Transfer learning-enhanced deep reinforcement learning for aerodynamic airfoil optimization subject to structural constraints

The main objective of this paper is to introduce a transfer learning-enhanced deep reinforcement learning (DRL) methodology that is able to optimize the geometry of any airfoil based on concomitant aerodynamic and structural integrity criteria. To showcase the method, we aim to maximize the lift-to-...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 37; no. 8
Main Authors Ramos, David, Lacasa, Lucas, Valero, Eusebio, Rubio, Gonzalo
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.08.2025
Subjects
Online AccessGet full text
ISSN1070-6631
1089-7666
DOI10.1063/5.0274045

Cover

Loading…
Abstract The main objective of this paper is to introduce a transfer learning-enhanced deep reinforcement learning (DRL) methodology that is able to optimize the geometry of any airfoil based on concomitant aerodynamic and structural integrity criteria. To showcase the method, we aim to maximize the lift-to-drag ratio CL/CD while preserving the structural integrity of the airfoil—as modeled by its maximum thickness—and train the DRL agent using a list of different transfer learning (TL) strategies. The performance of the DRL agent is compared with Particle Swarm Optimization (PSO), a traditional gradient-free optimization method. Results indicate that DRL agents are able to perform purely aerodynamic and hybrid aerodynamic/structural shape optimization that the DRL approach outperforms PSO in terms of computational efficiency and aerodynamic improvement and that the TL-enhanced DRL agent achieves performance comparable to the DRL one, while further saving substantial computational resources.
AbstractList The main objective of this paper is to introduce a transfer learning-enhanced deep reinforcement learning (DRL) methodology that is able to optimize the geometry of any airfoil based on concomitant aerodynamic and structural integrity criteria. To showcase the method, we aim to maximize the lift-to-drag ratio CL/CD while preserving the structural integrity of the airfoil—as modeled by its maximum thickness—and train the DRL agent using a list of different transfer learning (TL) strategies. The performance of the DRL agent is compared with Particle Swarm Optimization (PSO), a traditional gradient-free optimization method. Results indicate that DRL agents are able to perform purely aerodynamic and hybrid aerodynamic/structural shape optimization that the DRL approach outperforms PSO in terms of computational efficiency and aerodynamic improvement and that the TL-enhanced DRL agent achieves performance comparable to the DRL one, while further saving substantial computational resources.
The main objective of this paper is to introduce a transfer learning-enhanced deep reinforcement learning (DRL) methodology that is able to optimize the geometry of any airfoil based on concomitant aerodynamic and structural integrity criteria. To showcase the method, we aim to maximize the lift-to-drag ratio CL/CD while preserving the structural integrity of the airfoil—as modeled by its maximum thickness—and train the DRL agent using a list of different transfer learning (TL) strategies. The performance of the DRL agent is compared with Particle Swarm Optimization (PSO), a traditional gradient-free optimization method. Results indicate that DRL agents are able to perform purely aerodynamic and hybrid aerodynamic/structural shape optimization that the DRL approach outperforms PSO in terms of computational efficiency and aerodynamic improvement and that the TL-enhanced DRL agent achieves performance comparable to the DRL one, while further saving substantial computational resources.
Author Rubio, Gonzalo
Lacasa, Lucas
Valero, Eusebio
Ramos, David
Author_xml – sequence: 1
  givenname: David
  surname: Ramos
  fullname: Ramos, David
  organization: ETSIAE-UPM-School of Aeronautics, Universidad Politécnica de Madrid
– sequence: 2
  givenname: Lucas
  surname: Lacasa
  fullname: Lacasa, Lucas
  organization: Institute for Cross-Disciplinary Physics and Complex Systems (IFISC, CSIC-UIB)
– sequence: 3
  givenname: Eusebio
  surname: Valero
  fullname: Valero, Eusebio
  organization: 3Center for Computational Simulation, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, 28660 Madrid, Spain
– sequence: 4
  givenname: Gonzalo
  surname: Rubio
  fullname: Rubio, Gonzalo
  organization: 3Center for Computational Simulation, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, 28660 Madrid, Spain
BookMark eNp90EtLAzEQAOAgFWyrB_9BwJPC1mSTzXaPUnxBwUs9L7PZiabsJjXJHir4391a8ehpHnzMMDMjE-cdEnLJ2YIzJW6LBctLyWRxQqacLausVEpNDnnJMqUEPyOzGLeMMVHlakq-NgFcNBhohxCcdW8ZundwGlvaIu5oQOuMDxp7dOkP0bFFAYNv9w56qynYYLztqN8l29tPSNY7GodmizrR5GlMYdBpCNBR7d1YgXUpnpNTA13Ei984J68P95vVU7Z-eXxe3a0zzVWVsmWbi6oyjSpYW6pKl6BQyUIqXWouocVG8UaCNFI0mklhGhBlDhIK02oDlZiTq-PcXfAfA8ZUb_0Q3LiyFrlkBV8WpRzV9VHp4GMMaOpdsD2Efc1ZffhuXdS_3x3tzdFGbdPPtf_gb4zyf1s
CODEN PHFLE6
Cites_doi 10.1016/j.eswa.2025.127169
10.1007/s00158-024-03755-5
10.1088/1742-6596/524/1/012017
10.1080/19942060.2024.2445144
10.1146/annurev-fluid-010719-060214
10.1063/5.0137002
10.1038/s42254-023-00622-y
10.1063/5.0134198
10.1017/S0022112074002023
10.1007/s10483-011-1497-x
10.1016/j.jcp.2025.114080
10.1016/j.asoc.2017.09.030
10.2514/1.12563
10.1007/s001620050060
10.1016/0021-9991(92)90174-W
10.2514/1.C000256
10.2514/1.J060131
10.1016/j.rineng.2023.101693
10.4028/www.scientific.net/AMM.232.614
10.2514/1.29958
10.1038/s43588-022-00264-7
10.1038/s41598-023-36560-z
10.1016/j.ast.2023.108354
10.1016/j.cpc.2024.109459
10.1109/MSP.2017.2743240
10.1016/j.ast.2019.02.003
10.1016/j.jcp.2023.112018
10.1007/s00158-002-0188-0
10.1016/j.jcp.2020.110080
10.1016/S0377-0427(02)00527-7
10.1007/s00158-013-1025-3
10.1016/j.ast.2023.108737
ContentType Journal Article
Copyright Author(s)
2025 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2025 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0274045
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
ExternalDocumentID 10_1063_5_0274045
GrantInformation_xml – fundername: Agencia Estatal de Investigación
  grantid: PID2020-114324GB-C22
  funderid: 10.13039/501100011033
– fundername: Ministerio de Ciencia e Innovación
  grantid: PLEC2023-010251
  funderid: 10.13039/501100004837
– fundername: Agencia Estatal de Investigación
  grantid: CEX2021-001164-M
  funderid: 10.13039/501100011033
– fundername: Clean Aviation
  grantid: 101140567
  funderid: 10.13039/100020470
– fundername: European Commission
  grantid: 101194363
  funderid: 10.13039/501100000780
– fundername: Agencia Estatal de Investigación
  grantid: PID2022-137899OB-I00
  funderid: 10.13039/501100011033
GroupedDBID -~X
0ZJ
1UP
2-P
29O
2WC
4.4
5VS
6TJ
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
ABJGX
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BDMKI
BPZLN
CS3
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
SC5
TN5
UQL
WH7
XJT
~02
AAYXX
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c169t-8d2399fb650d769c7a6e64546c7c14adeb61b4a4f43bc043fba372a4a5fdcfa93
ISSN 1070-6631
IngestDate Mon Aug 18 22:40:35 EDT 2025
Thu Aug 21 00:38:49 EDT 2025
Tue Aug 19 03:50:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c169t-8d2399fb650d769c7a6e64546c7c14adeb61b4a4f43bc043fba372a4a5fdcfa93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0002-0407-4624
0000-0002-6231-4801
0000-0002-1627-6883
0000-0003-3057-0357
PQID 3240518574
PQPubID 2050667
PageCount 13
ParticipantIDs scitation_primary_10_1063_5_0274045
proquest_journals_3240518574
crossref_primary_10_1063_5_0274045
PublicationCentury 2000
PublicationDate 20250800
2025-08-01
20250801
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 20250800
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of fluids (1994)
PublicationYear 2025
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Vinuesa, Brunton, McKeon (c21) 2023
Bak, Gaudern, Zahle, Vronsky (c2)
Dussauge, Sung, Pinon Fischer, Mavris (c18) 2023
Viquerat, Rabault, Kuhnle, Ghraieb, Larcher, Hachem (c11) 2021
Lacasa, Pardo, Arbelo, Sánchez, Bascones, Yeste, Martínez-Cava, Rubio, Gómez, Valero (c25) 2025
Wang, Periaux, Sefrioui (c16) 2002
Jameson, Martinelli, Pierce (c9) 1998
Arulkumaran, Deisenroth, Brundage, Bharath (c17) 2017
Liu, Shen, Yang, Yang (c31) 2025
Yan, Zhu, Kuang, Wang (c28) 2019
Pironneau (c7) 1974
Kulfan (c36) 2008
Liu, Zhang, Sun, Li, Chen (c26) 2024
Bhola, Pawar, Balaprakash, Maulik (c30) 2023
Noda, Okabayashi, Kimura, Takeuchi, Kajishima (c29) 2023
Le Clainche, Ferrer, Gibson, Cross, Parente, Vinuesa (c23) 2023
Nejat, Mirzabeygi, Panahi (c15) 2014
Eiximeno, Miró, Begiashvili, Valero, Rodriguez, Lehmkuhl (c35) 2025
Mukesh, Lingadurai, Elamvaluthi (c48) 2012
Lou, Chen, Liu, Bao, You, Chen (c19) 2023
Raffin, Hill, Gleave, Kanervisto, Ernestus, Dormann (c45) 2021
Wang, Zhang, Chen (c13) 2011
Buckley, Zhou, Zingg (c32) 2010
Brunton, Noack, Koumoutsakos (c20) 2020
Secanell, Suleman (c5) 2005
Liu, Chen, Lou, Wu, You, Chen (c27) 2023
Brunton, Nathan Kutz, Manohar, Aravkin, Morgansen, Klemisch, Goebel, Buttrick, Poskin, Blom-Schieber (c24) 2021
Frank, Shubin (c8) 1992
Jichao, Xiaosong, Martins (c10) 2022
Huergo, Rubio, Ferrer (c39) 2024
Fourie, Groenwold (c14) 2002
Skinner, Zare-Behtash (c3) 2018
Vinuesa, Brunton (c22) 2022
(2025081807592016600_c15) 2014; 49
(2025081807592016600_c24) 2021; 59
(2025081807592016600_c47) 1995
(2025081807592016600_c51) 2019
(2025081807592016600_c41) 2016
(2025081807592016600_c1) 2022
2025081807592016600_c33
(2025081807592016600_c14) 2002; 23
(2025081807592016600_c44) 2018
(2025081807592016600_c49) 2021
(2025081807592016600_c27) 2023; 143
2025081807592016600_c2
(2025081807592016600_c48) 2012; 232
(2025081807592016600_c32) 2010; 47
2025081807592016600_c4
(2025081807592016600_c36) 2008; 45
(2025081807592016600_c21) 2023; 5
(2025081807592016600_c6) 2014
(2025081807592016600_c34) 1989
(2025081807592016600_c25) 2025; 277
(2025081807592016600_c5) 2005; 43
(2025081807592016600_c22) 2022; 2
(2025081807592016600_c35) 2025; 308
(2025081807592016600_c7) 1974; 64
(2025081807592016600_c45) 2021; 22
(2025081807592016600_c20) 2020; 52
(2025081807592016600_c31) 2025; 19
(2025081807592016600_c3) 2018; 62
(2025081807592016600_c29) 2023; 13
2025081807592016600_c50
(2025081807592016600_c9) 1998; 10
(2025081807592016600_c8) 1992; 98
(2025081807592016600_c13) 2011; 32
2025081807592016600_c12
(2025081807592016600_c19) 2023; 35
(2025081807592016600_c23) 2023; 138
(2025081807592016600_c11) 2021; 428
(2025081807592016600_c43) 2018
(2025081807592016600_c10) 2022; 121
2025081807592016600_c46
2025081807592016600_c42
2025081807592016600_c40
(2025081807592016600_c26) 2024; 67
(2025081807592016600_c39) 2024; 21
(2025081807592016600_c30) 2023; 482
(2025081807592016600_c17) 2017; 34
2025081807592016600_c38
(2025081807592016600_c18) 2023; 13
2025081807592016600_c37
(2025081807592016600_c16) 2002; 149
(2025081807592016600_c28) 2019; 86
References_xml – start-page: 358
  year: 2022
  ident: c22
  article-title: Enhancing computational fluid dynamics with machine learning
  publication-title: Nat. Comput. Sci.
– start-page: 26
  year: 2017
  ident: c17
  article-title: Deep reinforcement learning: A brief survey
  publication-title: IEEE Signal Process. Mag.
– start-page: 9753
  year: 2023
  ident: c18
  article-title: A reinforcement learning approach to airfoil shape optimization
  publication-title: Sci. Rep.
– start-page: 037128
  year: 2023
  ident: c19
  article-title: Aerodynamic optimization of airfoil based on deep reinforcement learning
  publication-title: Phys. Fluids
– start-page: 953
  year: 2014
  ident: c15
  article-title: Airfoil shape optimization using improved multiobjective territorial particle swarm algorithm with the objective of improving stall characteristics
  publication-title: Struct. Multidiscip. Optim.
– start-page: 477
  year: 2020
  ident: c20
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
– start-page: 108354
  year: 2023
  ident: c23
  article-title: Improving aircraft performance using machine learning: A review
  publication-title: Aerosp. Sci. Technol.
– start-page: 614
  year: 2012
  ident: c48
  article-title: Influence of optimization algorithm on airfoil shape optimization of aircraft wings
  publication-title: Appl. Mech. Mater.
– start-page: 2262
  year: 2005
  ident: c5
  article-title: Numerical evaluation of optimization algorithms for low-Reynolds-number aerodynamic shape optimization
  publication-title: AIAA J.
– start-page: 127169
  year: 2025
  ident: c25
  article-title: Towards certification: A complete statistical validation pipeline for supervised learning in industry
  publication-title: Expert Syst. Appl.
– start-page: 12348
  year: 2021
  ident: c45
  article-title: Stable-baselines3: Reliable reinforcement learning implementations
  publication-title: J. Mach. Learn. Res.
– start-page: 213
  year: 1998
  ident: c9
  article-title: Optimum aerodynamic design using the Navier-Stokes equations
  publication-title: Theor. Comput. Fluid Dyn.
– start-page: 112018
  year: 2023
  ident: c30
  article-title: Multi-fidelity reinforcement learning framework for shape optimization
  publication-title: J. Comput. Phys.
– start-page: 826
  year: 2019
  ident: c28
  article-title: Aerodynamic shape optimization using a novel optimizer based on machine learning techniques
  publication-title: Aerosp. Sci. Technol.
– start-page: 101693
  year: 2024
  ident: c39
  article-title: A reinforcement learning strategy for p-adaptation in high order solvers
  publication-title: Results Eng.
– start-page: 259
  year: 2002
  ident: c14
  article-title: The particle swarm optimization algorithm in size and shape optimization
  publication-title: Struct. Multidiscip. Optim.
– start-page: 2445144
  year: 2025
  ident: c31
  article-title: A CNN-PINN-DRL driven method for shape optimization of airfoils
  publication-title: Eng. Appl. Comput. Fluid Mech.
– start-page: 74
  year: 1992
  ident: c8
  article-title: A comparison of optimization-based approaches for a model computational aerodynamics design problem
  publication-title: J. Comput. Phys.
– ident: c2
  article-title: Airfoil design: Finding the balance between design lift and structural stiffness
  publication-title: J. Phys.: Conf. Ser.
– start-page: 536
  year: 2023
  ident: c21
  article-title: The transformative potential of machine learning for experiments in fluid mechanics
  publication-title: Nat. Rev. Phys.
– start-page: 97
  year: 1974
  ident: c7
  article-title: On optimum design in fluid mechanics
  publication-title: J. Fluid Mech.
– start-page: 109459
  year: 2025
  ident: c35
  article-title: Pylom: A HPC open source reduced order model suite for fluid dynamics applications
  publication-title: Comput. Phys. Commun.
– start-page: 933
  year: 2018
  ident: c3
  article-title: State-of-the-art in aerodynamic shape optimisation methods
  publication-title: Appl. Soft Comput.
– start-page: 567
  year: 2022
  ident: c10
  article-title: Low-Reynolds-number airfoil design optimization using deep-learning-based tailored airfoil modes
  publication-title: Aerosp. Sci. Technol.
– start-page: 035328
  year: 2023
  ident: c29
  article-title: Optimization of configuration of corrugated airfoil using deep reinforcement learning and transfer learning
  publication-title: AIP Adv.
– start-page: 110080
  year: 2021
  ident: c11
  article-title: Direct shape optimization through deep reinforcement learning
  publication-title: J. Comput. Phys.
– start-page: 1245
  year: 2011
  ident: c13
  article-title: Robust airfoil optimization based on improved particle swarm optimization method
  publication-title: Appl. Math. Mech.
– start-page: 155
  year: 2002
  ident: c16
  article-title: Parallel evolutionary algorithms for optimization problems in aerospace engineering
  publication-title: J. Comput. Appl. Math.
– start-page: 2820
  year: 2021
  ident: c24
  article-title: Data-driven aerospace engineering: Reframing the industry with machine learning
  publication-title: AIAA J.
– start-page: 34
  year: 2024
  ident: c26
  article-title: A deep reinforcement learning optimization framework for supercritical airfoil aerodynamic shape design
  publication-title: Struct. Multidiscip. Optim.
– start-page: 142
  year: 2008
  ident: c36
  article-title: Universal parametric geometry representation method
  publication-title: J. Aircr.
– start-page: 108737
  year: 2023
  ident: c27
  article-title: Airfoils optimization based on deep reinforcement learning to improve the aerodynamic performance of rotors
  publication-title: Aerosp. Sci. Technol.
– start-page: 1707
  year: 2010
  ident: c32
  article-title: Airfoil optimization using practical aerodynamic design requirements
  publication-title: J. Aircr.
– start-page: 2011
  ident: 2025081807592016600_c12
  article-title: Genetic algorithms in wind turbine airfoil design
– volume: 277
  start-page: 127169
  year: 2025
  ident: 2025081807592016600_c25
  article-title: Towards certification: A complete statistical validation pipeline for supervised learning in industry
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2025.127169
– volume: 67
  start-page: 34
  year: 2024
  ident: 2025081807592016600_c26
  article-title: A deep reinforcement learning optimization framework for supercritical airfoil aerodynamic shape design
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-024-03755-5
– ident: 2025081807592016600_c38
– ident: 2025081807592016600_c4
– ident: 2025081807592016600_c2
  article-title: Airfoil design: Finding the balance between design lift and structural stiffness
  publication-title: J. Phys.: Conf. Ser.
  doi: 10.1088/1742-6596/524/1/012017
– volume: 19
  start-page: 2445144
  year: 2025
  ident: 2025081807592016600_c31
  article-title: A CNN-PINN-DRL driven method for shape optimization of airfoils
  publication-title: Eng. Appl. Comput. Fluid Mech.
  doi: 10.1080/19942060.2024.2445144
– year: 2014
  ident: 2025081807592016600_c6
  article-title: Benchmarking optimization algorithms for wing aerodynamic design optimization
– volume: 52
  start-page: 477
  year: 2020
  ident: 2025081807592016600_c20
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010719-060214
– volume: 35
  start-page: 037128
  year: 2023
  ident: 2025081807592016600_c19
  article-title: Aerodynamic optimization of airfoil based on deep reinforcement learning
  publication-title: Phys. Fluids
  doi: 10.1063/5.0137002
– volume: 5
  start-page: 536
  year: 2023
  ident: 2025081807592016600_c21
  article-title: The transformative potential of machine learning for experiments in fluid mechanics
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-023-00622-y
– volume: 13
  start-page: 035328
  year: 2023
  ident: 2025081807592016600_c29
  article-title: Optimization of configuration of corrugated airfoil using deep reinforcement learning and transfer learning
  publication-title: AIP Adv.
  doi: 10.1063/5.0134198
– volume: 64
  start-page: 97
  year: 1974
  ident: 2025081807592016600_c7
  article-title: On optimum design in fluid mechanics
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112074002023
– volume: 32
  start-page: 1245
  year: 2011
  ident: 2025081807592016600_c13
  article-title: Robust airfoil optimization based on improved particle swarm optimization method
  publication-title: Appl. Math. Mech.
  doi: 10.1007/s10483-011-1497-x
– ident: 2025081807592016600_c40
  doi: 10.1016/j.jcp.2025.114080
– volume: 62
  start-page: 933
  year: 2018
  ident: 2025081807592016600_c3
  article-title: State-of-the-art in aerodynamic shape optimisation methods
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.09.030
– start-page: 1587
  year: 2018
  ident: 2025081807592016600_c44
  article-title: Addressing function approximation error in actor-critic methods
– ident: 2025081807592016600_c37
– start-page: 1
  year: 1989
  ident: 2025081807592016600_c34
  article-title: Xfoil: An analysis and design system for low Reynolds number airfoils
– volume: 43
  start-page: 2262
  year: 2005
  ident: 2025081807592016600_c5
  article-title: Numerical evaluation of optimization algorithms for low-Reynolds-number aerodynamic shape optimization
  publication-title: AIAA J.
  doi: 10.2514/1.12563
– start-page: 1942
  year: 1995
  ident: 2025081807592016600_c47
  article-title: Particle swarm optimization
– ident: 2025081807592016600_c33
– ident: 2025081807592016600_c50
– start-page: 1928
  year: 2016
  ident: 2025081807592016600_c41
  article-title: Asynchronous methods for deep reinforcement learning
– volume: 10
  start-page: 213
  year: 1998
  ident: 2025081807592016600_c9
  article-title: Optimum aerodynamic design using the Navier-Stokes equations
  publication-title: Theor. Comput. Fluid Dyn.
  doi: 10.1007/s001620050060
– volume: 98
  start-page: 74
  year: 1992
  ident: 2025081807592016600_c8
  article-title: A comparison of optimization-based approaches for a model computational aerodynamics design problem
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(92)90174-W
– ident: 2025081807592016600_c46
– start-page: 012016
  year: 2021
  ident: 2025081807592016600_c49
  article-title: Airfoil shape optimization: Comparative study of meta-heuristic algorithms, airfoil parameterization methods and Reynolds number impact
– volume: 47
  start-page: 1707
  year: 2010
  ident: 2025081807592016600_c32
  article-title: Airfoil optimization using practical aerodynamic design requirements
  publication-title: J. Aircr.
  doi: 10.2514/1.C000256
– volume: 59
  start-page: 2820
  year: 2021
  ident: 2025081807592016600_c24
  article-title: Data-driven aerospace engineering: Reframing the industry with machine learning
  publication-title: AIAA J.
  doi: 10.2514/1.J060131
– volume: 21
  start-page: 101693
  year: 2024
  ident: 2025081807592016600_c39
  article-title: A reinforcement learning strategy for p-adaptation in high order solvers
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2023.101693
– ident: 2025081807592016600_c42
– volume: 121
  start-page: 567
  year: 2022
  ident: 2025081807592016600_c10
  article-title: Low-Reynolds-number airfoil design optimization using deep-learning-based tailored airfoil modes
  publication-title: Aerosp. Sci. Technol.
– volume: 232
  start-page: 614
  year: 2012
  ident: 2025081807592016600_c48
  article-title: Influence of optimization algorithm on airfoil shape optimization of aircraft wings
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.232.614
– volume: 45
  start-page: 142
  year: 2008
  ident: 2025081807592016600_c36
  article-title: Universal parametric geometry representation method
  publication-title: J. Aircr.
  doi: 10.2514/1.29958
– year: 2019
  ident: 2025081807592016600_c51
  article-title: Optuna: A next-generation hyperparameter optimization framework
– volume: 2
  start-page: 358
  year: 2022
  ident: 2025081807592016600_c22
  article-title: Enhancing computational fluid dynamics with machine learning
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-022-00264-7
– volume-title: Introduction to Aerospace Flight Vehicles
  year: 2022
  ident: 2025081807592016600_c1
  article-title: Airfoil geometries in various flight vehicles
– volume: 13
  start-page: 9753
  year: 2023
  ident: 2025081807592016600_c18
  article-title: A reinforcement learning approach to airfoil shape optimization
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-36560-z
– volume: 138
  start-page: 108354
  year: 2023
  ident: 2025081807592016600_c23
  article-title: Improving aircraft performance using machine learning: A review
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2023.108354
– volume: 308
  start-page: 109459
  year: 2025
  ident: 2025081807592016600_c35
  article-title: Pylom: A HPC open source reduced order model suite for fluid dynamics applications
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2024.109459
– volume: 22
  start-page: 12348
  year: 2021
  ident: 2025081807592016600_c45
  article-title: Stable-baselines3: Reliable reinforcement learning implementations
  publication-title: J. Mach. Learn. Res.
– volume: 34
  start-page: 26
  year: 2017
  ident: 2025081807592016600_c17
  article-title: Deep reinforcement learning: A brief survey
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2743240
– volume: 86
  start-page: 826
  year: 2019
  ident: 2025081807592016600_c28
  article-title: Aerodynamic shape optimization using a novel optimizer based on machine learning techniques
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2019.02.003
– volume: 482
  start-page: 112018
  year: 2023
  ident: 2025081807592016600_c30
  article-title: Multi-fidelity reinforcement learning framework for shape optimization
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2023.112018
– start-page: 1861
  year: 2018
  ident: 2025081807592016600_c43
  article-title: Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor
– volume: 23
  start-page: 259
  year: 2002
  ident: 2025081807592016600_c14
  article-title: The particle swarm optimization algorithm in size and shape optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-002-0188-0
– volume: 428
  start-page: 110080
  year: 2021
  ident: 2025081807592016600_c11
  article-title: Direct shape optimization through deep reinforcement learning
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.110080
– volume: 149
  start-page: 155
  year: 2002
  ident: 2025081807592016600_c16
  article-title: Parallel evolutionary algorithms for optimization problems in aerospace engineering
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(02)00527-7
– volume: 49
  start-page: 953
  year: 2014
  ident: 2025081807592016600_c15
  article-title: Airfoil shape optimization using improved multiobjective territorial particle swarm algorithm with the objective of improving stall characteristics
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-013-1025-3
– volume: 143
  start-page: 108737
  year: 2023
  ident: 2025081807592016600_c27
  article-title: Airfoils optimization based on deep reinforcement learning to improve the aerodynamic performance of rotors
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2023.108737
SSID ssj0003926
Score 2.4684556
Snippet The main objective of this paper is to introduce a transfer learning-enhanced deep reinforcement learning (DRL) methodology that is able to optimize the...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Airfoils
Deep learning
Particle swarm optimization
Shape optimization
Structural integrity
Title Transfer learning-enhanced deep reinforcement learning for aerodynamic airfoil optimization subject to structural constraints
URI http://dx.doi.org/10.1063/5.0274045
https://www.proquest.com/docview/3240518574
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bixMxFA66IvriZVWsrhLUt5K1M8lkJo8iuyxSV5AW-jbkqgV3urSzL4L_3ZPLXIqrqC9DCdO05Hw98-X0y3cQesOBsRl4jhEBOyDCjLREKUpJ5ioBT1jjtPWlgY_n_GzJPqyK1aCfD6dLWnWsv197ruR_ogpjEFd_SvYfIttPCgPwGuILV4gwXP8uxoF12m3X--ELsc3X-Je-sfZyurXBF1WHEmB_UxROWsicsRv9VK63brMGUgrp4yKdy5zurpQv0XhuGj1mgz-H9nTSd5WIBlAdrQ06Uh1UIe7b1dpE_ych2KjQ8FleREnfSEbvDR-13Mnp3PdeG1cg8qLXv7Uj0b9s9uUN6YNHqRWSCwF-E99o01glSMlj35UuH0cTmIS76to0D7wKYlMc-z31LNpR7ltpn3-qT5fzeb04WS1uols5IHIWdJ2D_geIIY-C1Pi1OtspTt_2E--TlWEHcgfoSVRKjMjI4gG6l3YR-F2ExEN0wzaH6H7aUeCUr3eH6HZan0foR4cV_AtWsMcK3sNKfxOGITzCCk5YwWOs4IQV3G7wgBU8wspjtDw9Wbw_I6n1BtEZFy2pjD_z7BTwd1NyoUvJrfd-47rUGZPGKp4pJpljVOkZo05JWuaSycIZ7aSgT9BBs2nsU4RzaqQsuNQqs4xCwKkwvADazSuYKS8n6FW3xvVldFipgzKC07qoUyAm6Khb_Tr9AHe195IsvJcZm6DXfUR-P8mzP0_yHN0d0H2EDmC97AtgnK16GZDzE4ETiDk
linkProvider American Institute of Physics
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transfer+learning-enhanced+deep+reinforcement+learning+for+aerodynamic+airfoil+optimization+subject+to+structural+constraints&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Ramos%2C+David&rft.au=Lacasa+Lucas&rft.date=2025-08-01&rft.pub=American+Institute+of+Physics&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=37&rft.issue=8&rft_id=info:doi/10.1063%2F5.0274045&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon