YOLOv5‐based Detection and Classification of Early and Late Mild Cognitive Impairment through Corpus Callosum Analysis

Background Alzheimer’s disease is a progressive neurodegenerative disorder that mainly affects the brain resulting gradual decline in a cognitive function, memory impairment, alterations in behavior, potentially resulting in the inability to engage in a conversation and react to the surroundings. Co...

Full description

Saved in:
Bibliographic Details
Published inAlzheimer's & dementia Vol. 20; no. S2
Main Authors Kancharla, Vamshi Krishna, Sinha, Neelam
Format Journal Article
LanguageEnglish
Published Hoboken John Wiley and Sons Inc 01.12.2024
Subjects
Online AccessGet full text
ISSN1552-5260
1552-5279
DOI10.1002/alz.087878

Cover

Loading…
Abstract Background Alzheimer’s disease is a progressive neurodegenerative disorder that mainly affects the brain resulting gradual decline in a cognitive function, memory impairment, alterations in behavior, potentially resulting in the inability to engage in a conversation and react to the surroundings. Corpus callosum (CC) is the principal white fabric matter present in the center of the brain that connects the left and right cerebral hemispheres. Neurodegenerative diseases can impact the size and structure of the CC, leading to its atrophy and dysfunction. This study aims to detect the CC in a given Structural MRI and classify Early Mild Cognitive Impairment (EMCI) vs. Late Mild Cognitive Impairment (LMCI). This study introduces the prospect of utilizing a YOLOv5‐based framework for CC detection, aiming to distinguish between individuals with EMCI and LMCI. In addition, we have also interpreted our results using Eigen CAM. Method In this study, we proposed a Fine‐tuned Yolov5 based object detection model for detecting CC and classifying EMCI vs LMCI. Unlike previous studies that focused solely on CC (texture analysis) for detecting MCI, our method considers both CC and the surrounding context for better EMCI vs LMCI classification. In our approach, we used MRI slices along with the corpus callosum area, enclosed in a bounding box tightly fitted to the CC coordinates. The YOLOv5 model consists of three parts: the backbone extracts features, the neck combines features at different scales, and the head makes final predictions. In this case, the object of interest for the model is the CC to classify EMCI vs LMCI. Result The dataset used in this study was obtained from ADNI and consists of total 100 subjects, evenly distributed between EMCI vs LCMI. The dataset was partitioned into 80% for training and 20% for testing. We achieved 97% accuracy on test dataset. Conclusion This study demonstrates YOLOv5’s efficiency in CC detection for EMCI and LMCI classification. The classification results are further interpreted using Eigen CAM. In future Fine‐tunning the model parameters and exploring other CAM varients can improve the results.
AbstractList Background Alzheimer’s disease is a progressive neurodegenerative disorder that mainly affects the brain resulting gradual decline in a cognitive function, memory impairment, alterations in behavior, potentially resulting in the inability to engage in a conversation and react to the surroundings. Corpus callosum (CC) is the principal white fabric matter present in the center of the brain that connects the left and right cerebral hemispheres. Neurodegenerative diseases can impact the size and structure of the CC, leading to its atrophy and dysfunction. This study aims to detect the CC in a given Structural MRI and classify Early Mild Cognitive Impairment (EMCI) vs. Late Mild Cognitive Impairment (LMCI). This study introduces the prospect of utilizing a YOLOv5‐based framework for CC detection, aiming to distinguish between individuals with EMCI and LMCI. In addition, we have also interpreted our results using Eigen CAM. Method In this study, we proposed a Fine‐tuned Yolov5 based object detection model for detecting CC and classifying EMCI vs LMCI. Unlike previous studies that focused solely on CC (texture analysis) for detecting MCI, our method considers both CC and the surrounding context for better EMCI vs LMCI classification. In our approach, we used MRI slices along with the corpus callosum area, enclosed in a bounding box tightly fitted to the CC coordinates. The YOLOv5 model consists of three parts: the backbone extracts features, the neck combines features at different scales, and the head makes final predictions. In this case, the object of interest for the model is the CC to classify EMCI vs LMCI. Result The dataset used in this study was obtained from ADNI and consists of total 100 subjects, evenly distributed between EMCI vs LCMI. The dataset was partitioned into 80% for training and 20% for testing. We achieved 97% accuracy on test dataset. Conclusion This study demonstrates YOLOv5’s efficiency in CC detection for EMCI and LMCI classification. The classification results are further interpreted using Eigen CAM. In future Fine‐tunning the model parameters and exploring other CAM varients can improve the results.
Author Kancharla, Vamshi Krishna
Sinha, Neelam
AuthorAffiliation 1 Center for Brain Research(CBR), Indian Institute of Science, Bangalore, Karnataka India
2 Centre for Brain Research (CBR), Indian Institute of Science, Bengaluru, Karnataka India
AuthorAffiliation_xml – name: 1 Center for Brain Research(CBR), Indian Institute of Science, Bangalore, Karnataka India
– name: 2 Centre for Brain Research (CBR), Indian Institute of Science, Bengaluru, Karnataka India
Author_xml – sequence: 1
  givenname: Vamshi Krishna
  surname: Kancharla
  fullname: Kancharla, Vamshi Krishna
  email: kancharlavamshi007@gmail.com
  organization: Center for Brain Research(CBR), Indian Institute of Science, Bangalore, Karnataka
– sequence: 2
  givenname: Neelam
  surname: Sinha
  fullname: Sinha, Neelam
  organization: Centre for Brain Research (CBR), Indian Institute of Science, Bengaluru, Karnataka
BookMark eNp9UL1OwzAQthBItIWFJ_CM1GIncexMqCoFKgV1gQEW65I4rZETV3ZaKBOPwDPyJISmqsSCbrjTfT_69PXRcW1rhdAFJSNKSHAF5mNEBG_nCPUoY8GQBTw5PtwxOUV9718JiYigrIfen-fpfMO-P78y8KrAN6pReaNtjaEu8MSA97rUOexetsRTcGa7w1JoFH7QpmXZRa0bvVF4Vq1Au0rVDW6Wzq4XyxZ0q7XHEzDG-nWFxzWYrdf-DJ2UYLw63-8BerqdPk7uh-n8bjYZp8OcxokYKuBBxgUVEIcZVxAlYV4EcVyASERWlkUcRIRnWcyyRHEWckLjkJWhEISVuRLhAF13vqt1Vqkib7M5MHLldAVuKy1o-Rep9VIu7EZSytsEEW8dLjuH3FnvnSoPYkrkb-uybV12rbdk2pHftFHbf5hynL7sNT-kaYoc
ContentType Journal Article
Copyright 2024 The Alzheimer's Association. published by Wiley Periodicals LLC on behalf of Alzheimer's Association.
Copyright_xml – notice: 2024 The Alzheimer's Association. published by Wiley Periodicals LLC on behalf of Alzheimer's Association.
DBID 24P
AAYXX
CITATION
5PM
DOI 10.1002/alz.087878
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate BIOMARKERS
EISSN 1552-5279
EndPage n/a
ExternalDocumentID PMC11716947
10_1002_alz_087878
ALZ087878
Genre abstract
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1OC
1~.
1~5
24P
33P
4.4
457
4G.
53G
5VS
7-5
71M
7RV
7X7
8FI
8FJ
8P~
AAEDT
AAIKJ
AAKOC
AALRI
AAMMB
AANLZ
AAOAW
AAXLA
AAXUO
AAYCA
AAYWO
ABBQC
ABCQJ
ABCUV
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABWVN
ACCMX
ACCZN
ACGFS
ACGOF
ACPOU
ACRPL
ACVFH
ACXQS
ADBBV
ADBTR
ADCNI
ADEZE
ADHUB
ADKYN
ADMUD
ADNMO
ADPDF
ADVLN
ADZMN
AEFGJ
AEIGN
AEKER
AENEX
AEUPX
AEUYR
AEVXI
AFKRA
AFPUW
AFTJW
AFWVQ
AGHFR
AGHNM
AGUBO
AGWIK
AGXDD
AGYEJ
AIDQK
AIDYY
AIGII
AITUG
AIURR
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMRAJ
AMYDB
ANZVX
AZQEC
BENPR
BFHJK
BLXMC
C45
CCPQU
DCZOG
EBS
EJD
EMOBN
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYUFA
G-Q
GBLVA
HMCUK
HVGLF
HX~
HZ~
IHE
J1W
K9-
LATKE
LEEKS
M0R
M41
MO0
MOBAO
N9A
NAPCQ
O-L
O9-
OAUVE
OVD
OVEED
OZT
P-8
P-9
P2P
PC.
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PSYQQ
Q38
QTD
RIG
ROL
RPM
RPZ
SDF
SDG
SEL
SES
SSZ
SUPJJ
TEORI
UKHRP
~G-
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
5PM
ID FETCH-LOGICAL-c1698-ea72b7818a63b7ea493cd266da898bffd62407bb65b9e753701635f38805fce83
IEDL.DBID 24P
ISSN 1552-5260
IngestDate Thu Aug 21 18:28:41 EDT 2025
Tue Jul 01 02:06:01 EDT 2025
Mon Aug 11 05:48:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue S2
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1698-ea72b7818a63b7ea493cd266da898bffd62407bb65b9e753701635f38805fce83
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.087878
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11716947
crossref_primary_10_1002_alz_087878
wiley_primary_10_1002_alz_087878_ALZ087878
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2024
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Alzheimer's & dementia
PublicationYear 2024
Publisher John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons Inc
SSID ssj0040815
Score 2.4081366
Snippet Background Alzheimer’s disease is a progressive neurodegenerative disorder that mainly affects the brain resulting gradual decline in a cognitive function,...
SourceID pubmedcentral
crossref
wiley
SourceType Open Access Repository
Index Database
Publisher
SubjectTerms Biomarkers
Title YOLOv5‐based Detection and Classification of Early and Late Mild Cognitive Impairment through Corpus Callosum Analysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.087878
https://pubmed.ncbi.nlm.nih.gov/PMC11716947
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsNAEF5qvXgRRcX6Uxb0JETTZDe7AS-lWqq01oOF6iVskl0slFT6I-LJR_AZfRJnNk1rPQjeAjvJYWZ255vJ7DeEnLrKB5CQeE4SSu4wEYSOCv3ESQzDFDcNjR3n07kLWj122-f9Erks7sLk_BCLghvuDHte4wZX8eRiSRqqhu_nrgR_k2tkHe_Wopd77L44hxkEO27ZUjmmW4G7ICf1LpbvroSj322RP-GqjTfNLbI5B4q0nlt2m5R0tkPeHrvt7iv_-vjE6JPSKz21rVQZVVlK7YBLbP2x2qYjQy19sV1rA6akncEQpIqGIXoDR8FgjOVBOh_XQ5HYeDahDfwdDz5KC86SXdJrXj80Ws58doKT1IJQOloJLxYQjVXgx0IrBgZIIRinSoYyNiYNMJWL44DHoYaURQD087lBahhuEi39PVLORpneJ1SDqKihuNHMhwxJuEzwlEmD93KZqZCTQoXRS06REeVkyF4Eio5yRVeIXNHuQhT5rVdXssGz5bmuWSofJirkzBrij69H9fZT_nTwH-FDsuEBSMnbU45IeTqe6WMAGdO4an2paqs_39SS0Bw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTsMwDI5gHOCCQIAYv5HghFTY2qRJj9Ng2qDbOGzS4FL1JxGTpg6NDSFOPALPyJNgp-3GOCBxqxS3B8exP7vOZ0LOK6EDICG2rdiT3GLC9azQc2Ir1gxT3MTTZpxPu-M2--x2wAd5bw7ehcn4IeYFNzwZxl_jAceC9NWCNTQcvV9WJBicXCVrzLUFTm6w2X3hiBlEO27oUjnmW25lzk5qXy3eXYpHv_sif-JVE3AaW2QzR4q0lm3tNllR6Q55e-j63Vf-9fGJ4Seh12pqeqlSGqYJNRMusffHqJuONTX8xWbNB1BJ28MRSBUdQ7QFvmA4wfogzef1UGQ2nr3QOv6PByOlBWnJLuk3bnr1ppUPT7DiqutJS4XCjgSE49B1IqFCBjuQQDROQunJSOvExVwuilweeQpyFgHYz-EauWG4jpV09kgpHadqn1AFoqKK4loxB1IkUWGCJ0xqvJjLdJmcFSoMnjOOjCBjQ7YDUHSQKbpM5JJ256JIcL28kg6fDNF11XD5MFEmF2Yj_vh6UPMfs6eD_wifkvVmr-0Hfqtzd0g2bEAsWa_KESlNJzN1DIhjGp0Yu_oGLXTSeA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSgMxEA5aQbyIomL9DehJWLvdTTZZ8FJaS6vbn4OF6mXZ3SRYKNtSWxFPPoLP6JM4yXZb60HwtpDJHiaTmW-SyTcIXdqRCyAhcazE59QizPOtyHcTK1FEp7jCV6adT6vtNXrkrk_7a-gmfwuT8UMsDtz0zjD-Wm_wsVClJWloNHy_tjnYG19HG_q2T9u3Q7q5HyYQ7KhhS6U63fLsBTmpU1rOXQlHv8sif8JVE2_qO2h7DhRxJVvZXbQm0z309tgJOq_06-NTRx-Ba3JqSqlSHKUCmwaXuvTHaBuPFDb0xWYsAEyJW4MhSOUFQ7gJrmAw0ceDeN6uB2ti49kLrurreLBRnHOW7KNe_fah2rDmvROspOz53JIRc2IG0Tjy3JjJiMACCAjGIuI-j5USnk7l4tijsS8hZWEA_VyqNDUMVYnk7gEqpKNUHiIsQZSVtbiSxIUMidmEUUG40u9yiSqii1yF4TijyAgzMmQnBEWHmaKLiK9odyGq-a1XR9LBs-G5LhsqH8KK6MosxB9_DyvBU_Z19B_hc7TZrdXDoNm-P0ZbDuCVrFLlBBWmk5k8Bbwxjc-MWX0DHkPRqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YOLOv5%E2%80%90based+Detection+and+Classification+of+Early+and+Late+Mild+Cognitive+Impairment+through+Corpus+Callosum+Analysis&rft.jtitle=Alzheimer%27s+%26+dementia&rft.au=Kancharla%2C+Vamshi+Krishna&rft.au=Sinha%2C+Neelam&rft.date=2024-12-01&rft.issn=1552-5260&rft.eissn=1552-5279&rft.volume=20&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Falz.087878&rft.externalDBID=10.1002%252Falz.087878&rft.externalDocID=ALZ087878
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5260&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5260&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5260&client=summon