Transfer learning-enhanced deep reinforcement learning for aerodynamic airfoil optimization subject to structural constraints
The main objective of this paper is to introduce a transfer learning-enhanced deep reinforcement learning (DRL) methodology that is able to optimize the geometry of any airfoil based on concomitant aerodynamic and structural integrity criteria. To showcase the method, we aim to maximize the lift-to-...
Saved in:
Published in | Physics of fluids (1994) Vol. 37; no. 8 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1070-6631 1089-7666 |
DOI | 10.1063/5.0274045 |
Cover
Loading…
Abstract | The main objective of this paper is to introduce a transfer learning-enhanced deep reinforcement learning (DRL) methodology that is able to optimize the geometry of any airfoil based on concomitant aerodynamic and structural integrity criteria. To showcase the method, we aim to maximize the lift-to-drag ratio
CL/CD while preserving the structural integrity of the airfoil—as modeled by its maximum thickness—and train the DRL agent using a list of different transfer learning (TL) strategies. The performance of the DRL agent is compared with Particle Swarm Optimization (PSO), a traditional gradient-free optimization method. Results indicate that DRL agents are able to perform purely aerodynamic and hybrid aerodynamic/structural shape optimization that the DRL approach outperforms PSO in terms of computational efficiency and aerodynamic improvement and that the TL-enhanced DRL agent achieves performance comparable to the DRL one, while further saving substantial computational resources. |
---|---|
AbstractList | The main objective of this paper is to introduce a transfer learning-enhanced deep reinforcement learning (DRL) methodology that is able to optimize the geometry of any airfoil based on concomitant aerodynamic and structural integrity criteria. To showcase the method, we aim to maximize the lift-to-drag ratio
CL/CD while preserving the structural integrity of the airfoil—as modeled by its maximum thickness—and train the DRL agent using a list of different transfer learning (TL) strategies. The performance of the DRL agent is compared with Particle Swarm Optimization (PSO), a traditional gradient-free optimization method. Results indicate that DRL agents are able to perform purely aerodynamic and hybrid aerodynamic/structural shape optimization that the DRL approach outperforms PSO in terms of computational efficiency and aerodynamic improvement and that the TL-enhanced DRL agent achieves performance comparable to the DRL one, while further saving substantial computational resources. The main objective of this paper is to introduce a transfer learning-enhanced deep reinforcement learning (DRL) methodology that is able to optimize the geometry of any airfoil based on concomitant aerodynamic and structural integrity criteria. To showcase the method, we aim to maximize the lift-to-drag ratio CL/CD while preserving the structural integrity of the airfoil—as modeled by its maximum thickness—and train the DRL agent using a list of different transfer learning (TL) strategies. The performance of the DRL agent is compared with Particle Swarm Optimization (PSO), a traditional gradient-free optimization method. Results indicate that DRL agents are able to perform purely aerodynamic and hybrid aerodynamic/structural shape optimization that the DRL approach outperforms PSO in terms of computational efficiency and aerodynamic improvement and that the TL-enhanced DRL agent achieves performance comparable to the DRL one, while further saving substantial computational resources. |
Author | Rubio, Gonzalo Lacasa, Lucas Valero, Eusebio Ramos, David |
Author_xml | – sequence: 1 givenname: David surname: Ramos fullname: Ramos, David organization: ETSIAE-UPM-School of Aeronautics, Universidad Politécnica de Madrid – sequence: 2 givenname: Lucas surname: Lacasa fullname: Lacasa, Lucas organization: Institute for Cross-Disciplinary Physics and Complex Systems (IFISC, CSIC-UIB) – sequence: 3 givenname: Eusebio surname: Valero fullname: Valero, Eusebio organization: 3Center for Computational Simulation, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, 28660 Madrid, Spain – sequence: 4 givenname: Gonzalo surname: Rubio fullname: Rubio, Gonzalo organization: 3Center for Computational Simulation, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, 28660 Madrid, Spain |
BookMark | eNp90EtLAzEQAOAgFWyrB_9BwJPC1mSTzXaPUnxBwUs9L7PZiabsJjXJHir4391a8ehpHnzMMDMjE-cdEnLJ2YIzJW6LBctLyWRxQqacLausVEpNDnnJMqUEPyOzGLeMMVHlakq-NgFcNBhohxCcdW8ZundwGlvaIu5oQOuMDxp7dOkP0bFFAYNv9w56qynYYLztqN8l29tPSNY7GodmizrR5GlMYdBpCNBR7d1YgXUpnpNTA13Ei984J68P95vVU7Z-eXxe3a0zzVWVsmWbi6oyjSpYW6pKl6BQyUIqXWouocVG8UaCNFI0mklhGhBlDhIK02oDlZiTq-PcXfAfA8ZUb_0Q3LiyFrlkBV8WpRzV9VHp4GMMaOpdsD2Efc1ZffhuXdS_3x3tzdFGbdPPtf_gb4zyf1s |
CODEN | PHFLE6 |
Cites_doi | 10.1016/j.eswa.2025.127169 10.1007/s00158-024-03755-5 10.1088/1742-6596/524/1/012017 10.1080/19942060.2024.2445144 10.1146/annurev-fluid-010719-060214 10.1063/5.0137002 10.1038/s42254-023-00622-y 10.1063/5.0134198 10.1017/S0022112074002023 10.1007/s10483-011-1497-x 10.1016/j.jcp.2025.114080 10.1016/j.asoc.2017.09.030 10.2514/1.12563 10.1007/s001620050060 10.1016/0021-9991(92)90174-W 10.2514/1.C000256 10.2514/1.J060131 10.1016/j.rineng.2023.101693 10.4028/www.scientific.net/AMM.232.614 10.2514/1.29958 10.1038/s43588-022-00264-7 10.1038/s41598-023-36560-z 10.1016/j.ast.2023.108354 10.1016/j.cpc.2024.109459 10.1109/MSP.2017.2743240 10.1016/j.ast.2019.02.003 10.1016/j.jcp.2023.112018 10.1007/s00158-002-0188-0 10.1016/j.jcp.2020.110080 10.1016/S0377-0427(02)00527-7 10.1007/s00158-013-1025-3 10.1016/j.ast.2023.108737 |
ContentType | Journal Article |
Copyright | Author(s) 2025 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2025 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0274045 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1089-7666 |
ExternalDocumentID | 10_1063_5_0274045 |
GrantInformation_xml | – fundername: Agencia Estatal de Investigación grantid: PID2020-114324GB-C22 funderid: 10.13039/501100011033 – fundername: Ministerio de Ciencia e Innovación grantid: PLEC2023-010251 funderid: 10.13039/501100004837 – fundername: Agencia Estatal de Investigación grantid: CEX2021-001164-M funderid: 10.13039/501100011033 – fundername: Clean Aviation grantid: 101140567 funderid: 10.13039/100020470 – fundername: European Commission grantid: 101194363 funderid: 10.13039/501100000780 – fundername: Agencia Estatal de Investigación grantid: PID2022-137899OB-I00 funderid: 10.13039/501100011033 |
GroupedDBID | -~X 0ZJ 1UP 2-P 29O 2WC 4.4 5VS 6TJ AAAAW AABDS AAGWI AAPUP AAYIH ABJGX ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM ADMLS AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BDMKI BPZLN CS3 DU5 EBS EJD F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NEUPN NPSNA O-B P2P RDFOP RIP RNS ROL RQS SC5 TN5 UQL WH7 XJT ~02 AAYXX CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c169t-8d2399fb650d769c7a6e64546c7c14adeb61b4a4f43bc043fba372a4a5fdcfa93 |
ISSN | 1070-6631 |
IngestDate | Mon Aug 18 22:40:35 EDT 2025 Thu Aug 21 00:38:49 EDT 2025 Tue Aug 19 03:50:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c169t-8d2399fb650d769c7a6e64546c7c14adeb61b4a4f43bc043fba372a4a5fdcfa93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0002-0407-4624 0000-0002-6231-4801 0000-0002-1627-6883 0000-0003-3057-0357 |
PQID | 3240518574 |
PQPubID | 2050667 |
PageCount | 13 |
ParticipantIDs | scitation_primary_10_1063_5_0274045 proquest_journals_3240518574 crossref_primary_10_1063_5_0274045 |
PublicationCentury | 2000 |
PublicationDate | 20250800 2025-08-01 20250801 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 20250800 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Physics of fluids (1994) |
PublicationYear | 2025 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Vinuesa, Brunton, McKeon (c21) 2023 Bak, Gaudern, Zahle, Vronsky (c2) Dussauge, Sung, Pinon Fischer, Mavris (c18) 2023 Viquerat, Rabault, Kuhnle, Ghraieb, Larcher, Hachem (c11) 2021 Lacasa, Pardo, Arbelo, Sánchez, Bascones, Yeste, Martínez-Cava, Rubio, Gómez, Valero (c25) 2025 Wang, Periaux, Sefrioui (c16) 2002 Jameson, Martinelli, Pierce (c9) 1998 Arulkumaran, Deisenroth, Brundage, Bharath (c17) 2017 Liu, Shen, Yang, Yang (c31) 2025 Yan, Zhu, Kuang, Wang (c28) 2019 Pironneau (c7) 1974 Kulfan (c36) 2008 Liu, Zhang, Sun, Li, Chen (c26) 2024 Bhola, Pawar, Balaprakash, Maulik (c30) 2023 Noda, Okabayashi, Kimura, Takeuchi, Kajishima (c29) 2023 Le Clainche, Ferrer, Gibson, Cross, Parente, Vinuesa (c23) 2023 Nejat, Mirzabeygi, Panahi (c15) 2014 Eiximeno, Miró, Begiashvili, Valero, Rodriguez, Lehmkuhl (c35) 2025 Mukesh, Lingadurai, Elamvaluthi (c48) 2012 Lou, Chen, Liu, Bao, You, Chen (c19) 2023 Raffin, Hill, Gleave, Kanervisto, Ernestus, Dormann (c45) 2021 Wang, Zhang, Chen (c13) 2011 Buckley, Zhou, Zingg (c32) 2010 Brunton, Noack, Koumoutsakos (c20) 2020 Secanell, Suleman (c5) 2005 Liu, Chen, Lou, Wu, You, Chen (c27) 2023 Brunton, Nathan Kutz, Manohar, Aravkin, Morgansen, Klemisch, Goebel, Buttrick, Poskin, Blom-Schieber (c24) 2021 Frank, Shubin (c8) 1992 Jichao, Xiaosong, Martins (c10) 2022 Huergo, Rubio, Ferrer (c39) 2024 Fourie, Groenwold (c14) 2002 Skinner, Zare-Behtash (c3) 2018 Vinuesa, Brunton (c22) 2022 (2025081807592016600_c15) 2014; 49 (2025081807592016600_c24) 2021; 59 (2025081807592016600_c47) 1995 (2025081807592016600_c51) 2019 (2025081807592016600_c41) 2016 (2025081807592016600_c1) 2022 2025081807592016600_c33 (2025081807592016600_c14) 2002; 23 (2025081807592016600_c44) 2018 (2025081807592016600_c49) 2021 (2025081807592016600_c27) 2023; 143 2025081807592016600_c2 (2025081807592016600_c48) 2012; 232 (2025081807592016600_c32) 2010; 47 2025081807592016600_c4 (2025081807592016600_c36) 2008; 45 (2025081807592016600_c21) 2023; 5 (2025081807592016600_c6) 2014 (2025081807592016600_c34) 1989 (2025081807592016600_c25) 2025; 277 (2025081807592016600_c5) 2005; 43 (2025081807592016600_c22) 2022; 2 (2025081807592016600_c35) 2025; 308 (2025081807592016600_c7) 1974; 64 (2025081807592016600_c45) 2021; 22 (2025081807592016600_c20) 2020; 52 (2025081807592016600_c31) 2025; 19 (2025081807592016600_c3) 2018; 62 (2025081807592016600_c29) 2023; 13 2025081807592016600_c50 (2025081807592016600_c9) 1998; 10 (2025081807592016600_c8) 1992; 98 (2025081807592016600_c13) 2011; 32 2025081807592016600_c12 (2025081807592016600_c19) 2023; 35 (2025081807592016600_c23) 2023; 138 (2025081807592016600_c11) 2021; 428 (2025081807592016600_c43) 2018 (2025081807592016600_c10) 2022; 121 2025081807592016600_c46 2025081807592016600_c42 2025081807592016600_c40 (2025081807592016600_c26) 2024; 67 (2025081807592016600_c39) 2024; 21 (2025081807592016600_c30) 2023; 482 (2025081807592016600_c17) 2017; 34 2025081807592016600_c38 (2025081807592016600_c18) 2023; 13 2025081807592016600_c37 (2025081807592016600_c16) 2002; 149 (2025081807592016600_c28) 2019; 86 |
References_xml | – start-page: 358 year: 2022 ident: c22 article-title: Enhancing computational fluid dynamics with machine learning publication-title: Nat. Comput. Sci. – start-page: 26 year: 2017 ident: c17 article-title: Deep reinforcement learning: A brief survey publication-title: IEEE Signal Process. Mag. – start-page: 9753 year: 2023 ident: c18 article-title: A reinforcement learning approach to airfoil shape optimization publication-title: Sci. Rep. – start-page: 037128 year: 2023 ident: c19 article-title: Aerodynamic optimization of airfoil based on deep reinforcement learning publication-title: Phys. Fluids – start-page: 953 year: 2014 ident: c15 article-title: Airfoil shape optimization using improved multiobjective territorial particle swarm algorithm with the objective of improving stall characteristics publication-title: Struct. Multidiscip. Optim. – start-page: 477 year: 2020 ident: c20 article-title: Machine learning for fluid mechanics publication-title: Annu. Rev. Fluid Mech. – start-page: 108354 year: 2023 ident: c23 article-title: Improving aircraft performance using machine learning: A review publication-title: Aerosp. Sci. Technol. – start-page: 614 year: 2012 ident: c48 article-title: Influence of optimization algorithm on airfoil shape optimization of aircraft wings publication-title: Appl. Mech. Mater. – start-page: 2262 year: 2005 ident: c5 article-title: Numerical evaluation of optimization algorithms for low-Reynolds-number aerodynamic shape optimization publication-title: AIAA J. – start-page: 127169 year: 2025 ident: c25 article-title: Towards certification: A complete statistical validation pipeline for supervised learning in industry publication-title: Expert Syst. Appl. – start-page: 12348 year: 2021 ident: c45 article-title: Stable-baselines3: Reliable reinforcement learning implementations publication-title: J. Mach. Learn. Res. – start-page: 213 year: 1998 ident: c9 article-title: Optimum aerodynamic design using the Navier-Stokes equations publication-title: Theor. Comput. Fluid Dyn. – start-page: 112018 year: 2023 ident: c30 article-title: Multi-fidelity reinforcement learning framework for shape optimization publication-title: J. Comput. Phys. – start-page: 826 year: 2019 ident: c28 article-title: Aerodynamic shape optimization using a novel optimizer based on machine learning techniques publication-title: Aerosp. Sci. Technol. – start-page: 101693 year: 2024 ident: c39 article-title: A reinforcement learning strategy for p-adaptation in high order solvers publication-title: Results Eng. – start-page: 259 year: 2002 ident: c14 article-title: The particle swarm optimization algorithm in size and shape optimization publication-title: Struct. Multidiscip. Optim. – start-page: 2445144 year: 2025 ident: c31 article-title: A CNN-PINN-DRL driven method for shape optimization of airfoils publication-title: Eng. Appl. Comput. Fluid Mech. – start-page: 74 year: 1992 ident: c8 article-title: A comparison of optimization-based approaches for a model computational aerodynamics design problem publication-title: J. Comput. Phys. – ident: c2 article-title: Airfoil design: Finding the balance between design lift and structural stiffness publication-title: J. Phys.: Conf. Ser. – start-page: 536 year: 2023 ident: c21 article-title: The transformative potential of machine learning for experiments in fluid mechanics publication-title: Nat. Rev. Phys. – start-page: 97 year: 1974 ident: c7 article-title: On optimum design in fluid mechanics publication-title: J. Fluid Mech. – start-page: 109459 year: 2025 ident: c35 article-title: Pylom: A HPC open source reduced order model suite for fluid dynamics applications publication-title: Comput. Phys. Commun. – start-page: 933 year: 2018 ident: c3 article-title: State-of-the-art in aerodynamic shape optimisation methods publication-title: Appl. Soft Comput. – start-page: 567 year: 2022 ident: c10 article-title: Low-Reynolds-number airfoil design optimization using deep-learning-based tailored airfoil modes publication-title: Aerosp. Sci. Technol. – start-page: 035328 year: 2023 ident: c29 article-title: Optimization of configuration of corrugated airfoil using deep reinforcement learning and transfer learning publication-title: AIP Adv. – start-page: 110080 year: 2021 ident: c11 article-title: Direct shape optimization through deep reinforcement learning publication-title: J. Comput. Phys. – start-page: 1245 year: 2011 ident: c13 article-title: Robust airfoil optimization based on improved particle swarm optimization method publication-title: Appl. Math. Mech. – start-page: 155 year: 2002 ident: c16 article-title: Parallel evolutionary algorithms for optimization problems in aerospace engineering publication-title: J. Comput. Appl. Math. – start-page: 2820 year: 2021 ident: c24 article-title: Data-driven aerospace engineering: Reframing the industry with machine learning publication-title: AIAA J. – start-page: 34 year: 2024 ident: c26 article-title: A deep reinforcement learning optimization framework for supercritical airfoil aerodynamic shape design publication-title: Struct. Multidiscip. Optim. – start-page: 142 year: 2008 ident: c36 article-title: Universal parametric geometry representation method publication-title: J. Aircr. – start-page: 108737 year: 2023 ident: c27 article-title: Airfoils optimization based on deep reinforcement learning to improve the aerodynamic performance of rotors publication-title: Aerosp. Sci. Technol. – start-page: 1707 year: 2010 ident: c32 article-title: Airfoil optimization using practical aerodynamic design requirements publication-title: J. Aircr. – start-page: 2011 ident: 2025081807592016600_c12 article-title: Genetic algorithms in wind turbine airfoil design – volume: 277 start-page: 127169 year: 2025 ident: 2025081807592016600_c25 article-title: Towards certification: A complete statistical validation pipeline for supervised learning in industry publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2025.127169 – volume: 67 start-page: 34 year: 2024 ident: 2025081807592016600_c26 article-title: A deep reinforcement learning optimization framework for supercritical airfoil aerodynamic shape design publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-024-03755-5 – ident: 2025081807592016600_c38 – ident: 2025081807592016600_c4 – ident: 2025081807592016600_c2 article-title: Airfoil design: Finding the balance between design lift and structural stiffness publication-title: J. Phys.: Conf. Ser. doi: 10.1088/1742-6596/524/1/012017 – volume: 19 start-page: 2445144 year: 2025 ident: 2025081807592016600_c31 article-title: A CNN-PINN-DRL driven method for shape optimization of airfoils publication-title: Eng. Appl. Comput. Fluid Mech. doi: 10.1080/19942060.2024.2445144 – year: 2014 ident: 2025081807592016600_c6 article-title: Benchmarking optimization algorithms for wing aerodynamic design optimization – volume: 52 start-page: 477 year: 2020 ident: 2025081807592016600_c20 article-title: Machine learning for fluid mechanics publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010719-060214 – volume: 35 start-page: 037128 year: 2023 ident: 2025081807592016600_c19 article-title: Aerodynamic optimization of airfoil based on deep reinforcement learning publication-title: Phys. Fluids doi: 10.1063/5.0137002 – volume: 5 start-page: 536 year: 2023 ident: 2025081807592016600_c21 article-title: The transformative potential of machine learning for experiments in fluid mechanics publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-023-00622-y – volume: 13 start-page: 035328 year: 2023 ident: 2025081807592016600_c29 article-title: Optimization of configuration of corrugated airfoil using deep reinforcement learning and transfer learning publication-title: AIP Adv. doi: 10.1063/5.0134198 – volume: 64 start-page: 97 year: 1974 ident: 2025081807592016600_c7 article-title: On optimum design in fluid mechanics publication-title: J. Fluid Mech. doi: 10.1017/S0022112074002023 – volume: 32 start-page: 1245 year: 2011 ident: 2025081807592016600_c13 article-title: Robust airfoil optimization based on improved particle swarm optimization method publication-title: Appl. Math. Mech. doi: 10.1007/s10483-011-1497-x – ident: 2025081807592016600_c40 doi: 10.1016/j.jcp.2025.114080 – volume: 62 start-page: 933 year: 2018 ident: 2025081807592016600_c3 article-title: State-of-the-art in aerodynamic shape optimisation methods publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.09.030 – start-page: 1587 year: 2018 ident: 2025081807592016600_c44 article-title: Addressing function approximation error in actor-critic methods – ident: 2025081807592016600_c37 – start-page: 1 year: 1989 ident: 2025081807592016600_c34 article-title: Xfoil: An analysis and design system for low Reynolds number airfoils – volume: 43 start-page: 2262 year: 2005 ident: 2025081807592016600_c5 article-title: Numerical evaluation of optimization algorithms for low-Reynolds-number aerodynamic shape optimization publication-title: AIAA J. doi: 10.2514/1.12563 – start-page: 1942 year: 1995 ident: 2025081807592016600_c47 article-title: Particle swarm optimization – ident: 2025081807592016600_c33 – ident: 2025081807592016600_c50 – start-page: 1928 year: 2016 ident: 2025081807592016600_c41 article-title: Asynchronous methods for deep reinforcement learning – volume: 10 start-page: 213 year: 1998 ident: 2025081807592016600_c9 article-title: Optimum aerodynamic design using the Navier-Stokes equations publication-title: Theor. Comput. Fluid Dyn. doi: 10.1007/s001620050060 – volume: 98 start-page: 74 year: 1992 ident: 2025081807592016600_c8 article-title: A comparison of optimization-based approaches for a model computational aerodynamics design problem publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(92)90174-W – ident: 2025081807592016600_c46 – start-page: 012016 year: 2021 ident: 2025081807592016600_c49 article-title: Airfoil shape optimization: Comparative study of meta-heuristic algorithms, airfoil parameterization methods and Reynolds number impact – volume: 47 start-page: 1707 year: 2010 ident: 2025081807592016600_c32 article-title: Airfoil optimization using practical aerodynamic design requirements publication-title: J. Aircr. doi: 10.2514/1.C000256 – volume: 59 start-page: 2820 year: 2021 ident: 2025081807592016600_c24 article-title: Data-driven aerospace engineering: Reframing the industry with machine learning publication-title: AIAA J. doi: 10.2514/1.J060131 – volume: 21 start-page: 101693 year: 2024 ident: 2025081807592016600_c39 article-title: A reinforcement learning strategy for p-adaptation in high order solvers publication-title: Results Eng. doi: 10.1016/j.rineng.2023.101693 – ident: 2025081807592016600_c42 – volume: 121 start-page: 567 year: 2022 ident: 2025081807592016600_c10 article-title: Low-Reynolds-number airfoil design optimization using deep-learning-based tailored airfoil modes publication-title: Aerosp. Sci. Technol. – volume: 232 start-page: 614 year: 2012 ident: 2025081807592016600_c48 article-title: Influence of optimization algorithm on airfoil shape optimization of aircraft wings publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.232.614 – volume: 45 start-page: 142 year: 2008 ident: 2025081807592016600_c36 article-title: Universal parametric geometry representation method publication-title: J. Aircr. doi: 10.2514/1.29958 – year: 2019 ident: 2025081807592016600_c51 article-title: Optuna: A next-generation hyperparameter optimization framework – volume: 2 start-page: 358 year: 2022 ident: 2025081807592016600_c22 article-title: Enhancing computational fluid dynamics with machine learning publication-title: Nat. Comput. Sci. doi: 10.1038/s43588-022-00264-7 – volume-title: Introduction to Aerospace Flight Vehicles year: 2022 ident: 2025081807592016600_c1 article-title: Airfoil geometries in various flight vehicles – volume: 13 start-page: 9753 year: 2023 ident: 2025081807592016600_c18 article-title: A reinforcement learning approach to airfoil shape optimization publication-title: Sci. Rep. doi: 10.1038/s41598-023-36560-z – volume: 138 start-page: 108354 year: 2023 ident: 2025081807592016600_c23 article-title: Improving aircraft performance using machine learning: A review publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2023.108354 – volume: 308 start-page: 109459 year: 2025 ident: 2025081807592016600_c35 article-title: Pylom: A HPC open source reduced order model suite for fluid dynamics applications publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2024.109459 – volume: 22 start-page: 12348 year: 2021 ident: 2025081807592016600_c45 article-title: Stable-baselines3: Reliable reinforcement learning implementations publication-title: J. Mach. Learn. Res. – volume: 34 start-page: 26 year: 2017 ident: 2025081807592016600_c17 article-title: Deep reinforcement learning: A brief survey publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2743240 – volume: 86 start-page: 826 year: 2019 ident: 2025081807592016600_c28 article-title: Aerodynamic shape optimization using a novel optimizer based on machine learning techniques publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2019.02.003 – volume: 482 start-page: 112018 year: 2023 ident: 2025081807592016600_c30 article-title: Multi-fidelity reinforcement learning framework for shape optimization publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2023.112018 – start-page: 1861 year: 2018 ident: 2025081807592016600_c43 article-title: Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor – volume: 23 start-page: 259 year: 2002 ident: 2025081807592016600_c14 article-title: The particle swarm optimization algorithm in size and shape optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-002-0188-0 – volume: 428 start-page: 110080 year: 2021 ident: 2025081807592016600_c11 article-title: Direct shape optimization through deep reinforcement learning publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.110080 – volume: 149 start-page: 155 year: 2002 ident: 2025081807592016600_c16 article-title: Parallel evolutionary algorithms for optimization problems in aerospace engineering publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(02)00527-7 – volume: 49 start-page: 953 year: 2014 ident: 2025081807592016600_c15 article-title: Airfoil shape optimization using improved multiobjective territorial particle swarm algorithm with the objective of improving stall characteristics publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-013-1025-3 – volume: 143 start-page: 108737 year: 2023 ident: 2025081807592016600_c27 article-title: Airfoils optimization based on deep reinforcement learning to improve the aerodynamic performance of rotors publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2023.108737 |
SSID | ssj0003926 |
Score | 2.4684556 |
Snippet | The main objective of this paper is to introduce a transfer learning-enhanced deep reinforcement learning (DRL) methodology that is able to optimize the... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Airfoils Deep learning Particle swarm optimization Shape optimization Structural integrity |
Title | Transfer learning-enhanced deep reinforcement learning for aerodynamic airfoil optimization subject to structural constraints |
URI | http://dx.doi.org/10.1063/5.0274045 https://www.proquest.com/docview/3240518574 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bixMxFA66IvriZVWsrhLUt5K1M8lkJo8iuyxSV5AW-jbkqgV3urSzL4L_3ZPLXIqrqC9DCdO05Hw98-X0y3cQesOBsRl4jhEBOyDCjLREKUpJ5ioBT1jjtPWlgY_n_GzJPqyK1aCfD6dLWnWsv197ruR_ogpjEFd_SvYfIttPCgPwGuILV4gwXP8uxoF12m3X--ELsc3X-Je-sfZyurXBF1WHEmB_UxROWsicsRv9VK63brMGUgrp4yKdy5zurpQv0XhuGj1mgz-H9nTSd5WIBlAdrQ06Uh1UIe7b1dpE_ych2KjQ8FleREnfSEbvDR-13Mnp3PdeG1cg8qLXv7Uj0b9s9uUN6YNHqRWSCwF-E99o01glSMlj35UuH0cTmIS76to0D7wKYlMc-z31LNpR7ltpn3-qT5fzeb04WS1uols5IHIWdJ2D_geIIY-C1Pi1OtspTt_2E--TlWEHcgfoSVRKjMjI4gG6l3YR-F2ExEN0wzaH6H7aUeCUr3eH6HZan0foR4cV_AtWsMcK3sNKfxOGITzCCk5YwWOs4IQV3G7wgBU8wspjtDw9Wbw_I6n1BtEZFy2pjD_z7BTwd1NyoUvJrfd-47rUGZPGKp4pJpljVOkZo05JWuaSycIZ7aSgT9BBs2nsU4RzaqQsuNQqs4xCwKkwvADazSuYKS8n6FW3xvVldFipgzKC07qoUyAm6Khb_Tr9AHe195IsvJcZm6DXfUR-P8mzP0_yHN0d0H2EDmC97AtgnK16GZDzE4ETiDk |
linkProvider | American Institute of Physics |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transfer+learning-enhanced+deep+reinforcement+learning+for+aerodynamic+airfoil+optimization+subject+to+structural+constraints&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Ramos%2C+David&rft.au=Lacasa+Lucas&rft.date=2025-08-01&rft.pub=American+Institute+of+Physics&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=37&rft.issue=8&rft_id=info:doi/10.1063%2F5.0274045&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |