YOLOv5‐based Detection and Classification of Early and Late Mild Cognitive Impairment through Corpus Callosum Analysis
Background Alzheimer’s disease is a progressive neurodegenerative disorder that mainly affects the brain resulting gradual decline in a cognitive function, memory impairment, alterations in behavior, potentially resulting in the inability to engage in a conversation and react to the surroundings. Co...
Saved in:
Published in | Alzheimer's & dementia Vol. 20; no. S2 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken
John Wiley and Sons Inc
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1552-5260 1552-5279 |
DOI | 10.1002/alz.087878 |
Cover
Loading…
Abstract | Background
Alzheimer’s disease is a progressive neurodegenerative disorder that mainly affects the brain resulting gradual decline in a cognitive function, memory impairment, alterations in behavior, potentially resulting in the inability to engage in a conversation and react to the surroundings. Corpus callosum (CC) is the principal white fabric matter present in the center of the brain that connects the left and right cerebral hemispheres. Neurodegenerative diseases can impact the size and structure of the CC, leading to its atrophy and dysfunction. This study aims to detect the CC in a given Structural MRI and classify Early Mild Cognitive Impairment (EMCI) vs. Late Mild Cognitive Impairment (LMCI). This study introduces the prospect of utilizing a YOLOv5‐based framework for CC detection, aiming to distinguish between individuals with EMCI and LMCI. In addition, we have also interpreted our results using Eigen CAM.
Method
In this study, we proposed a Fine‐tuned Yolov5 based object detection model for detecting CC and classifying EMCI vs LMCI. Unlike previous studies that focused solely on CC (texture analysis) for detecting MCI, our method considers both CC and the surrounding context for better EMCI vs LMCI classification. In our approach, we used MRI slices along with the corpus callosum area, enclosed in a bounding box tightly fitted to the CC coordinates. The YOLOv5 model consists of three parts: the backbone extracts features, the neck combines features at different scales, and the head makes final predictions. In this case, the object of interest for the model is the CC to classify EMCI vs LMCI.
Result
The dataset used in this study was obtained from ADNI and consists of total 100 subjects, evenly distributed between EMCI vs LCMI. The dataset was partitioned into 80% for training and 20% for testing. We achieved 97% accuracy on test dataset.
Conclusion
This study demonstrates YOLOv5’s efficiency in CC detection for EMCI and LMCI classification. The classification results are further interpreted using Eigen CAM. In future Fine‐tunning the model parameters and exploring other CAM varients can improve the results. |
---|---|
AbstractList | Background
Alzheimer’s disease is a progressive neurodegenerative disorder that mainly affects the brain resulting gradual decline in a cognitive function, memory impairment, alterations in behavior, potentially resulting in the inability to engage in a conversation and react to the surroundings. Corpus callosum (CC) is the principal white fabric matter present in the center of the brain that connects the left and right cerebral hemispheres. Neurodegenerative diseases can impact the size and structure of the CC, leading to its atrophy and dysfunction. This study aims to detect the CC in a given Structural MRI and classify Early Mild Cognitive Impairment (EMCI) vs. Late Mild Cognitive Impairment (LMCI). This study introduces the prospect of utilizing a YOLOv5‐based framework for CC detection, aiming to distinguish between individuals with EMCI and LMCI. In addition, we have also interpreted our results using Eigen CAM.
Method
In this study, we proposed a Fine‐tuned Yolov5 based object detection model for detecting CC and classifying EMCI vs LMCI. Unlike previous studies that focused solely on CC (texture analysis) for detecting MCI, our method considers both CC and the surrounding context for better EMCI vs LMCI classification. In our approach, we used MRI slices along with the corpus callosum area, enclosed in a bounding box tightly fitted to the CC coordinates. The YOLOv5 model consists of three parts: the backbone extracts features, the neck combines features at different scales, and the head makes final predictions. In this case, the object of interest for the model is the CC to classify EMCI vs LMCI.
Result
The dataset used in this study was obtained from ADNI and consists of total 100 subjects, evenly distributed between EMCI vs LCMI. The dataset was partitioned into 80% for training and 20% for testing. We achieved 97% accuracy on test dataset.
Conclusion
This study demonstrates YOLOv5’s efficiency in CC detection for EMCI and LMCI classification. The classification results are further interpreted using Eigen CAM. In future Fine‐tunning the model parameters and exploring other CAM varients can improve the results. |
Author | Kancharla, Vamshi Krishna Sinha, Neelam |
AuthorAffiliation | 1 Center for Brain Research(CBR), Indian Institute of Science, Bangalore, Karnataka India 2 Centre for Brain Research (CBR), Indian Institute of Science, Bengaluru, Karnataka India |
AuthorAffiliation_xml | – name: 1 Center for Brain Research(CBR), Indian Institute of Science, Bangalore, Karnataka India – name: 2 Centre for Brain Research (CBR), Indian Institute of Science, Bengaluru, Karnataka India |
Author_xml | – sequence: 1 givenname: Vamshi Krishna surname: Kancharla fullname: Kancharla, Vamshi Krishna email: kancharlavamshi007@gmail.com organization: Center for Brain Research(CBR), Indian Institute of Science, Bangalore, Karnataka – sequence: 2 givenname: Neelam surname: Sinha fullname: Sinha, Neelam organization: Centre for Brain Research (CBR), Indian Institute of Science, Bengaluru, Karnataka |
BookMark | eNp9UL1OwzAQthBItIWFJ_CM1GIncexMqCoFKgV1gQEW65I4rZETV3ZaKBOPwDPyJISmqsSCbrjTfT_69PXRcW1rhdAFJSNKSHAF5mNEBG_nCPUoY8GQBTw5PtwxOUV9718JiYigrIfen-fpfMO-P78y8KrAN6pReaNtjaEu8MSA97rUOexetsRTcGa7w1JoFH7QpmXZRa0bvVF4Vq1Au0rVDW6Wzq4XyxZ0q7XHEzDG-nWFxzWYrdf-DJ2UYLw63-8BerqdPk7uh-n8bjYZp8OcxokYKuBBxgUVEIcZVxAlYV4EcVyASERWlkUcRIRnWcyyRHEWckLjkJWhEISVuRLhAF13vqt1Vqkib7M5MHLldAVuKy1o-Rep9VIu7EZSytsEEW8dLjuH3FnvnSoPYkrkb-uybV12rbdk2pHftFHbf5hynL7sNT-kaYoc |
ContentType | Journal Article |
Copyright | 2024 The Alzheimer's Association. published by Wiley Periodicals LLC on behalf of Alzheimer's Association. |
Copyright_xml | – notice: 2024 The Alzheimer's Association. published by Wiley Periodicals LLC on behalf of Alzheimer's Association. |
DBID | 24P AAYXX CITATION 5PM |
DOI | 10.1002/alz.087878 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | BIOMARKERS |
EISSN | 1552-5279 |
EndPage | n/a |
ExternalDocumentID | PMC11716947 10_1002_alz_087878 ALZ087878 |
Genre | abstract |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1OC 1~. 1~5 24P 33P 4.4 457 4G. 53G 5VS 7-5 71M 7RV 7X7 8FI 8FJ 8P~ AAEDT AAIKJ AAKOC AALRI AAMMB AANLZ AAOAW AAXLA AAXUO AAYCA AAYWO ABBQC ABCQJ ABCUV ABIVO ABJNI ABMAC ABMZM ABUWG ABWVN ACCMX ACCZN ACGFS ACGOF ACPOU ACRPL ACVFH ACXQS ADBBV ADBTR ADCNI ADEZE ADHUB ADKYN ADMUD ADNMO ADPDF ADVLN ADZMN AEFGJ AEIGN AEKER AENEX AEUPX AEUYR AEVXI AFKRA AFPUW AFTJW AFWVQ AGHFR AGHNM AGUBO AGWIK AGXDD AGYEJ AIDQK AIDYY AIGII AITUG AIURR AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS ALUQN AMRAJ AMYDB ANZVX AZQEC BENPR BFHJK BLXMC C45 CCPQU DCZOG EBS EJD EMOBN EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYUFA G-Q GBLVA HMCUK HVGLF HX~ HZ~ IHE J1W K9- LATKE LEEKS M0R M41 MO0 MOBAO N9A NAPCQ O-L O9- OAUVE OVD OVEED OZT P-8 P-9 P2P PC. PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PSYQQ Q38 QTD RIG ROL RPM RPZ SDF SDG SEL SES SSZ SUPJJ TEORI UKHRP ~G- AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 5PM |
ID | FETCH-LOGICAL-c1698-ea72b7818a63b7ea493cd266da898bffd62407bb65b9e753701635f38805fce83 |
IEDL.DBID | 24P |
ISSN | 1552-5260 |
IngestDate | Thu Aug 21 18:28:41 EDT 2025 Tue Jul 01 02:06:01 EDT 2025 Mon Aug 11 05:48:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | S2 |
Language | English |
License | Attribution This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1698-ea72b7818a63b7ea493cd266da898bffd62407bb65b9e753701635f38805fce83 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.087878 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11716947 crossref_primary_10_1002_alz_087878 wiley_primary_10_1002_alz_087878_ALZ087878 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2024 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Alzheimer's & dementia |
PublicationYear | 2024 |
Publisher | John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley and Sons Inc |
SSID | ssj0040815 |
Score | 2.4081366 |
Snippet | Background
Alzheimer’s disease is a progressive neurodegenerative disorder that mainly affects the brain resulting gradual decline in a cognitive function,... |
SourceID | pubmedcentral crossref wiley |
SourceType | Open Access Repository Index Database Publisher |
SubjectTerms | Biomarkers |
Title | YOLOv5‐based Detection and Classification of Early and Late Mild Cognitive Impairment through Corpus Callosum Analysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.087878 https://pubmed.ncbi.nlm.nih.gov/PMC11716947 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsNAEF5qvXgRRcX6Uxb0JETTZDe7AS-lWqq01oOF6iVskl0slFT6I-LJR_AZfRJnNk1rPQjeAjvJYWZ255vJ7DeEnLrKB5CQeE4SSu4wEYSOCv3ESQzDFDcNjR3n07kLWj122-f9Erks7sLk_BCLghvuDHte4wZX8eRiSRqqhu_nrgR_k2tkHe_Wopd77L44hxkEO27ZUjmmW4G7ICf1LpbvroSj322RP-GqjTfNLbI5B4q0nlt2m5R0tkPeHrvt7iv_-vjE6JPSKz21rVQZVVlK7YBLbP2x2qYjQy19sV1rA6akncEQpIqGIXoDR8FgjOVBOh_XQ5HYeDahDfwdDz5KC86SXdJrXj80Ws58doKT1IJQOloJLxYQjVXgx0IrBgZIIRinSoYyNiYNMJWL44DHoYaURQD087lBahhuEi39PVLORpneJ1SDqKihuNHMhwxJuEzwlEmD93KZqZCTQoXRS06REeVkyF4Eio5yRVeIXNHuQhT5rVdXssGz5bmuWSofJirkzBrij69H9fZT_nTwH-FDsuEBSMnbU45IeTqe6WMAGdO4an2paqs_39SS0Bw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTsMwDI5gHOCCQIAYv5HghFTY2qRJj9Ng2qDbOGzS4FL1JxGTpg6NDSFOPALPyJNgp-3GOCBxqxS3B8exP7vOZ0LOK6EDICG2rdiT3GLC9azQc2Ir1gxT3MTTZpxPu-M2--x2wAd5bw7ehcn4IeYFNzwZxl_jAceC9NWCNTQcvV9WJBicXCVrzLUFTm6w2X3hiBlEO27oUjnmW25lzk5qXy3eXYpHv_sif-JVE3AaW2QzR4q0lm3tNllR6Q55e-j63Vf-9fGJ4Seh12pqeqlSGqYJNRMusffHqJuONTX8xWbNB1BJ28MRSBUdQ7QFvmA4wfogzef1UGQ2nr3QOv6PByOlBWnJLuk3bnr1ppUPT7DiqutJS4XCjgSE49B1IqFCBjuQQDROQunJSOvExVwuilweeQpyFgHYz-EauWG4jpV09kgpHadqn1AFoqKK4loxB1IkUWGCJ0xqvJjLdJmcFSoMnjOOjCBjQ7YDUHSQKbpM5JJ256JIcL28kg6fDNF11XD5MFEmF2Yj_vh6UPMfs6eD_wifkvVmr-0Hfqtzd0g2bEAsWa_KESlNJzN1DIhjGp0Yu_oGLXTSeA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSgMxEA5aQbyIomL9DehJWLvdTTZZ8FJaS6vbn4OF6mXZ3SRYKNtSWxFPPoLP6JM4yXZb60HwtpDJHiaTmW-SyTcIXdqRCyAhcazE59QizPOtyHcTK1FEp7jCV6adT6vtNXrkrk_7a-gmfwuT8UMsDtz0zjD-Wm_wsVClJWloNHy_tjnYG19HG_q2T9u3Q7q5HyYQ7KhhS6U63fLsBTmpU1rOXQlHv8sif8JVE2_qO2h7DhRxJVvZXbQm0z309tgJOq_06-NTRx-Ba3JqSqlSHKUCmwaXuvTHaBuPFDb0xWYsAEyJW4MhSOUFQ7gJrmAw0ceDeN6uB2ti49kLrurreLBRnHOW7KNe_fah2rDmvROspOz53JIRc2IG0Tjy3JjJiMACCAjGIuI-j5USnk7l4tijsS8hZWEA_VyqNDUMVYnk7gEqpKNUHiIsQZSVtbiSxIUMidmEUUG40u9yiSqii1yF4TijyAgzMmQnBEWHmaKLiK9odyGq-a1XR9LBs-G5LhsqH8KK6MosxB9_DyvBU_Z19B_hc7TZrdXDoNm-P0ZbDuCVrFLlBBWmk5k8Bbwxjc-MWX0DHkPRqg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YOLOv5%E2%80%90based+Detection+and+Classification+of+Early+and+Late+Mild+Cognitive+Impairment+through+Corpus+Callosum+Analysis&rft.jtitle=Alzheimer%27s+%26+dementia&rft.au=Kancharla%2C+Vamshi+Krishna&rft.au=Sinha%2C+Neelam&rft.date=2024-12-01&rft.issn=1552-5260&rft.eissn=1552-5279&rft.volume=20&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Falz.087878&rft.externalDBID=10.1002%252Falz.087878&rft.externalDocID=ALZ087878 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5260&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5260&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5260&client=summon |