Tunable hysteresis behaviour related to trap filling dependence of surface barrier in an individual CH 3 NH 3 PbI 3 micro/nanowire

Hybrid organic–inorganic perovskite (HOIP) materials have remarkable potential in solar cells owing to their high power conversion efficiency and inexpensive preparation. However, their current–voltage ( I – V ) curves often exhibit hysteresis characteristics, which not only strongly affect the accu...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 11; no. 7; pp. 3360 - 3369
Main Authors Hong, Zhen, Zhao, Jie, Li, Shujun, Cheng, Baochang, Xiao, Yanhe, Lei, Shuijin
Format Journal Article
LanguageEnglish
Published England 14.02.2019
Online AccessGet full text

Cover

Loading…
Abstract Hybrid organic–inorganic perovskite (HOIP) materials have remarkable potential in solar cells owing to their high power conversion efficiency and inexpensive preparation. However, their current–voltage ( I – V ) curves often exhibit hysteresis characteristics, which not only strongly affect the accuracy of measurements but also seriously impair device performance, and, moreover, their actual origin is still the subject of debate. Here, a single HOIP micro/nanowire-based two-terminal device was constructed. Not only can its hysteresis properties be accurately modulated, but also their origin can clearly be identified as variations in the surface barrier related to trap filling. Under illumination of the entire device with visible (VIS) light, two anticlockwise hysteresis loops appear symmetrically in cyclic I – V curves. Interestingly, the cyclic I – V curves can be switchably changed into asymmetrical “8”-shaped hysteresis loops with bipolar resistive switching (RS) features when only the vicinity of one electrode is illuminated. The traps located in the surface space charge region play a crucial role in the tunable hysteresis behaviour. Owing to the presence of abundant surface states, two back-to-back connected diodes related to the surface barrier can be formed in the two-terminal device. With the synergistic assistance of illumination and bias, moreover, the injection and extraction of holes in the surface space charge region can effectively modulate the surface barrier, which triggers the formation of a bipolar RS device. Accordingly, two switchable back-to-back connected bipolar RS devices were built. Regarding the tunable hysteresis with nonvolatile memory properties controlled by the synergistic action of bias and illumination, our results provide a valuable insight into the identification of its origin and, furthermore, also indicate that the HOIP materials have significant potential in nonvolatile memory applications.
AbstractList Hybrid organic-inorganic perovskite (HOIP) materials have remarkable potential in solar cells owing to their high power conversion efficiency and inexpensive preparation. However, their current-voltage (I-V) curves often exhibit hysteresis characteristics, which not only strongly affect the accuracy of measurements but also seriously impair device performance, and, moreover, their actual origin is still the subject of debate. Here, a single HOIP micro/nanowire-based two-terminal device was constructed. Not only can its hysteresis properties be accurately modulated, but also their origin can clearly be identified as variations in the surface barrier related to trap filling. Under illumination of the entire device with visible (VIS) light, two anticlockwise hysteresis loops appear symmetrically in cyclic I-V curves. Interestingly, the cyclic I-V curves can be switchably changed into asymmetrical "8"-shaped hysteresis loops with bipolar resistive switching (RS) features when only the vicinity of one electrode is illuminated. The traps located in the surface space charge region play a crucial role in the tunable hysteresis behaviour. Owing to the presence of abundant surface states, two back-to-back connected diodes related to the surface barrier can be formed in the two-terminal device. With the synergistic assistance of illumination and bias, moreover, the injection and extraction of holes in the surface space charge region can effectively modulate the surface barrier, which triggers the formation of a bipolar RS device. Accordingly, two switchable back-to-back connected bipolar RS devices were built. Regarding the tunable hysteresis with nonvolatile memory properties controlled by the synergistic action of bias and illumination, our results provide a valuable insight into the identification of its origin and, furthermore, also indicate that the HOIP materials have significant potential in nonvolatile memory applications.
Hybrid organic–inorganic perovskite (HOIP) materials have remarkable potential in solar cells owing to their high power conversion efficiency and inexpensive preparation. However, their current–voltage ( I – V ) curves often exhibit hysteresis characteristics, which not only strongly affect the accuracy of measurements but also seriously impair device performance, and, moreover, their actual origin is still the subject of debate. Here, a single HOIP micro/nanowire-based two-terminal device was constructed. Not only can its hysteresis properties be accurately modulated, but also their origin can clearly be identified as variations in the surface barrier related to trap filling. Under illumination of the entire device with visible (VIS) light, two anticlockwise hysteresis loops appear symmetrically in cyclic I – V curves. Interestingly, the cyclic I – V curves can be switchably changed into asymmetrical “8”-shaped hysteresis loops with bipolar resistive switching (RS) features when only the vicinity of one electrode is illuminated. The traps located in the surface space charge region play a crucial role in the tunable hysteresis behaviour. Owing to the presence of abundant surface states, two back-to-back connected diodes related to the surface barrier can be formed in the two-terminal device. With the synergistic assistance of illumination and bias, moreover, the injection and extraction of holes in the surface space charge region can effectively modulate the surface barrier, which triggers the formation of a bipolar RS device. Accordingly, two switchable back-to-back connected bipolar RS devices were built. Regarding the tunable hysteresis with nonvolatile memory properties controlled by the synergistic action of bias and illumination, our results provide a valuable insight into the identification of its origin and, furthermore, also indicate that the HOIP materials have significant potential in nonvolatile memory applications.
Author Li, Shujun
Hong, Zhen
Cheng, Baochang
Lei, Shuijin
Zhao, Jie
Xiao, Yanhe
Author_xml – sequence: 1
  givenname: Zhen
  surname: Hong
  fullname: Hong, Zhen
  organization: School of Materials Science and Engineering, Nanchang University, Jiangxi 330031, P. R. China, School of Materials Science and Engineering
– sequence: 2
  givenname: Jie
  surname: Zhao
  fullname: Zhao, Jie
  organization: School of Materials Science and Engineering, Nanchang University, Jiangxi 330031, P. R. China
– sequence: 3
  givenname: Shujun
  surname: Li
  fullname: Li, Shujun
  organization: School of Materials Science and Engineering, Nanchang University, Jiangxi 330031, P. R. China
– sequence: 4
  givenname: Baochang
  orcidid: 0000-0002-0641-1690
  surname: Cheng
  fullname: Cheng, Baochang
  organization: School of Materials Science and Engineering, Nanchang University, Jiangxi 330031, P. R. China, Nanoscale Science and Technology Laboratory
– sequence: 5
  givenname: Yanhe
  surname: Xiao
  fullname: Xiao, Yanhe
  organization: School of Materials Science and Engineering, Nanchang University, Jiangxi 330031, P. R. China
– sequence: 6
  givenname: Shuijin
  orcidid: 0000-0003-4586-4059
  surname: Lei
  fullname: Lei, Shuijin
  organization: School of Materials Science and Engineering, Nanchang University, Jiangxi 330031, P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30724937$$D View this record in MEDLINE/PubMed
BookMark eNptUM9LwzAYDTJxP_TiHyA5C3Vp0qXpUcp0gzFF5rmkyVcXadOStJNd_cvtmFMQL-97h_ce33tjNLC1BYSuQ3IXEpZMU7F-ISJh0fwMjSiJSMBYTAc_nEdDNPb-nRCeMM4u0JCRmEYJi0foc9NZmZeAt3vfggNvPM5hK3em7hx2UMoWNG5r3DrZ4MKUpbFvWEMDVoNVgOsC-84Vsqe5dM6Aw8ZiaXvUZmd0J0ucLjDD6wM858seK6NcPbXS1h_GwSU6L2Tp4er7TtDrw3yTLoLV0-MyvV8FKuRJG8g44iLUMwK0gJiAEBoiXuRaaE0p1SQKZ4niGnROBYQipkwmUlGlGKex4GyCbo65TZdXoLPGmUq6fXYaoxeQo6D_znsHRaZMK1tT2768KbOQZIe9s9-9e8vtH8sp9R_xF1IrgEM
CitedBy_id crossref_primary_10_1039_C9TC00382G
crossref_primary_10_1002_aelm_202201038
crossref_primary_10_1016_j_apsusc_2019_145048
crossref_primary_10_1002_admi_202001146
crossref_primary_10_1016_j_ceramint_2020_10_146
crossref_primary_10_1021_acsami_0c03106
crossref_primary_10_1002_adom_201901154
crossref_primary_10_1002_smll_202304787
crossref_primary_10_1007_s40145_020_0442_1
crossref_primary_10_1002_admi_202201005
crossref_primary_10_1016_j_mtnano_2023_100449
crossref_primary_10_1016_j_surfin_2024_104493
crossref_primary_10_1088_1674_1056_ac16ce
crossref_primary_10_1002_smll_202203311
crossref_primary_10_1039_D0MA00468E
crossref_primary_10_1016_j_cej_2021_130136
crossref_primary_10_1039_D4MH00070F
crossref_primary_10_1002_admt_201900914
crossref_primary_10_1088_1361_6528_ad22b1
crossref_primary_10_1039_D2NH00209D
crossref_primary_10_1039_D0TC00257G
crossref_primary_10_1021_acsami_3c13735
crossref_primary_10_1039_D1CS00886B
crossref_primary_10_1002_adma_202403538
crossref_primary_10_1021_acsami_1c02571
crossref_primary_10_1039_D3NR01921G
Cites_doi 10.1039/C6TC02828D
10.1039/C7NR06193E
10.1002/adma.201503954
10.1021/ic401215x
10.1038/srep03249
10.1039/C5NR06727H
10.1039/C7TC00266A
10.1002/smll.201703667
10.1002/adma.201605242
10.1021/acsami.8b07850
10.1002/adma.201305172
10.1039/C6EE01729K
10.1021/jz502429u
10.1002/adma.201600859
10.1016/j.nanoen.2016.02.025
10.1039/C8NR06095A
10.1002/adma.201700527
10.1039/C8NR03108H
10.1039/C5DT02388B
10.1002/adma.201503832
10.1002/aenm.201400355
10.1039/C5CP07117H
10.1039/C7NH00057J
10.1021/acs.jpclett.5b00389
10.1021/ja101742f
10.1021/acs.jpclett.5b01645
10.1021/jz501392m
10.1021/nl9042906
10.1002/adfm.201800080
10.1126/science.aad5845
10.1021/acs.jpclett.6b00058
10.1126/science.1243167
10.1039/C4EE03664F
10.1021/acs.jpclett.6b00215
10.1021/acsnano.6b01643
10.1021/acs.jpclett.6b00579
10.1063/1.4991864
10.1126/science.1254763
10.1016/j.matlet.2017.03.122
10.1038/srep00591
10.1002/adma.201602940
10.1002/adma.201502889
10.1039/C6CP06989D
10.1021/jz500113x
10.1002/anie.201408638
10.1039/C4EE00673A
10.1039/C6EE02650H
10.1039/C6NR09310H
10.1021/acs.nanolett.7b01211
10.1038/nmat4150
10.1021/acs.nanolett.5b00046
10.1039/C6TC02503J
10.1021/jz502111u
10.1021/am505101w
10.1126/science.aaa5760
10.1126/science.1243982
10.1039/C8NR00863A
ContentType Journal Article
DBID AAYXX
CITATION
NPM
DOI 10.1039/C8NR08934E
DatabaseName CrossRef
PubMed
DatabaseTitle CrossRef
PubMed
DatabaseTitleList PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 3369
ExternalDocumentID 30724937
10_1039_C8NR08934E
Genre Journal Article
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CITATION
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
-JG
AGSTE
NPM
RRC
ID FETCH-LOGICAL-c169t-a74681d50e2fe70e88de46fbd8dd222d04159c6dedb28e18723a9ac2cc3627863
ISSN 2040-3364
IngestDate Wed Feb 19 02:35:07 EST 2025
Thu Apr 24 23:03:35 EDT 2025
Tue Jul 01 01:13:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c169t-a74681d50e2fe70e88de46fbd8dd222d04159c6dedb28e18723a9ac2cc3627863
ORCID 0000-0002-0641-1690
0000-0003-4586-4059
PMID 30724937
PageCount 10
ParticipantIDs pubmed_primary_30724937
crossref_citationtrail_10_1039_C8NR08934E
crossref_primary_10_1039_C8NR08934E
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Feb-14
PublicationDateYYYYMMDD 2019-02-14
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-Feb-14
  day: 14
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2019
References McMeekin (C8NR08934E-(cit2)/*[position()=1]) 2016; 351
Zhou (C8NR08934E-(cit22)/*[position()=1]) 2018; 28
Tress (C8NR08934E-(cit32)/*[position()=1]) 2015; 8
Li (C8NR08934E-(cit34)/*[position()=1]) 2017; 29
Yoon (C8NR08934E-(cit26)/*[position()=1]) 2017; 10
Chen (C8NR08934E-(cit33)/*[position()=1]) 2016; 7
Fan (C8NR08934E-(cit44)/*[position()=1]) 2015; 6
Lee (C8NR08934E-(cit39)/*[position()=1]) 2017; 17
Stoumpos (C8NR08934E-(cit1)/*[position()=1]) 2013; 52
Sherkar (C8NR08934E-(cit35)/*[position()=1]) 2016; 18
Wang (C8NR08934E-(cit45)/*[position()=1]) 2017; 9
Yusoff (C8NR08934E-(cit10)/*[position()=1]) 2017; 29
Hwang (C8NR08934E-(cit21)/*[position()=1]) 2018; 10
Zheng (C8NR08934E-(cit52)/*[position()=1]) 2014; 6
Van Reenen (C8NR08934E-(cit31)/*[position()=1]) 2015; 6
Ahmadi (C8NR08934E-(cit12)/*[position()=1]) 2017; 29
Leijtens (C8NR08934E-(cit38)/*[position()=1]) 2016; 9
Ding (C8NR08934E-(cit13)/*[position()=1]) 2018; 10
Chen (C8NR08934E-(cit37)/*[position()=1]) 2015; 6
Li (C8NR08934E-(cit59)/*[position()=1]) 2017; 111
Spina (C8NR08934E-(cit11)/*[position()=1]) 2016; 8
Xing (C8NR08934E-(cit4)/*[position()=1]) 2013; 342
Choi (C8NR08934E-(cit47)/*[position()=1]) 2016; 28
Cheng (C8NR08934E-(cit49)/*[position()=1]) 2013; 3
Wei (C8NR08934E-(cit7)/*[position()=1]) 2014; 53
Wei (C8NR08934E-(cit36)/*[position()=1]) 2014; 5
Zhao (C8NR08934E-(cit54)/*[position()=1]) 2017; 197
Dong (C8NR08934E-(cit5)/*[position()=1]) 2015; 347
Wang (C8NR08934E-(cit25)/*[position()=1]) 2017; 2
Docampo (C8NR08934E-(cit28)/*[position()=1]) 2014; 4
Oka (C8NR08934E-(cit51)/*[position()=1]) 2010; 132
Gu (C8NR08934E-(cit48)/*[position()=1]) 2016; 10
Stranks (C8NR08934E-(cit6)/*[position()=1]) 2013; 342
Jacobs (C8NR08934E-(cit40)/*[position()=1]) 2017; 19
Shaikh (C8NR08934E-(cit14)/*[position()=1]) 2016; 4
Sum (C8NR08934E-(cit27)/*[position()=1]) 2014; 7
Yoo (C8NR08934E-(cit17)/*[position()=1]) 2015; 27
Lee (C8NR08934E-(cit29)/*[position()=1]) 2018; 10
Mei (C8NR08934E-(cit8)/*[position()=1]) 2014; 345
Yoo (C8NR08934E-(cit24)/*[position()=1]) 2016; 4
Kim (C8NR08934E-(cit58)/*[position()=1]) 2012; 2
Xu (C8NR08934E-(cit19)/*[position()=1]) 2017; 5
Miyano (C8NR08934E-(cit42)/*[position()=1]) 2016; 7
Wu (C8NR08934E-(cit15)/*[position()=1]) 2018; 10
Wehrenfennig (C8NR08934E-(cit3)/*[position()=1]) 2014; 26
Si (C8NR08934E-(cit57)/*[position()=1]) 2016; 22
Xiao (C8NR08934E-(cit46)/*[position()=1]) 2015; 14
Zhu (C8NR08934E-(cit18)/*[position()=1]) 2017; 29
Zhao (C8NR08934E-(cit55)/*[position()=1]) 2015; 44
Cheng (C8NR08934E-(cit23)/*[position()=1]) 2018; 14
Snaith (C8NR08934E-(cit30)/*[position()=1]) 2014; 5
Li (C8NR08934E-(cit41)/*[position()=1]) 2016; 28
Rajagopal (C8NR08934E-(cit43)/*[position()=1]) 2016; 7
Kim (C8NR08934E-(cit56)/*[position()=1]) 2014; 5
Ling (C8NR08934E-(cit16)/*[position()=1]) 2016; 28
Im (C8NR08934E-(cit53)/*[position()=1]) 2015; 15
Ma (C8NR08934E-(cit20)/*[position()=1]) 2018; 10
Nagashima (C8NR08934E-(cit50)/*[position()=1]) 2010; 10
Liang (C8NR08934E-(cit9)/*[position()=1]) 2015; 5
References_xml – volume: 4
  start-page: 8304
  year: 2016
  ident: C8NR08934E-(cit14)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC02828D
– volume: 10
  start-page: 359
  year: 2018
  ident: C8NR08934E-(cit15)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR06193E
– volume: 28
  start-page: 305
  year: 2016
  ident: C8NR08934E-(cit16)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503954
– volume: 52
  start-page: 9019
  year: 2013
  ident: C8NR08934E-(cit1)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic401215x
– volume: 3
  start-page: 3249
  year: 2013
  ident: C8NR08934E-(cit49)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep03249
– volume: 8
  start-page: 4888
  year: 2016
  ident: C8NR08934E-(cit11)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR06727H
– volume: 5
  start-page: 5810
  year: 2017
  ident: C8NR08934E-(cit19)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC00266A
– volume: 14
  start-page: 1703667
  year: 2018
  ident: C8NR08934E-(cit23)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201703667
– volume: 29
  start-page: 373
  year: 2017
  ident: C8NR08934E-(cit12)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605242
– volume: 10
  start-page: 21755
  year: 2018
  ident: C8NR08934E-(cit20)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b07850
– volume: 29
  start-page: 193001
  year: 2017
  ident: C8NR08934E-(cit34)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 26
  start-page: 1584
  year: 2014
  ident: C8NR08934E-(cit3)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305172
– volume: 9
  start-page: 3472
  year: 2016
  ident: C8NR08934E-(cit38)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE01729K
– volume: 6
  start-page: 164
  year: 2015
  ident: C8NR08934E-(cit37)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz502429u
– volume: 28
  start-page: 6562
  year: 2016
  ident: C8NR08934E-(cit47)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600859
– volume: 22
  start-page: 223
  year: 2016
  ident: C8NR08934E-(cit57)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.02.025
– volume: 10
  start-page: 17699
  year: 2018
  ident: C8NR08934E-(cit29)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR06095A
– volume: 29
  start-page: 1700527
  year: 2017
  ident: C8NR08934E-(cit18)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700527
– volume: 10
  start-page: 10538
  year: 2018
  ident: C8NR08934E-(cit13)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR03108H
– volume: 44
  start-page: 16914
  year: 2015
  ident: C8NR08934E-(cit55)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT02388B
– volume: 28
  start-page: 2446
  year: 2016
  ident: C8NR08934E-(cit41)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503832
– volume: 4
  start-page: 1400355
  year: 2014
  ident: C8NR08934E-(cit28)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201400355
– volume: 18
  start-page: 331
  year: 2016
  ident: C8NR08934E-(cit35)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP07117H
– volume: 2
  start-page: 225
  year: 2017
  ident: C8NR08934E-(cit25)/*[position()=1]
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C7NH00057J
– volume: 6
  start-page: 1155
  year: 2015
  ident: C8NR08934E-(cit44)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00389
– volume: 132
  start-page: 6634
  year: 2010
  ident: C8NR08934E-(cit51)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja101742f
– volume: 6
  start-page: 3808
  year: 2015
  ident: C8NR08934E-(cit31)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01645
– volume: 5
  start-page: 2927
  year: 2014
  ident: C8NR08934E-(cit56)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz501392m
– volume: 10
  start-page: 1359
  year: 2010
  ident: C8NR08934E-(cit50)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl9042906
– volume: 28
  start-page: 1800080
  year: 2018
  ident: C8NR08934E-(cit22)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800080
– volume: 351
  start-page: 151
  year: 2016
  ident: C8NR08934E-(cit2)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aad5845
– volume: 7
  start-page: 995
  year: 2016
  ident: C8NR08934E-(cit43)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00058
– volume: 342
  start-page: 344
  year: 2013
  ident: C8NR08934E-(cit4)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1243167
– volume: 8
  start-page: 995
  year: 2015
  ident: C8NR08934E-(cit32)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03664F
– volume: 7
  start-page: 905
  year: 2016
  ident: C8NR08934E-(cit33)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00215
– volume: 10
  start-page: 5413
  year: 2016
  ident: C8NR08934E-(cit48)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01643
– volume: 7
  start-page: 2240
  year: 2016
  ident: C8NR08934E-(cit42)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00579
– volume: 111
  start-page: 11906
  year: 2017
  ident: C8NR08934E-(cit59)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4991864
– volume: 345
  start-page: 295
  year: 2014
  ident: C8NR08934E-(cit8)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1254763
– volume: 197
  start-page: 139
  year: 2017
  ident: C8NR08934E-(cit54)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.03.122
– volume: 2
  start-page: 591
  year: 2012
  ident: C8NR08934E-(cit58)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep00591
– volume: 29
  start-page: 1602940
  year: 2017
  ident: C8NR08934E-(cit10)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602940
– volume: 27
  start-page: 6170
  year: 2015
  ident: C8NR08934E-(cit17)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502889
– volume: 19
  start-page: 3094
  year: 2017
  ident: C8NR08934E-(cit40)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP06989D
– volume: 5
  start-page: 1316
  year: 2015
  ident: C8NR08934E-(cit9)/*[position()=1]
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 1511
  year: 2014
  ident: C8NR08934E-(cit30)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz500113x
– volume: 53
  start-page: 13239
  year: 2014
  ident: C8NR08934E-(cit7)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201408638
– volume: 7
  start-page: 2518
  year: 2014
  ident: C8NR08934E-(cit27)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE00673A
– volume: 10
  start-page: 337
  year: 2017
  ident: C8NR08934E-(cit26)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE02650H
– volume: 9
  start-page: 3806
  year: 2017
  ident: C8NR08934E-(cit45)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR09310H
– volume: 17
  start-page: 4270
  year: 2017
  ident: C8NR08934E-(cit39)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01211
– volume: 14
  start-page: 193
  year: 2015
  ident: C8NR08934E-(cit46)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4150
– volume: 15
  start-page: 2120
  year: 2015
  ident: C8NR08934E-(cit53)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00046
– volume: 4
  start-page: 7824
  year: 2016
  ident: C8NR08934E-(cit24)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC02503J
– volume: 5
  start-page: 3937
  year: 2014
  ident: C8NR08934E-(cit36)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz502111u
– volume: 6
  start-page: 20812
  year: 2014
  ident: C8NR08934E-(cit52)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am505101w
– volume: 347
  start-page: 967
  year: 2015
  ident: C8NR08934E-(cit5)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaa5760
– volume: 342
  start-page: 341
  year: 2013
  ident: C8NR08934E-(cit6)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1243982
– volume: 10
  start-page: 8578
  year: 2018
  ident: C8NR08934E-(cit21)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR00863A
SSID ssj0069363
Score 2.2902086
Snippet Hybrid organic–inorganic perovskite (HOIP) materials have remarkable potential in solar cells owing to their high power conversion efficiency and inexpensive...
Hybrid organic-inorganic perovskite (HOIP) materials have remarkable potential in solar cells owing to their high power conversion efficiency and inexpensive...
SourceID pubmed
crossref
SourceType Index Database
Enrichment Source
StartPage 3360
Title Tunable hysteresis behaviour related to trap filling dependence of surface barrier in an individual CH 3 NH 3 PbI 3 micro/nanowire
URI https://www.ncbi.nlm.nih.gov/pubmed/30724937
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagK6HlgHguy0uW4IKq7NZ24jjHJVoorwrBrljtpXIchwaxSZUmF478csaO8ygsEnAZRcmkkfp9nY7j-WYQekbCVIlMMC8hRHu-TIkXpYR4AeGSRkEQUm20w-8XfH7qvzkLzoYdfKsuqZMD9f1SXcn_oArnAFejkv0HZPsPhRNwDPiCBYTB_h3GTat8Wpl2zLBuzjed7L6pWpUKpJMmuazk2nRgstLzbuytsm8LNk2VSThMZGVn1-WmOHmaDzKteD5l04UxH5LXYC9MBZ_ppiqLsh9F7rJbCNXlBkAfyOIKfs9Xg-LsfCXb3Z68d3tnSwo-rZqvTe8Wwy1f2h2R0qqTx-8njCSKeq0u9EDbOEZN0SJj4XbQJSNyhaMIylg7X-C30D5jpjOqEkU1gxzL12MngGV9YUGGkAULyraPzC-NtLtLV9EOhTUFnaCdo7cvXn3u_rh5xDjrOtiy6HB41C661t28lb5sLURsQnJyE91wKwl81NLiFrqii9vo-qi_5B30wxEEDwTBPUGwIwiuS2wIgh1B8EAQXGbYEQQ7guC8wLLAA0FwPMcML4wBgoC1BDns6HEXnb48Ponnnhu64SnCo9qToc9hDRPMNM10ONNCpNrnWZKKNIVcMjUtHSLFU50mVGgiQspkJBVVClKhUHB2D02KstD3EYZUMZIJpNTws_cZVxHlgaZKJpIKBaFhHz3vvsulch3pzWCUb0tbGcGiZSwWHy0Ex_voae-7bvuwXOq110LS-3S4PfjjlYdod6DtIzSpq0Y_hkSzTp44gvwEbS9-yw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+hysteresis+behaviour+related+to+trap+filling+dependence+of+surface+barrier+in+an+individual+CH+3+NH+3+PbI+3+micro%2Fnanowire&rft.jtitle=Nanoscale&rft.au=Hong%2C+Zhen&rft.au=Zhao%2C+Jie&rft.au=Li%2C+Shujun&rft.au=Cheng%2C+Baochang&rft.date=2019-02-14&rft.eissn=2040-3372&rft.volume=11&rft.issue=7&rft.spage=3360&rft_id=info:doi/10.1039%2Fc8nr08934e&rft_id=info%3Apmid%2F30724937&rft.externalDocID=30724937
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon