Subject Harmonization of Multi‐Modal Digital Markers: Improved Detection of Mild Cognitive Impairment Using Language and Facial Expression
Background Mild Cognitive Impairment (MCI) is the prodromal stage of dementia, including Alzheimer’s Disease (AD). Early identification and accurate assessment of MCI are critical for clinical trial enrichment as well as the early intervention of AD. Digital makers offered a unique opportunity for e...
Saved in:
Published in | Alzheimer's & dementia Vol. 20; no. S10 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
John Wiley and Sons Inc
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Mild Cognitive Impairment (MCI) is the prodromal stage of dementia, including Alzheimer’s Disease (AD). Early identification and accurate assessment of MCI are critical for clinical trial enrichment as well as the early intervention of AD. Digital makers offered a unique opportunity for ecologically valid and affordable early detection approaches. Language markers extracted from verbal communications have shown diagnostic efficacy in detecting early MCI. Recent studies have shown that in addition to semantic and syntactic information in dialogues, emotions in communication can also be helpful in early MCI detection. A joint analysis of language markers and emotion indicative of facial expression is thus of great interest. Features from emotion could have additional predictive benefits to language markers. One general challenge of digital biomarkers is that feature distributions are very distinct. We hereby conduct a multi‐modal analysis of language and facial expression, combined with different harmonization.
Method
We used 3,501 conversations from 69 participants from the Internet‐Based Conversational Engagement Clinical Trial (I‐CONECT) (NCT02871921) and extracted language and emotion variables. For language variables, we used 99‐dimensional features from four types: Linguistic Inquiry and Word Count (LIWC) (64), Syntactic Complexity (23), Lexical Diversity (10), and Response Length (2). For emotion features, we extracted a 7‐dimensional emotion feature (angry, disgust, fear, happy, sad, surprise, neutral) from a facial frame using the DeepFace library. For analysis, we used the subject harmonization approach to remove information that is predictive of subjects. The harmonized features are then used to build a neural network for MCI detection.
Result
We evaluated Area‐under‐Curve (AUC) on subject classification. Our results show that applying harmonization will increase detection performance when only using language markers. If we harmonize both language and emotion features, the performance decreases. However, if we do harmonization on language and without harmonization on emotion, then the performance of subject classification increases to 0.701 AUC.
Conclusion
Our study has shown the additional benefits of emotion variables to augment language variables in the early detection of MCI. Multimodality analyses need careful selection of harmonization: harmonization strategy should be chosen for individual modality rather than the concatenated feature variables. |
---|---|
AbstractList | Background
Mild Cognitive Impairment (MCI) is the prodromal stage of dementia, including Alzheimer’s Disease (AD). Early identification and accurate assessment of MCI are critical for clinical trial enrichment as well as the early intervention of AD. Digital makers offered a unique opportunity for ecologically valid and affordable early detection approaches. Language markers extracted from verbal communications have shown diagnostic efficacy in detecting early MCI. Recent studies have shown that in addition to semantic and syntactic information in dialogues, emotions in communication can also be helpful in early MCI detection. A joint analysis of language markers and emotion indicative of facial expression is thus of great interest. Features from emotion could have additional predictive benefits to language markers. One general challenge of digital biomarkers is that feature distributions are very distinct. We hereby conduct a multi‐modal analysis of language and facial expression, combined with different harmonization.
Method
We used 3,501 conversations from 69 participants from the Internet‐Based Conversational Engagement Clinical Trial (I‐CONECT) (NCT02871921) and extracted language and emotion variables. For language variables, we used 99‐dimensional features from four types: Linguistic Inquiry and Word Count (LIWC) (64), Syntactic Complexity (23), Lexical Diversity (10), and Response Length (2). For emotion features, we extracted a 7‐dimensional emotion feature (angry, disgust, fear, happy, sad, surprise, neutral) from a facial frame using the DeepFace library. For analysis, we used the subject harmonization approach to remove information that is predictive of subjects. The harmonized features are then used to build a neural network for MCI detection.
Result
We evaluated Area‐under‐Curve (AUC) on subject classification. Our results show that applying harmonization will increase detection performance when only using language markers. If we harmonize both language and emotion features, the performance decreases. However, if we do harmonization on language and without harmonization on emotion, then the performance of subject classification increases to 0.701 AUC.
Conclusion
Our study has shown the additional benefits of emotion variables to augment language variables in the early detection of MCI. Multimodality analyses need careful selection of harmonization: harmonization strategy should be chosen for individual modality rather than the concatenated feature variables. |
Author | Dodge, Hiroko H Hoang, Bao Zhou, Jiayu Pang, Yijiang |
AuthorAffiliation | 2 Massachusetts General Hospital, Harvard Medical School, Boston, MA USA 1 Michigan State University, East Lansing, MI USA |
AuthorAffiliation_xml | – name: 1 Michigan State University, East Lansing, MI USA – name: 2 Massachusetts General Hospital, Harvard Medical School, Boston, MA USA |
Author_xml | – sequence: 1 givenname: Bao surname: Hoang fullname: Hoang, Bao organization: Michigan State University, East Lansing, MI – sequence: 2 givenname: Yijiang surname: Pang fullname: Pang, Yijiang organization: Michigan State University, East Lansing, MI – sequence: 3 givenname: Hiroko H surname: Dodge fullname: Dodge, Hiroko H organization: Massachusetts General Hospital, Harvard Medical School, Boston, MA – sequence: 4 givenname: Jiayu surname: Zhou fullname: Zhou, Jiayu email: jiayuz@msu.edu organization: Michigan State University, East Lansing, MI |
BookMark | eNp9kctKAzEUhoMoWC8bnyBroZqTztWNSG210OJC3bgJp5nMmDqTlGRatSsfwIXP6JOYUhXcCIFzIP_3kfDvkW1jjSLkCNgJMMZPsV6dsDziAFukA3HMuzFP8-3fPWG7ZM_7GWMRyyDukPfbxXSmZEuv0TXW6BW22hpqSzpZ1K3-fPuY2AJreqkr3YY5QfeknD-jo2bu7FIV9FK1gf-BdF3Qvq2MbvVSrUOoXaNMS--9NhUdo6kWWCmKpqBDlDooBy9zp7wPhgOyU2Lt1eH33Cf3w8Fd_7o7vrka9S_GXQlJDt1e3IM0zRKV8EzyBKDEDOM8QR6XYYkKmYHM0h6XaVqWUTblZRR-Hg5LigD19sn5xjtfTBtVyPA-h7WYO92gexUWtfh7Y_SjqOxSAKQAWR4Fw_HGIJ313qnyFwYm1k2I0ITYNBHCsAk_61q9_pMUF-OHb-YLtk6Qbw |
ContentType | Journal Article |
Copyright | 2024 The Alzheimer's Association. published by Wiley Periodicals LLC on behalf of Alzheimer's Association. |
Copyright_xml | – notice: 2024 The Alzheimer's Association. published by Wiley Periodicals LLC on behalf of Alzheimer's Association. |
DBID | 24P AAYXX CITATION 5PM |
DOI | 10.1002/alz.094211 |
DatabaseName | Wiley-Blackwell Open Access Titles CrossRef PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | TECHNOLOGY AND DEMENTIA PRECONFERENCE |
EISSN | 1552-5279 |
EndPage | n/a |
ExternalDocumentID | PMC11711894 10_1002_alz_094211 ALZ094211 |
Genre | abstract |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1OC 1~. 1~5 24P 33P 4.4 457 4G. 53G 5VS 7-5 71M 7RV 7X7 8FI 8FJ 8P~ AAEDT AAIKJ AAKOC AALRI AAMMB AANLZ AAOAW AAXLA AAXUO AAYCA AAYWO ABBQC ABCQJ ABCUV ABIVO ABJNI ABMAC ABMZM ABUWG ABWVN ACCMX ACCZN ACGFS ACGOF ACPOU ACRPL ACVFH ACXQS ADBBV ADBTR ADCNI ADEZE ADHUB ADKYN ADMUD ADNMO ADPDF ADVLN ADZMN AEFGJ AEIGN AEKER AENEX AEUPX AEUYR AEVXI AFKRA AFPUW AFTJW AFWVQ AGHFR AGHNM AGUBO AGWIK AGXDD AGYEJ AIDQK AIDYY AIGII AITUG AIURR AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS ALUQN AMRAJ AMYDB ANZVX AZQEC BENPR BFHJK BLXMC C45 CCPQU DCZOG EBS EJD EMOBN EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYUFA G-Q GBLVA HMCUK HVGLF HX~ HZ~ IHE J1W K9- LATKE LEEKS M0R M41 MO0 MOBAO N9A NAPCQ O-L O9- OAUVE OVD OVEED OZT P-8 P-9 P2P PC. PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PSYQQ Q38 QTD RIG ROL RPM RPZ SDF SDG SEL SES SSZ SUPJJ TEORI UKHRP ~G- AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 5PM |
ID | FETCH-LOGICAL-c1691-35317786e628c2611fa8a596a25f8a54dc81c8732c77ff48b2f426026006de623 |
IEDL.DBID | 24P |
ISSN | 1552-5260 |
IngestDate | Thu Aug 21 18:28:40 EDT 2025 Tue Jul 01 04:32:17 EDT 2025 Mon Aug 11 05:48:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | S10 |
Language | English |
License | Attribution This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1691-35317786e628c2611fa8a596a25f8a54dc81c8732c77ff48b2f426026006de623 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.094211 |
PageCount | 2 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11711894 crossref_primary_10_1002_alz_094211 wiley_primary_10_1002_alz_094211_ALZ094211 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2024 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Alzheimer's & dementia |
PublicationYear | 2024 |
Publisher | John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley and Sons Inc |
SSID | ssj0040815 |
Score | 2.4086337 |
Snippet | Background
Mild Cognitive Impairment (MCI) is the prodromal stage of dementia, including Alzheimer’s Disease (AD). Early identification and accurate assessment... |
SourceID | pubmedcentral crossref wiley |
SourceType | Open Access Repository Index Database Publisher |
SubjectTerms | Technology and Dementia Preconference |
Title | Subject Harmonization of Multi‐Modal Digital Markers: Improved Detection of Mild Cognitive Impairment Using Language and Facial Expression |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.094211 https://pubmed.ncbi.nlm.nih.gov/PMC11711894 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEA2iFy-iqLh-LAE9CdVtkqapeFn2g0VUPCiIl5KmjS5IV9YVxJM_wIO_0V_iTNLuuh4Eb4FmcphmkpnHvBdCDriSxiYQgNLwIhDSiCDLVBhYbngWa5kphXzni0s5uBFnt9HtAjmtuTBeH2IKuGFkuPMaA1xnz8cz0VD9-HYEtQlDYu8ScmtROZ-Jq_ocFnDZRU4tNcJyS7am4qTseGY7dx39bov8ma66-6a_SlaqRJG2_Z9dIwtFuU4-IM4ROKEDPYb9U3Eo6chSR6T9ev-8GOVg1R3e42MgFJk4kN-dUI8dFDntFhPXfOWNho857dQNRDhJD8cIF1LXSUDPKzCT6jKnfY3oOu29Vq2z5Qa56feuO4Ogek8hMCiJE3CIN5SLKyRTBiqn0Gqlo0RqFlkYiNyo0KiYMxPH1gqVMYv69ShhL3Mw4ptksRyVxRahSQ5FNY9gAQv1XYtp2JAmw3SMm0QkrQbZr92aPnnZjNQLJLMUnJ965zeImvP4dCpqXs9_KYcPTvs6DGMoiRLRIIfu5_yxeto-v_Oj7f9M3iHLDBIX37KySxYn45diDxKPSdZ0-6vpEKFvdtvXyQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA2iB72IomL9DOhJWO0m2WzWm2hL1VY8WChelmx2owXZSqkgnvwBHvyN_hJnkm1rPQjeApvJYTaTzDzevBByyJU0NoEAlIYXgZBGBFmmwsByw7NYy0wp7Hfu3MhWV1z1ol7FzcFeGK8PMQHcMDLceY0BjoD0yVQ1VD-9HUNxwrCzd0FIFmNcMnE7PogF3HaRk0uNsN6S9Yk6KTuZ2s7cR795kT_zVXfhNFfIcpUp0jP_a1fJXFGukQ8IdEROaEsPYQNVTZR0YKnrpP16_-wMcrC66D_gayAUW3EgwTulHjwocnpRjBz7yhv1n3J6PmYQ4STdHyJeSB2VgLYrNJPqMqdNjfA6bbxW3NlynXSbjbvzVlA9qBAY1MQJOAQc6sUVkikDpVNotdJRIjWLLAxEblRoVMyZiWNrhcqYRQF71LCXORjxDTJfDspik9Akh6qaR7CAhQKvzjTsSJNhPsZNIpJ6jRyM3Zo-e92M1CsksxScn3rn14ia8fhkKopez34p-49O_DoMY6iJElEjR-7n_LF6eta-96Ot_0zeJ4utu047bV_eXG-TJQZZjOev7JD50fCl2IUsZJTtub32DQis2iU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iIF5EUXF9BvQkVLdJmqbiRfbBqqt4UBAvJU0bXVi6sqwgnvwBHvyN_hJnku7qehC8BTqTw2Qm8-jMF0L2uZLGJmCA0vAiENKIIMtUGFhueBZrmSmF886XV7JzK87vorsZcjKehfH4EJOCG1qGu6_RwJ9ye_QNGqr7r4eQmzAc7J1zf_sQ11lcj-9hAc4ucmipEaZbsj4BJ2VH37xT7uh3W-TPcNX5m_YSWawCRXrqT3aZzBTlCnkHO8fCCe3oIehPNUNJB5a6QdrPt4_LQQ5czd4DPgZCcRIH4rtj6msHRU6bxcg1X3mmXj-njXEDERLp3hDLhdR1EtBuVcykusxpW2N1nbZeqtbZcpXctls3jU5QvacQGITECTjYG8LFFZIpA5lTaLXSUSI1iywsRG5UaFTMmYlja4XKmEX8eoSwlzkw8TUyWw7KYp3QJIekmkewgYX8rs40KKTJMBzjJhFJvUb2xmJNnzxsRuoBklkKwk-98GtETUl8QoqY19Nfyt6jw74OwxhSokTUyIE7nD92T0-793618R_iXTJ_3Wyn3bOri02ywCCG8d0rW2R2NHwutiEGGWU7TtW-AOge2Vc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject+Harmonization+of+Multi%E2%80%90Modal+Digital+Markers%3A+Improved+Detection+of+Mild+Cognitive+Impairment+Using+Language+and+Facial+Expression&rft.jtitle=Alzheimer%27s+%26+dementia&rft.au=Hoang%2C+Bao&rft.au=Pang%2C+Yijiang&rft.au=Dodge%2C+Hiroko+H&rft.au=Zhou%2C+Jiayu&rft.date=2024-12-01&rft.issn=1552-5260&rft.eissn=1552-5279&rft.volume=20&rft.issue=S10&rft_id=info:doi/10.1002%2Falz.094211&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_alz_094211 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5260&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5260&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5260&client=summon |