Tunable hysteresis behaviour related to trap filling dependence of surface barrier in an individual CH 3 NH 3 PbI 3 micro/nanowire
Hybrid organic–inorganic perovskite (HOIP) materials have remarkable potential in solar cells owing to their high power conversion efficiency and inexpensive preparation. However, their current–voltage ( I – V ) curves often exhibit hysteresis characteristics, which not only strongly affect the accu...
Saved in:
Published in | Nanoscale Vol. 11; no. 7; pp. 3360 - 3369 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
14.02.2019
|
Online Access | Get full text |
Cover
Loading…
Abstract | Hybrid organic–inorganic perovskite (HOIP) materials have remarkable potential in solar cells owing to their high power conversion efficiency and inexpensive preparation. However, their current–voltage (
I
–
V
) curves often exhibit hysteresis characteristics, which not only strongly affect the accuracy of measurements but also seriously impair device performance, and, moreover, their actual origin is still the subject of debate. Here, a single HOIP micro/nanowire-based two-terminal device was constructed. Not only can its hysteresis properties be accurately modulated, but also their origin can clearly be identified as variations in the surface barrier related to trap filling. Under illumination of the entire device with visible (VIS) light, two anticlockwise hysteresis loops appear symmetrically in cyclic
I
–
V
curves. Interestingly, the cyclic
I
–
V
curves can be switchably changed into asymmetrical “8”-shaped hysteresis loops with bipolar resistive switching (RS) features when only the vicinity of one electrode is illuminated. The traps located in the surface space charge region play a crucial role in the tunable hysteresis behaviour. Owing to the presence of abundant surface states, two back-to-back connected diodes related to the surface barrier can be formed in the two-terminal device. With the synergistic assistance of illumination and bias, moreover, the injection and extraction of holes in the surface space charge region can effectively modulate the surface barrier, which triggers the formation of a bipolar RS device. Accordingly, two switchable back-to-back connected bipolar RS devices were built. Regarding the tunable hysteresis with nonvolatile memory properties controlled by the synergistic action of bias and illumination, our results provide a valuable insight into the identification of its origin and, furthermore, also indicate that the HOIP materials have significant potential in nonvolatile memory applications. |
---|---|
AbstractList | Hybrid organic-inorganic perovskite (HOIP) materials have remarkable potential in solar cells owing to their high power conversion efficiency and inexpensive preparation. However, their current-voltage (I-V) curves often exhibit hysteresis characteristics, which not only strongly affect the accuracy of measurements but also seriously impair device performance, and, moreover, their actual origin is still the subject of debate. Here, a single HOIP micro/nanowire-based two-terminal device was constructed. Not only can its hysteresis properties be accurately modulated, but also their origin can clearly be identified as variations in the surface barrier related to trap filling. Under illumination of the entire device with visible (VIS) light, two anticlockwise hysteresis loops appear symmetrically in cyclic I-V curves. Interestingly, the cyclic I-V curves can be switchably changed into asymmetrical "8"-shaped hysteresis loops with bipolar resistive switching (RS) features when only the vicinity of one electrode is illuminated. The traps located in the surface space charge region play a crucial role in the tunable hysteresis behaviour. Owing to the presence of abundant surface states, two back-to-back connected diodes related to the surface barrier can be formed in the two-terminal device. With the synergistic assistance of illumination and bias, moreover, the injection and extraction of holes in the surface space charge region can effectively modulate the surface barrier, which triggers the formation of a bipolar RS device. Accordingly, two switchable back-to-back connected bipolar RS devices were built. Regarding the tunable hysteresis with nonvolatile memory properties controlled by the synergistic action of bias and illumination, our results provide a valuable insight into the identification of its origin and, furthermore, also indicate that the HOIP materials have significant potential in nonvolatile memory applications. Hybrid organic–inorganic perovskite (HOIP) materials have remarkable potential in solar cells owing to their high power conversion efficiency and inexpensive preparation. However, their current–voltage ( I – V ) curves often exhibit hysteresis characteristics, which not only strongly affect the accuracy of measurements but also seriously impair device performance, and, moreover, their actual origin is still the subject of debate. Here, a single HOIP micro/nanowire-based two-terminal device was constructed. Not only can its hysteresis properties be accurately modulated, but also their origin can clearly be identified as variations in the surface barrier related to trap filling. Under illumination of the entire device with visible (VIS) light, two anticlockwise hysteresis loops appear symmetrically in cyclic I – V curves. Interestingly, the cyclic I – V curves can be switchably changed into asymmetrical “8”-shaped hysteresis loops with bipolar resistive switching (RS) features when only the vicinity of one electrode is illuminated. The traps located in the surface space charge region play a crucial role in the tunable hysteresis behaviour. Owing to the presence of abundant surface states, two back-to-back connected diodes related to the surface barrier can be formed in the two-terminal device. With the synergistic assistance of illumination and bias, moreover, the injection and extraction of holes in the surface space charge region can effectively modulate the surface barrier, which triggers the formation of a bipolar RS device. Accordingly, two switchable back-to-back connected bipolar RS devices were built. Regarding the tunable hysteresis with nonvolatile memory properties controlled by the synergistic action of bias and illumination, our results provide a valuable insight into the identification of its origin and, furthermore, also indicate that the HOIP materials have significant potential in nonvolatile memory applications. |
Author | Li, Shujun Hong, Zhen Cheng, Baochang Lei, Shuijin Zhao, Jie Xiao, Yanhe |
Author_xml | – sequence: 1 givenname: Zhen surname: Hong fullname: Hong, Zhen organization: School of Materials Science and Engineering, Nanchang University, Jiangxi 330031, P. R. China, School of Materials Science and Engineering – sequence: 2 givenname: Jie surname: Zhao fullname: Zhao, Jie organization: School of Materials Science and Engineering, Nanchang University, Jiangxi 330031, P. R. China – sequence: 3 givenname: Shujun surname: Li fullname: Li, Shujun organization: School of Materials Science and Engineering, Nanchang University, Jiangxi 330031, P. R. China – sequence: 4 givenname: Baochang orcidid: 0000-0002-0641-1690 surname: Cheng fullname: Cheng, Baochang organization: School of Materials Science and Engineering, Nanchang University, Jiangxi 330031, P. R. China, Nanoscale Science and Technology Laboratory – sequence: 5 givenname: Yanhe surname: Xiao fullname: Xiao, Yanhe organization: School of Materials Science and Engineering, Nanchang University, Jiangxi 330031, P. R. China – sequence: 6 givenname: Shuijin orcidid: 0000-0003-4586-4059 surname: Lei fullname: Lei, Shuijin organization: School of Materials Science and Engineering, Nanchang University, Jiangxi 330031, P. R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30724937$$D View this record in MEDLINE/PubMed |
BookMark | eNptUM9LwzAYDTJxP_TiHyA5C3Vp0qXpUcp0gzFF5rmkyVcXadOStJNd_cvtmFMQL-97h_ce33tjNLC1BYSuQ3IXEpZMU7F-ISJh0fwMjSiJSMBYTAc_nEdDNPb-nRCeMM4u0JCRmEYJi0foc9NZmZeAt3vfggNvPM5hK3em7hx2UMoWNG5r3DrZ4MKUpbFvWEMDVoNVgOsC-84Vsqe5dM6Aw8ZiaXvUZmd0J0ucLjDD6wM858seK6NcPbXS1h_GwSU6L2Tp4er7TtDrw3yTLoLV0-MyvV8FKuRJG8g44iLUMwK0gJiAEBoiXuRaaE0p1SQKZ4niGnROBYQipkwmUlGlGKex4GyCbo65TZdXoLPGmUq6fXYaoxeQo6D_znsHRaZMK1tT2768KbOQZIe9s9-9e8vtH8sp9R_xF1IrgEM |
CitedBy_id | crossref_primary_10_1039_C9TC00382G crossref_primary_10_1002_aelm_202201038 crossref_primary_10_1016_j_apsusc_2019_145048 crossref_primary_10_1002_admi_202001146 crossref_primary_10_1016_j_ceramint_2020_10_146 crossref_primary_10_1021_acsami_0c03106 crossref_primary_10_1002_adom_201901154 crossref_primary_10_1002_smll_202304787 crossref_primary_10_1007_s40145_020_0442_1 crossref_primary_10_1002_admi_202201005 crossref_primary_10_1016_j_mtnano_2023_100449 crossref_primary_10_1016_j_surfin_2024_104493 crossref_primary_10_1088_1674_1056_ac16ce crossref_primary_10_1002_smll_202203311 crossref_primary_10_1039_D0MA00468E crossref_primary_10_1016_j_cej_2021_130136 crossref_primary_10_1039_D4MH00070F crossref_primary_10_1002_admt_201900914 crossref_primary_10_1088_1361_6528_ad22b1 crossref_primary_10_1039_D2NH00209D crossref_primary_10_1039_D0TC00257G crossref_primary_10_1021_acsami_3c13735 crossref_primary_10_1039_D1CS00886B crossref_primary_10_1002_adma_202403538 crossref_primary_10_1021_acsami_1c02571 crossref_primary_10_1039_D3NR01921G |
Cites_doi | 10.1039/C6TC02828D 10.1039/C7NR06193E 10.1002/adma.201503954 10.1021/ic401215x 10.1038/srep03249 10.1039/C5NR06727H 10.1039/C7TC00266A 10.1002/smll.201703667 10.1002/adma.201605242 10.1021/acsami.8b07850 10.1002/adma.201305172 10.1039/C6EE01729K 10.1021/jz502429u 10.1002/adma.201600859 10.1016/j.nanoen.2016.02.025 10.1039/C8NR06095A 10.1002/adma.201700527 10.1039/C8NR03108H 10.1039/C5DT02388B 10.1002/adma.201503832 10.1002/aenm.201400355 10.1039/C5CP07117H 10.1039/C7NH00057J 10.1021/acs.jpclett.5b00389 10.1021/ja101742f 10.1021/acs.jpclett.5b01645 10.1021/jz501392m 10.1021/nl9042906 10.1002/adfm.201800080 10.1126/science.aad5845 10.1021/acs.jpclett.6b00058 10.1126/science.1243167 10.1039/C4EE03664F 10.1021/acs.jpclett.6b00215 10.1021/acsnano.6b01643 10.1021/acs.jpclett.6b00579 10.1063/1.4991864 10.1126/science.1254763 10.1016/j.matlet.2017.03.122 10.1038/srep00591 10.1002/adma.201602940 10.1002/adma.201502889 10.1039/C6CP06989D 10.1021/jz500113x 10.1002/anie.201408638 10.1039/C4EE00673A 10.1039/C6EE02650H 10.1039/C6NR09310H 10.1021/acs.nanolett.7b01211 10.1038/nmat4150 10.1021/acs.nanolett.5b00046 10.1039/C6TC02503J 10.1021/jz502111u 10.1021/am505101w 10.1126/science.aaa5760 10.1126/science.1243982 10.1039/C8NR00863A |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM |
DOI | 10.1039/C8NR08934E |
DatabaseName | CrossRef PubMed |
DatabaseTitle | CrossRef PubMed |
DatabaseTitleList | PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 3369 |
ExternalDocumentID | 30724937 10_1039_C8NR08934E |
Genre | Journal Article |
GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CITATION DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP H13 HZ~ H~N J3I O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RSCEA RVUXY -JG AGSTE NPM RRC |
ID | FETCH-LOGICAL-c169t-a74681d50e2fe70e88de46fbd8dd222d04159c6dedb28e18723a9ac2cc3627863 |
ISSN | 2040-3364 |
IngestDate | Wed Feb 19 02:35:07 EST 2025 Thu Apr 24 23:03:35 EDT 2025 Tue Jul 01 01:13:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c169t-a74681d50e2fe70e88de46fbd8dd222d04159c6dedb28e18723a9ac2cc3627863 |
ORCID | 0000-0002-0641-1690 0000-0003-4586-4059 |
PMID | 30724937 |
PageCount | 10 |
ParticipantIDs | pubmed_primary_30724937 crossref_citationtrail_10_1039_C8NR08934E crossref_primary_10_1039_C8NR08934E |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-Feb-14 |
PublicationDateYYYYMMDD | 2019-02-14 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-Feb-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2019 |
References | McMeekin (C8NR08934E-(cit2)/*[position()=1]) 2016; 351 Zhou (C8NR08934E-(cit22)/*[position()=1]) 2018; 28 Tress (C8NR08934E-(cit32)/*[position()=1]) 2015; 8 Li (C8NR08934E-(cit34)/*[position()=1]) 2017; 29 Yoon (C8NR08934E-(cit26)/*[position()=1]) 2017; 10 Chen (C8NR08934E-(cit33)/*[position()=1]) 2016; 7 Fan (C8NR08934E-(cit44)/*[position()=1]) 2015; 6 Lee (C8NR08934E-(cit39)/*[position()=1]) 2017; 17 Stoumpos (C8NR08934E-(cit1)/*[position()=1]) 2013; 52 Sherkar (C8NR08934E-(cit35)/*[position()=1]) 2016; 18 Wang (C8NR08934E-(cit45)/*[position()=1]) 2017; 9 Yusoff (C8NR08934E-(cit10)/*[position()=1]) 2017; 29 Hwang (C8NR08934E-(cit21)/*[position()=1]) 2018; 10 Zheng (C8NR08934E-(cit52)/*[position()=1]) 2014; 6 Van Reenen (C8NR08934E-(cit31)/*[position()=1]) 2015; 6 Ahmadi (C8NR08934E-(cit12)/*[position()=1]) 2017; 29 Leijtens (C8NR08934E-(cit38)/*[position()=1]) 2016; 9 Ding (C8NR08934E-(cit13)/*[position()=1]) 2018; 10 Chen (C8NR08934E-(cit37)/*[position()=1]) 2015; 6 Li (C8NR08934E-(cit59)/*[position()=1]) 2017; 111 Spina (C8NR08934E-(cit11)/*[position()=1]) 2016; 8 Xing (C8NR08934E-(cit4)/*[position()=1]) 2013; 342 Choi (C8NR08934E-(cit47)/*[position()=1]) 2016; 28 Cheng (C8NR08934E-(cit49)/*[position()=1]) 2013; 3 Wei (C8NR08934E-(cit7)/*[position()=1]) 2014; 53 Wei (C8NR08934E-(cit36)/*[position()=1]) 2014; 5 Zhao (C8NR08934E-(cit54)/*[position()=1]) 2017; 197 Dong (C8NR08934E-(cit5)/*[position()=1]) 2015; 347 Wang (C8NR08934E-(cit25)/*[position()=1]) 2017; 2 Docampo (C8NR08934E-(cit28)/*[position()=1]) 2014; 4 Oka (C8NR08934E-(cit51)/*[position()=1]) 2010; 132 Gu (C8NR08934E-(cit48)/*[position()=1]) 2016; 10 Stranks (C8NR08934E-(cit6)/*[position()=1]) 2013; 342 Jacobs (C8NR08934E-(cit40)/*[position()=1]) 2017; 19 Shaikh (C8NR08934E-(cit14)/*[position()=1]) 2016; 4 Sum (C8NR08934E-(cit27)/*[position()=1]) 2014; 7 Yoo (C8NR08934E-(cit17)/*[position()=1]) 2015; 27 Lee (C8NR08934E-(cit29)/*[position()=1]) 2018; 10 Mei (C8NR08934E-(cit8)/*[position()=1]) 2014; 345 Yoo (C8NR08934E-(cit24)/*[position()=1]) 2016; 4 Kim (C8NR08934E-(cit58)/*[position()=1]) 2012; 2 Xu (C8NR08934E-(cit19)/*[position()=1]) 2017; 5 Miyano (C8NR08934E-(cit42)/*[position()=1]) 2016; 7 Wu (C8NR08934E-(cit15)/*[position()=1]) 2018; 10 Wehrenfennig (C8NR08934E-(cit3)/*[position()=1]) 2014; 26 Si (C8NR08934E-(cit57)/*[position()=1]) 2016; 22 Xiao (C8NR08934E-(cit46)/*[position()=1]) 2015; 14 Zhu (C8NR08934E-(cit18)/*[position()=1]) 2017; 29 Zhao (C8NR08934E-(cit55)/*[position()=1]) 2015; 44 Cheng (C8NR08934E-(cit23)/*[position()=1]) 2018; 14 Snaith (C8NR08934E-(cit30)/*[position()=1]) 2014; 5 Li (C8NR08934E-(cit41)/*[position()=1]) 2016; 28 Rajagopal (C8NR08934E-(cit43)/*[position()=1]) 2016; 7 Kim (C8NR08934E-(cit56)/*[position()=1]) 2014; 5 Ling (C8NR08934E-(cit16)/*[position()=1]) 2016; 28 Im (C8NR08934E-(cit53)/*[position()=1]) 2015; 15 Ma (C8NR08934E-(cit20)/*[position()=1]) 2018; 10 Nagashima (C8NR08934E-(cit50)/*[position()=1]) 2010; 10 Liang (C8NR08934E-(cit9)/*[position()=1]) 2015; 5 |
References_xml | – volume: 4 start-page: 8304 year: 2016 ident: C8NR08934E-(cit14)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C6TC02828D – volume: 10 start-page: 359 year: 2018 ident: C8NR08934E-(cit15)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR06193E – volume: 28 start-page: 305 year: 2016 ident: C8NR08934E-(cit16)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201503954 – volume: 52 start-page: 9019 year: 2013 ident: C8NR08934E-(cit1)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic401215x – volume: 3 start-page: 3249 year: 2013 ident: C8NR08934E-(cit49)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep03249 – volume: 8 start-page: 4888 year: 2016 ident: C8NR08934E-(cit11)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR06727H – volume: 5 start-page: 5810 year: 2017 ident: C8NR08934E-(cit19)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C7TC00266A – volume: 14 start-page: 1703667 year: 2018 ident: C8NR08934E-(cit23)/*[position()=1] publication-title: Small doi: 10.1002/smll.201703667 – volume: 29 start-page: 373 year: 2017 ident: C8NR08934E-(cit12)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201605242 – volume: 10 start-page: 21755 year: 2018 ident: C8NR08934E-(cit20)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b07850 – volume: 29 start-page: 193001 year: 2017 ident: C8NR08934E-(cit34)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 26 start-page: 1584 year: 2014 ident: C8NR08934E-(cit3)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201305172 – volume: 9 start-page: 3472 year: 2016 ident: C8NR08934E-(cit38)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01729K – volume: 6 start-page: 164 year: 2015 ident: C8NR08934E-(cit37)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz502429u – volume: 28 start-page: 6562 year: 2016 ident: C8NR08934E-(cit47)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201600859 – volume: 22 start-page: 223 year: 2016 ident: C8NR08934E-(cit57)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.02.025 – volume: 10 start-page: 17699 year: 2018 ident: C8NR08934E-(cit29)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR06095A – volume: 29 start-page: 1700527 year: 2017 ident: C8NR08934E-(cit18)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201700527 – volume: 10 start-page: 10538 year: 2018 ident: C8NR08934E-(cit13)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR03108H – volume: 44 start-page: 16914 year: 2015 ident: C8NR08934E-(cit55)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C5DT02388B – volume: 28 start-page: 2446 year: 2016 ident: C8NR08934E-(cit41)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201503832 – volume: 4 start-page: 1400355 year: 2014 ident: C8NR08934E-(cit28)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201400355 – volume: 18 start-page: 331 year: 2016 ident: C8NR08934E-(cit35)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP07117H – volume: 2 start-page: 225 year: 2017 ident: C8NR08934E-(cit25)/*[position()=1] publication-title: Nanoscale Horiz. doi: 10.1039/C7NH00057J – volume: 6 start-page: 1155 year: 2015 ident: C8NR08934E-(cit44)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00389 – volume: 132 start-page: 6634 year: 2010 ident: C8NR08934E-(cit51)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja101742f – volume: 6 start-page: 3808 year: 2015 ident: C8NR08934E-(cit31)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01645 – volume: 5 start-page: 2927 year: 2014 ident: C8NR08934E-(cit56)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz501392m – volume: 10 start-page: 1359 year: 2010 ident: C8NR08934E-(cit50)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl9042906 – volume: 28 start-page: 1800080 year: 2018 ident: C8NR08934E-(cit22)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800080 – volume: 351 start-page: 151 year: 2016 ident: C8NR08934E-(cit2)/*[position()=1] publication-title: Science doi: 10.1126/science.aad5845 – volume: 7 start-page: 995 year: 2016 ident: C8NR08934E-(cit43)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00058 – volume: 342 start-page: 344 year: 2013 ident: C8NR08934E-(cit4)/*[position()=1] publication-title: Science doi: 10.1126/science.1243167 – volume: 8 start-page: 995 year: 2015 ident: C8NR08934E-(cit32)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03664F – volume: 7 start-page: 905 year: 2016 ident: C8NR08934E-(cit33)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00215 – volume: 10 start-page: 5413 year: 2016 ident: C8NR08934E-(cit48)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b01643 – volume: 7 start-page: 2240 year: 2016 ident: C8NR08934E-(cit42)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00579 – volume: 111 start-page: 11906 year: 2017 ident: C8NR08934E-(cit59)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4991864 – volume: 345 start-page: 295 year: 2014 ident: C8NR08934E-(cit8)/*[position()=1] publication-title: Science doi: 10.1126/science.1254763 – volume: 197 start-page: 139 year: 2017 ident: C8NR08934E-(cit54)/*[position()=1] publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.03.122 – volume: 2 start-page: 591 year: 2012 ident: C8NR08934E-(cit58)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep00591 – volume: 29 start-page: 1602940 year: 2017 ident: C8NR08934E-(cit10)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201602940 – volume: 27 start-page: 6170 year: 2015 ident: C8NR08934E-(cit17)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201502889 – volume: 19 start-page: 3094 year: 2017 ident: C8NR08934E-(cit40)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP06989D – volume: 5 start-page: 1316 year: 2015 ident: C8NR08934E-(cit9)/*[position()=1] publication-title: Adv. Energy Mater. – volume: 5 start-page: 1511 year: 2014 ident: C8NR08934E-(cit30)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz500113x – volume: 53 start-page: 13239 year: 2014 ident: C8NR08934E-(cit7)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201408638 – volume: 7 start-page: 2518 year: 2014 ident: C8NR08934E-(cit27)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C4EE00673A – volume: 10 start-page: 337 year: 2017 ident: C8NR08934E-(cit26)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C6EE02650H – volume: 9 start-page: 3806 year: 2017 ident: C8NR08934E-(cit45)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR09310H – volume: 17 start-page: 4270 year: 2017 ident: C8NR08934E-(cit39)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01211 – volume: 14 start-page: 193 year: 2015 ident: C8NR08934E-(cit46)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4150 – volume: 15 start-page: 2120 year: 2015 ident: C8NR08934E-(cit53)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00046 – volume: 4 start-page: 7824 year: 2016 ident: C8NR08934E-(cit24)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C6TC02503J – volume: 5 start-page: 3937 year: 2014 ident: C8NR08934E-(cit36)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz502111u – volume: 6 start-page: 20812 year: 2014 ident: C8NR08934E-(cit52)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am505101w – volume: 347 start-page: 967 year: 2015 ident: C8NR08934E-(cit5)/*[position()=1] publication-title: Science doi: 10.1126/science.aaa5760 – volume: 342 start-page: 341 year: 2013 ident: C8NR08934E-(cit6)/*[position()=1] publication-title: Science doi: 10.1126/science.1243982 – volume: 10 start-page: 8578 year: 2018 ident: C8NR08934E-(cit21)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR00863A |
SSID | ssj0069363 |
Score | 2.2902086 |
Snippet | Hybrid organic–inorganic perovskite (HOIP) materials have remarkable potential in solar cells owing to their high power conversion efficiency and inexpensive... Hybrid organic-inorganic perovskite (HOIP) materials have remarkable potential in solar cells owing to their high power conversion efficiency and inexpensive... |
SourceID | pubmed crossref |
SourceType | Index Database Enrichment Source |
StartPage | 3360 |
Title | Tunable hysteresis behaviour related to trap filling dependence of surface barrier in an individual CH 3 NH 3 PbI 3 micro/nanowire |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30724937 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagK6HlgHguy0uW4IKq7NZ24jjHJVoorwrBrljtpXIchwaxSZUmF478csaO8ygsEnAZRcmkkfp9nY7j-WYQekbCVIlMMC8hRHu-TIkXpYR4AeGSRkEQUm20w-8XfH7qvzkLzoYdfKsuqZMD9f1SXcn_oArnAFejkv0HZPsPhRNwDPiCBYTB_h3GTat8Wpl2zLBuzjed7L6pWpUKpJMmuazk2nRgstLzbuytsm8LNk2VSThMZGVn1-WmOHmaDzKteD5l04UxH5LXYC9MBZ_ppiqLsh9F7rJbCNXlBkAfyOIKfs9Xg-LsfCXb3Z68d3tnSwo-rZqvTe8Wwy1f2h2R0qqTx-8njCSKeq0u9EDbOEZN0SJj4XbQJSNyhaMIylg7X-C30D5jpjOqEkU1gxzL12MngGV9YUGGkAULyraPzC-NtLtLV9EOhTUFnaCdo7cvXn3u_rh5xDjrOtiy6HB41C661t28lb5sLURsQnJyE91wKwl81NLiFrqii9vo-qi_5B30wxEEDwTBPUGwIwiuS2wIgh1B8EAQXGbYEQQ7guC8wLLAA0FwPMcML4wBgoC1BDns6HEXnb48Ponnnhu64SnCo9qToc9hDRPMNM10ONNCpNrnWZKKNIVcMjUtHSLFU50mVGgiQspkJBVVClKhUHB2D02KstD3EYZUMZIJpNTws_cZVxHlgaZKJpIKBaFhHz3vvsulch3pzWCUb0tbGcGiZSwWHy0Ex_voae-7bvuwXOq110LS-3S4PfjjlYdod6DtIzSpq0Y_hkSzTp44gvwEbS9-yw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+hysteresis+behaviour+related+to+trap+filling+dependence+of+surface+barrier+in+an+individual+CH+3+NH+3+PbI+3+micro%2Fnanowire&rft.jtitle=Nanoscale&rft.au=Hong%2C+Zhen&rft.au=Zhao%2C+Jie&rft.au=Li%2C+Shujun&rft.au=Cheng%2C+Baochang&rft.date=2019-02-14&rft.eissn=2040-3372&rft.volume=11&rft.issue=7&rft.spage=3360&rft_id=info:doi/10.1039%2Fc8nr08934e&rft_id=info%3Apmid%2F30724937&rft.externalDocID=30724937 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |