7fXza2HpZ5paxZneLtlZJoi0azW6RzbSfJ9sxzW6anFAsmE5nozfIOhQezFRfL5_yMVTha9pKEJUAofcNngXtJzS2Rz_x5QUmFDgUlkdXU3oU6mxBEV2QPqYTp9bBZ3I10My7N08XPXZcl8C04iqzoRQmRLgYFKKqGOEwlwv8A1IPMWtVCIKNbio1lBC-NINTRApDrShk2ruSO4ekUY-zdNjQkFHAjtmPAfx9jMulQNa01EgpRdI4zcJW4kr0UswcdxpMUksDLJIULxJLd4madX0Mwuj8Sul1fofZMmgG8eOcDzn5L8HTskWvrU9KWekUc4X6TlkFqW6qIwHntf34gsDfsix
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELYQDMCA-BXl1wNSJ6uO4zjNWCGqAk3VoZVgihw7gUolrZpUSEw8As_Ik-CL20AHhNg_33Dny50vd98hdBXolHqaUsKaIiZca5dIkUriBloLxakKYqhDhj3RGfK7B2_ZTQizMJYfoiq4gWeU32twcChIN75ZQ6fyBUbJoQmSwd7aDS6YD9sbGO9Xby6TbpQzkSZQE9_EriVvI2WN1fMrcelnnloGmvYu2llkiLhlTbqH1pJsH22HFb1qfoDSYTEaj95M1MG2MpF_vn_I-VNJsKkxcFQaCZnt8M5xMcHTGfyQKbARgo2U8trh5Yg-lgreoCDOQB-TyXM9x2P5eoiG7ZvBdYcsFiYQBbTqhLE4jZnxMClZ0NQshmRPeNqoPIG1VCzwlfFRpcwbwpOur0UQU4P1nURRR1L3CK1nkyw5RtgYiUHLDHeAcD-lMnaM2VQgpORCaq-GyFJdkVqwicNSi3FkeZBZBOqNKvXWUL3CTy2Pxq9Ia_Y_YFG_FYYOc7hz8t8Dl2izMwi7Ufe2d3-KtgBhG1TO0HoxmyfnJs0o4ovyIn0BLCvLNA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQkRAMiKcoTw9Inaw6TuI0YwVU5ZGqA5XKFDl2ApVKGjWpkJj4CfxGfgm-uA3tgBD7-YY7n-_hu-8QuvRVQl1FKWEtHhFHKZsInghi-0px6VDpR1CHDHq8O3Duhu5waYrf4ENUBTewjPK9BgPPVNL8AQ3NxCtMkkMPJIO1tevw4wd3nDn9KuXS0UY5Eqn9NPG061rANlLWXD2_4paWw9TSz3R20PY8QMRto9FdtBane2grqNBV832UDIrRePSunQ42hYn86-NTzJ5LfE2FAaJSc0hNg3eOiwnOpvAfU2DNBGsu5a3Diwl9LCSkoMBOkz7Fk5dGjsfi7QANOjePV10y35dAJKCqE8aiJGLawIRgfkuxCGI97iot8Ri2UjHfk9pEpdQphCtsT3E_oprWs2JJLUHtQ1RLJ2l8hLDWEYOOGccCvP2EisjSWpM-F8LhQrl1RBbiCuUcTBx2WoxDA4PMQhBvWIm3jhoVfWZgNH6lNFr_gyzst4PAYpZjHf_3wAXa6F93wofb3v0J2gQC055yimrFdBaf6SCjiM7Le_QNKC3KZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilizing+physics%E2%80%90augmented+neural+networks+to+predict+the+material+behavior+according+to+Yeoh%27s+law&rft.jtitle=Proceedings+in+applied+mathematics+and+mechanics&rft.au=Maurer%2C+Lukas&rft.au=Eisentr%C3%A4ger%2C+Sascha&rft.au=Kalina%2C+Karl&rft.au=Juhre%2C+Daniel&rft.date=2024-12-01&rft.issn=1617-7061&rft.eissn=1617-7061&rft.volume=24&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fpamm.202400213&rft.externalDBID=10.1002%252Fpamm.202400213&rft.externalDocID=PAMM12141
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-7061&client=summon