Numerical simulation and mechanism research of flow-induced vibration of porous airfoils

The porous airfoil, inspired by avian wing morphology, exhibits complex flow-induced vibrations (FIVs) that significantly impact aerodynamic performance. This study employs computational fluid dynamics (CFD) methods to investigate FIV mechanisms of the porous airfoil through parametric analyses of a...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 37; no. 8
Main Authors Ying, Changjie, Guan, Guan, Liang, Guopeng
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The porous airfoil, inspired by avian wing morphology, exhibits complex flow-induced vibrations (FIVs) that significantly impact aerodynamic performance. This study employs computational fluid dynamics (CFD) methods to investigate FIV mechanisms of the porous airfoil through parametric analyses of aspect ratio (AR), thickness ratio (TR), and additional sinusoidal motion in the wing. A high-fidelity CFD model is developed and validated against wind tunnel data, achieving errors within 10%. Key findings reveal: (1) non-monotonic lift variation with AR, peaking at AR=6 due to suppressed vortex shedding; (2) linear reduction in lift coefficient with increasing TR, attributed to diminished pressure gradients; (3) periodic lift oscillations synchronized with sinusoidal motion, where shorter periods (0.1 s) induce stronger aerodynamic damping. The derived mechanisms provide guidelines for optimizing bio-inspired porous airfoils in applications requiring vibration suppression or energy harvesting.
AbstractList The porous airfoil, inspired by avian wing morphology, exhibits complex flow-induced vibrations (FIVs) that significantly impact aerodynamic performance. This study employs computational fluid dynamics (CFD) methods to investigate FIV mechanisms of the porous airfoil through parametric analyses of aspect ratio (AR), thickness ratio (TR), and additional sinusoidal motion in the wing. A high-fidelity CFD model is developed and validated against wind tunnel data, achieving errors within 10%. Key findings reveal: (1) non-monotonic lift variation with AR, peaking at AR=6 due to suppressed vortex shedding; (2) linear reduction in lift coefficient with increasing TR, attributed to diminished pressure gradients; (3) periodic lift oscillations synchronized with sinusoidal motion, where shorter periods (0.1 s) induce stronger aerodynamic damping. The derived mechanisms provide guidelines for optimizing bio-inspired porous airfoils in applications requiring vibration suppression or energy harvesting.
The porous airfoil, inspired by avian wing morphology, exhibits complex flow-induced vibrations (FIVs) that significantly impact aerodynamic performance. This study employs computational fluid dynamics (CFD) methods to investigate FIV mechanisms of the porous airfoil through parametric analyses of aspect ratio (AR), thickness ratio (TR), and additional sinusoidal motion in the wing. A high-fidelity CFD model is developed and validated against wind tunnel data, achieving errors within 10%. Key findings reveal: (1) non-monotonic lift variation with AR, peaking at AR=6 due to suppressed vortex shedding; (2) linear reduction in lift coefficient with increasing TR, attributed to diminished pressure gradients; (3) periodic lift oscillations synchronized with sinusoidal motion, where shorter periods (0.1 s) induce stronger aerodynamic damping. The derived mechanisms provide guidelines for optimizing bio-inspired porous airfoils in applications requiring vibration suppression or energy harvesting.
Author Ying, Changjie
Guan, Guan
Liang, Guopeng
Author_xml – sequence: 1
  givenname: Changjie
  surname: Ying
  fullname: Ying, Changjie
  organization: School of Naval Architecture, Dalian University of Technology, Dalian 116024, China
– sequence: 2
  givenname: Guan
  surname: Guan
  fullname: Guan, Guan
  organization: School of Naval Architecture, Dalian University of Technology, Dalian 116024, China
– sequence: 3
  givenname: Guopeng
  surname: Liang
  fullname: Liang, Guopeng
  organization: School of Naval Architecture, Dalian University of Technology, Dalian 116024, China
BookMark eNp9kE9LxDAQxYOs4O7qwW8Q8KTQNWmaaXOUxX-w6EXBW0jShM3SNmvSKn57u3bPzmUG5vfmMW-BZl3oLEKXlKwoAXbLVySvKJTsBM0pqURWAsDsMJckA2D0DC1S2hFCmMhhjj5ehtZGb1SDk2-HRvU-dFh1NW6t2arOpxZHm6yKZouDw64J35nv6sHYGn95HSfBuNmHGIaElY8u-Cado1OnmmQvjn2J3h_u39ZP2eb18Xl9t8kMBdFn2nFbiFozRxhoQ1hlxiqccMbkWlSlKgxxPIecm1KzCqrCAddgBYiDjC3R1XR3H8PnYFMvd2GI3WgpWc5KTotCwEhdT5SJIaVondxH36r4IymRh-Akl8fgRvZmYpPx_d97_8C_MwVwLw
CODEN PHFLE6
Cites_doi 10.1016/j.renene.2023.119133
10.1504/PCFD.2020.111397
10.1016/j.jsv.2023.117611
10.1016/j.ijheatmasstransfer.2023.124569
10.1016/j.energy.2023.128584
10.3390/su15010275
10.1007/s00707-018-2203-6
10.1016/j.jsv.2020.115574
10.1016/0017-9310(90)90015-M
10.1007/s11242-014-0397-1
10.1504/PCFD.2019.099598
10.1016/j.oceaneng.2024.118720
10.1016/j.oceaneng.2024.118314
10.2514/1.C037253
10.1016/j.euromechflu.2011.05.003
10.1007/BF02736231
10.1016/j.molliq.2016.11.022
10.1063/5.0153779
10.1063/5.0198034
10.1016/j.ijheatfluidflow.2009.12.009
10.1016/j.jfluidstructs.2023.103985
10.1016/j.oceaneng.2022.113613
10.1016/j.oceaneng.2023.115367
10.1063/5.0047512
ContentType Journal Article
Copyright Author(s)
2025 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2025 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0281673
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
ExternalDocumentID 10_1063_5_0281673
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52471313
  funderid: 10.13039/501100001809
GroupedDBID -~X
0ZJ
1UP
2-P
29O
2WC
4.4
5VS
6TJ
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
ABJGX
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BDMKI
BPZLN
CS3
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
SC5
TN5
UQL
WH7
XJT
~02
AAYXX
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c169t-bf5e49db3f036bc038cccc4f9fcc2b987a4c0f52625c7b38684f65b6e9699db33
ISSN 1070-6631
IngestDate Fri Aug 08 00:40:50 EDT 2025
Thu Aug 14 00:03:33 EDT 2025
Fri Aug 08 03:50:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c169t-bf5e49db3f036bc038cccc4f9fcc2b987a4c0f52625c7b38684f65b6e9699db33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0000-1446-9385
0000-0002-6781-9948
PQID 3237514496
PQPubID 2050667
PageCount 16
ParticipantIDs crossref_primary_10_1063_5_0281673
proquest_journals_3237514496
scitation_primary_10_1063_5_0281673
PublicationCentury 2000
PublicationDate 20250800
2025-08-01
20250801
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 20250800
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of fluids (1994)
PublicationYear 2025
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Han, Ding, Song, Liu, Ran (c7) 2023
Teruna, Avallone, Ragni, Casalino (c16) 2021
Li, Nagata, Watanabe (c11) 2023
Nithiarasu, Seetharamu, Sundararajan (c13) 2002
Wu, Lien, Yee, Chen (c17) 2023
Ying, Guan, Liang, Yang (c19) 2024
Yu, Zeng, Lee (c343924924) 2010
Iosilevskii (c10) 2011
Rionero (c14) 2015
Maryami, Arcondoulis, Liu, Liu (c12) 2023
Zhang, Wang, Wang, Wang, Zhao (c20) 2023
Zhou, Wang (c22) 2024
Hsu, Cheng (c9) 1990
Aldheeb, Asrar, Omar, Altaf, Sulaeman (c1) 2020
Aldheeb, Asrar, Sulaeman, Omar (c2) 2018
Awadallah, Jiang, El Moctar (c3) 2023
Chen, Lei, Xing, Wang, Zhou, Qiao (c5) 2024
Zhao, Wang, Bai, Tang (c21) 2023
Zhu, Liu, Sun, Cao, Guo, Shen (c23) 2022
Fatahian, Nichkoohi, Fatahian (c6) 2019
Xu, Wang, Mao, Jiang (c18) 2023
Chaitanya, Joseph, Chong, Priddin, Ayton (c4) 2020
Hasheminejad, Masoumi (c8) 2023
Sheikholeslami (c15) 2017
(2025080709453875200_c2) 2018; 229
(2025080709453875200_c21) 2023; 282
(2025080709453875200_c19) 2024; 309
(2025080709453875200_c23) 2022; 15
(2025080709453875200_c16) 2021; 33
(2025080709453875200_c8) 2023; 216
(2025080709453875200_c4) 2020; 485
(2025080709453875200_c9) 1990; 33
(2025080709453875200_c6) 2019; 19
(2025080709453875200_c11) 2023; 60
(2025080709453875200_c22) 2024; 311
(2025080709453875200_c5) 2024; 36
(2025080709453875200_c20) 2023; 270
(2025080709453875200_c10) 2011; 30
(2025080709453875200_c14) 2015; 106
(2025080709453875200_c15) 2017; 225
(2025080709453875200_c343924924) 2010; 31
(2025080709453875200_c12) 2023; 551
(2025080709453875200_c3) 2023; 285
(2025080709453875200_c17) 2023; 122
(2025080709453875200_c1) 2020; 20
(2025080709453875200_c7) 2023; 216
(2025080709453875200_c18) 2023; 35
(2025080709453875200_c13) 2002; 9
References_xml – start-page: 065123
  year: 2023
  ident: c18
  article-title: Experimental studies on pressure drag and aerodynamic noise of cylinder with porous coatings
  publication-title: Phys. Fluids
– start-page: 3915
  year: 2018
  ident: c2
  article-title: Aerodynamics of porous airfoils and wings
  publication-title: Acta Mech.
– start-page: 124569
  year: 2023
  ident: c7
  article-title: Performance evaluation of laminar micromixer based on two-degree-of-freedom flow-induced vibration
  publication-title: Int. J. Heat Mass Transfer
– start-page: 349
  year: 2020
  ident: c1
  article-title: Aerodynamics of symmetric permeable airfoils and wings: CFD simulation
  publication-title: Prog. Comput. Fluid Dyn.
– start-page: 118720
  year: 2024
  ident: c22
  article-title: Numerical simulation study of the effect of porous media passive flow control on the propulsion performance of airfoils in Kármán vortex streets
  publication-title: Ocean Eng.
– start-page: 118314
  year: 2024
  ident: c19
  article-title: Numerical investigation on flow-induced vibration of porous square cylinder and its mechanism research
  publication-title: Ocean Eng.
– start-page: 1587
  year: 1990
  ident: c9
  article-title: Thermal dispersion in a porous medium
  publication-title: Int. J. Heat Mass Transfer
– start-page: 903
  year: 2017
  ident: c15
  article-title: Influence of Lorentz forces on nanofluid flow in a porous cylinder considering Darcy model
  publication-title: J. Mol. Liq.
– start-page: 534
  year: 2011
  ident: c10
  article-title: Aerodynamics of permeable membrane wings
  publication-title: Eur. J. Mech. B
– start-page: 221
  year: 2015
  ident: c14
  article-title: Influence of depth-dependent brinkman viscosity on the onset of convection in ternary porous layers
  publication-title: Transp. Porous Med.
– start-page: 1998
  year: 2023
  ident: c11
  article-title: Large-eddy simulation of low-Reynolds-number flow around partially porous airfoils
  publication-title: J. Aircr.
– start-page: 128584
  year: 2023
  ident: c21
  article-title: Energy harvesting based on flow-induced vibration of a wavy cylinder coupled with tuned mass damper
  publication-title: Energy
– start-page: 055132
  year: 2021
  ident: c16
  article-title: On the noise reduction of a porous trailing edge applied to an airfoil at lifting condition
  publication-title: Phys. Fluids
– start-page: 117611
  year: 2023
  ident: c12
  article-title: Experimental near-field analysis for flow induced noise of a structured porous-coated cylinder
  publication-title: J. Sound Vib.
– start-page: 170
  year: 2019
  ident: c6
  article-title: Numerical study of the effect of suction at a compressible and high Reynolds number flow to control the flow separation over Naca 2415 airfoil
  publication-title: Prog. Comput. Fluid Dyn.
– start-page: 113613
  year: 2023
  ident: c20
  article-title: Wave interaction with a concentric bottom-mounted cylinder system with dual porous ring plates
  publication-title: Ocean Eng.
– start-page: 035158
  year: 2024
  ident: c5
  article-title: On the airfoil leading-edge noise reduction using poro-wavy leading edges
  publication-title: Phys. Fluids
– start-page: 115367
  year: 2023
  ident: c3
  article-title: Numerical study into the impact of fixed upstream cylinder diameter ratios on vibration of leeward tandem cylinders
  publication-title: Ocean Eng.
– start-page: 141
  year: 2010
  ident: c343924924
  article-title: Wake structure for flow past and through a porous square cylinder
  publication-title: Int. J. Heat Fluid Flow
– start-page: 119133
  year: 2023
  ident: c8
  article-title: Dual-functional synergetic energy harvesting and flow-induced vibration control of an electromagnetic-based square cylinder integrated with a flexible bimorph piezoelectric wake splitter plate
  publication-title: Renewable Energy
– start-page: 3
  year: 2002
  ident: c13
  article-title: Finite element modelling of flow, heat and mass transfer in fluid saturated porous media
  publication-title: Arch. Comput. Methods Eng.
– start-page: 115574
  year: 2020
  ident: c4
  article-title: On the noise reduction mechanisms of porous aerofoil leading edges
  publication-title: J. Sound Vib.
– start-page: 275
  year: 2022
  ident: c23
  article-title: Numerical study on flow and noise characteristics of an NACA0018 airfoil with a porous trailing edge
  publication-title: Sustainability
– start-page: 103985
  year: 2023
  ident: c17
  article-title: Flow-induced vibration of an elliptic cylinder with a splitter-plate attachment at low-Reynolds number: Self-limited oscillations
  publication-title: J. Fluids Struct.
– volume: 216
  start-page: 119133
  year: 2023
  ident: 2025080709453875200_c8
  article-title: Dual-functional synergetic energy harvesting and flow-induced vibration control of an electromagnetic-based square cylinder integrated with a flexible bimorph piezoelectric wake splitter plate
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2023.119133
– volume: 20
  start-page: 349
  year: 2020
  ident: 2025080709453875200_c1
  article-title: Aerodynamics of symmetric permeable airfoils and wings: CFD simulation
  publication-title: Prog. Comput. Fluid Dyn.
  doi: 10.1504/PCFD.2020.111397
– volume: 551
  start-page: 117611
  year: 2023
  ident: 2025080709453875200_c12
  article-title: Experimental near-field analysis for flow induced noise of a structured porous-coated cylinder
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2023.117611
– volume: 216
  start-page: 124569
  year: 2023
  ident: 2025080709453875200_c7
  article-title: Performance evaluation of laminar micromixer based on two-degree-of-freedom flow-induced vibration
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2023.124569
– volume: 282
  start-page: 128584
  year: 2023
  ident: 2025080709453875200_c21
  article-title: Energy harvesting based on flow-induced vibration of a wavy cylinder coupled with tuned mass damper
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128584
– volume: 15
  start-page: 275
  year: 2022
  ident: 2025080709453875200_c23
  article-title: Numerical study on flow and noise characteristics of an NACA0018 airfoil with a porous trailing edge
  publication-title: Sustainability
  doi: 10.3390/su15010275
– volume: 229
  start-page: 3915
  year: 2018
  ident: 2025080709453875200_c2
  article-title: Aerodynamics of porous airfoils and wings
  publication-title: Acta Mech.
  doi: 10.1007/s00707-018-2203-6
– volume: 485
  start-page: 115574
  year: 2020
  ident: 2025080709453875200_c4
  article-title: On the noise reduction mechanisms of porous aerofoil leading edges
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2020.115574
– volume: 33
  start-page: 1587
  issue: 8
  year: 1990
  ident: 2025080709453875200_c9
  article-title: Thermal dispersion in a porous medium
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(90)90015-M
– volume: 106
  start-page: 221
  year: 2015
  ident: 2025080709453875200_c14
  article-title: Influence of depth-dependent brinkman viscosity on the onset of convection in ternary porous layers
  publication-title: Transp. Porous Med.
  doi: 10.1007/s11242-014-0397-1
– volume: 19
  start-page: 170
  issue: 3
  year: 2019
  ident: 2025080709453875200_c6
  article-title: Numerical study of the effect of suction at a compressible and high Reynolds number flow to control the flow separation over Naca 2415 airfoil
  publication-title: Prog. Comput. Fluid Dyn.
  doi: 10.1504/PCFD.2019.099598
– volume: 311
  start-page: 118720
  year: 2024
  ident: 2025080709453875200_c22
  article-title: Numerical simulation study of the effect of porous media passive flow control on the propulsion performance of airfoils in Kármán vortex streets
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.118720
– volume: 309
  start-page: 118314
  year: 2024
  ident: 2025080709453875200_c19
  article-title: Numerical investigation on flow-induced vibration of porous square cylinder and its mechanism research
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.118314
– volume: 60
  start-page: 1998
  year: 2023
  ident: 2025080709453875200_c11
  article-title: Large-eddy simulation of low-Reynolds-number flow around partially porous airfoils
  publication-title: J. Aircr.
  doi: 10.2514/1.C037253
– volume: 30
  start-page: 534
  year: 2011
  ident: 2025080709453875200_c10
  article-title: Aerodynamics of permeable membrane wings
  publication-title: Eur. J. Mech. B
  doi: 10.1016/j.euromechflu.2011.05.003
– volume: 9
  start-page: 3
  issue: 1
  year: 2002
  ident: 2025080709453875200_c13
  article-title: Finite element modelling of flow, heat and mass transfer in fluid saturated porous media
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/BF02736231
– volume: 225
  start-page: 903
  year: 2017
  ident: 2025080709453875200_c15
  article-title: Influence of Lorentz forces on nanofluid flow in a porous cylinder considering Darcy model
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.11.022
– volume: 35
  start-page: 065123
  year: 2023
  ident: 2025080709453875200_c18
  article-title: Experimental studies on pressure drag and aerodynamic noise of cylinder with porous coatings
  publication-title: Phys. Fluids
  doi: 10.1063/5.0153779
– volume: 36
  start-page: 035158
  year: 2024
  ident: 2025080709453875200_c5
  article-title: On the airfoil leading-edge noise reduction using poro-wavy leading edges
  publication-title: Phys. Fluids
  doi: 10.1063/5.0198034
– volume: 31
  start-page: 141
  issue: 2
  year: 2010
  ident: 2025080709453875200_c343924924
  article-title: Wake structure for flow past and through a porous square cylinder
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2009.12.009
– volume: 122
  start-page: 103985
  year: 2023
  ident: 2025080709453875200_c17
  article-title: Flow-induced vibration of an elliptic cylinder with a splitter-plate attachment at low-Reynolds number: Self-limited oscillations
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2023.103985
– volume: 270
  start-page: 113613
  year: 2023
  ident: 2025080709453875200_c20
  article-title: Wave interaction with a concentric bottom-mounted cylinder system with dual porous ring plates
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.113613
– volume: 285
  start-page: 115367
  year: 2023
  ident: 2025080709453875200_c3
  article-title: Numerical study into the impact of fixed upstream cylinder diameter ratios on vibration of leeward tandem cylinders
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.115367
– volume: 33
  start-page: 055132
  year: 2021
  ident: 2025080709453875200_c16
  article-title: On the noise reduction of a porous trailing edge applied to an airfoil at lifting condition
  publication-title: Phys. Fluids
  doi: 10.1063/5.0047512
SSID ssj0003926
Score 2.4678895
Snippet The porous airfoil, inspired by avian wing morphology, exhibits complex flow-induced vibrations (FIVs) that significantly impact aerodynamic performance. This...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Aerodynamic coefficients
Airfoils
Aspect ratio
Computational fluid dynamics
Damping
Energy harvesting
Flow generated vibrations
Pressure gradients
Sine waves
Thickness ratio
Vibration control
Vortex shedding
Wind tunnels
Title Numerical simulation and mechanism research of flow-induced vibration of porous airfoils
URI http://dx.doi.org/10.1063/5.0281673
https://www.proquest.com/docview/3237514496
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEIIXLgNEYSALeEMebXxJ_IjQpmka5aWVylMUe_YW1LVoSUDi13N8iZtKAwF9SCNXsaJzvh59x_58DkJvhZmwylaasLyoCMumllRAfOEu15aqiWZ-HfLTTJws2OmSL0ej04FqqWvVof5547mS__EqjIFf3SnZf_BsmhQG4B78C1fwMFz_ysezLuy3rN419VXsw-V3A66MO9Dr-l_EYj6XjhTa1eYHgRy8c3v-312e3NNFIOFOClvV13ZTr5ohY_USUd2E57v6PJR2kpIN1hC-ePGAW3r-WiegAPh8RHPfSfYDYLyAEdez62K44JDxJHdrBxr_ar2rZogvM4ikEEsI0JnwoIljhSS5CG1W-vAbar5EmBU3RnWgUeAKfghcaCpC55Pdytmzz-Xx4uysnB8t57fQ7QxSBuplnFu5D_BAEfSn4bX6KlOCvk8T73KTbcJxF9hIEEYMuMf8Ibofkwb8ISDgERqZ9T56EBMIHMNzs4_uRPs8RssEDbyFBgZo4AQN3EMDbyweQgMnaLhfAjRwD40naHF8NP94QmITDaKnQrZEWW6YPFfUAldRekILDR9mpdU6U7LIK6YnlmeQB-tc0UIUzAquhJFCusfoU7S33qzNM4StBEIHc6jCMgYmq6QvR0mZlhk33IzR69585bdQK6X0GgdBS15GG4_RQW_YMv6VmpJmNAfmzqQYozfJ2L-f5PmfJ3mB7m2Be4D22uvOvATu2KpXHhS_AF_-cU4
linkProvider American Institute of Physics
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+and+mechanism+research+of+flow-induced+vibration+of+porous+airfoils&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Ying+Changjie&rft.au=Guan%2C+Guan&rft.au=Liang+Guopeng&rft.date=2025-08-01&rft.pub=American+Institute+of+Physics&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=37&rft.issue=8&rft_id=info:doi/10.1063%2F5.0281673&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon