Subject Harmonization of Multi‐Modal Digital Markers: Improved Detection of Mild Cognitive Impairment Using Language and Facial Expression

Background Mild Cognitive Impairment (MCI) is the prodromal stage of dementia, including Alzheimer’s Disease (AD). Early identification and accurate assessment of MCI are critical for clinical trial enrichment as well as the early intervention of AD. Digital makers offered a unique opportunity for e...

Full description

Saved in:
Bibliographic Details
Published inAlzheimer's & dementia Vol. 20; no. S2
Main Authors Hoang, Bao, Pang, Yijiang, Dodge, Hiroko H, Zhou, Jiayu
Format Journal Article
LanguageEnglish
Published Hoboken John Wiley and Sons Inc 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Mild Cognitive Impairment (MCI) is the prodromal stage of dementia, including Alzheimer’s Disease (AD). Early identification and accurate assessment of MCI are critical for clinical trial enrichment as well as the early intervention of AD. Digital makers offered a unique opportunity for ecologically valid and affordable early detection approaches. Language markers extracted from verbal communications have shown diagnostic efficacy in detecting early MCI. Recent studies have shown that in addition to semantic and syntactic information in dialogues, emotions in communication can also be helpful in early MCI detection. A joint analysis of language markers and emotion indicative of facial expression is thus of great interest. Features from emotion could have additional predictive benefits to language markers. One general challenge of digital biomarkers is that feature distributions are very distinct. We hereby conduct a multi‐modal analysis of language and facial expression, combined with different harmonization. Method We used 3,501 conversations from 69 participants from the Internet‐Based Conversational Engagement Clinical Trial (I‐CONECT) (NCT02871921) and extracted language and emotion variables. For language variables, we used 99‐dimensional features from four types: Linguistic Inquiry and Word Count (LIWC) (64), Syntactic Complexity (23), Lexical Diversity (10), and Response Length (2). For emotion features, we extracted a 7‐dimensional emotion feature (angry, disgust, fear, happy, sad, surprise, neutral) from a facial frame using the DeepFace library. For analysis, we used the subject harmonization approach to remove information that is predictive of subjects. The harmonized features are then used to build a neural network for MCI detection. Result We evaluated Area‐under‐Curve (AUC) on subject classification. Our results show that applying harmonization will increase detection performance when only using language markers. If we harmonize both language and emotion features, the performance decreases. However, if we do harmonization on language and without harmonization on emotion, then the performance of subject classification increases to 0.701 AUC. Conclusion Our study has shown the additional benefits of emotion variables to augment language variables in the early detection of MCI. Multimodality analyses need careful selection of harmonization: harmonization strategy should be chosen for individual modality rather than the concatenated feature variables.
AbstractList Background Mild Cognitive Impairment (MCI) is the prodromal stage of dementia, including Alzheimer’s Disease (AD). Early identification and accurate assessment of MCI are critical for clinical trial enrichment as well as the early intervention of AD. Digital makers offered a unique opportunity for ecologically valid and affordable early detection approaches. Language markers extracted from verbal communications have shown diagnostic efficacy in detecting early MCI. Recent studies have shown that in addition to semantic and syntactic information in dialogues, emotions in communication can also be helpful in early MCI detection. A joint analysis of language markers and emotion indicative of facial expression is thus of great interest. Features from emotion could have additional predictive benefits to language markers. One general challenge of digital biomarkers is that feature distributions are very distinct. We hereby conduct a multi‐modal analysis of language and facial expression, combined with different harmonization. Method We used 3,501 conversations from 69 participants from the Internet‐Based Conversational Engagement Clinical Trial (I‐CONECT) (NCT02871921) and extracted language and emotion variables. For language variables, we used 99‐dimensional features from four types: Linguistic Inquiry and Word Count (LIWC) (64), Syntactic Complexity (23), Lexical Diversity (10), and Response Length (2). For emotion features, we extracted a 7‐dimensional emotion feature (angry, disgust, fear, happy, sad, surprise, neutral) from a facial frame using the DeepFace library. For analysis, we used the subject harmonization approach to remove information that is predictive of subjects. The harmonized features are then used to build a neural network for MCI detection. Result We evaluated Area‐under‐Curve (AUC) on subject classification. Our results show that applying harmonization will increase detection performance when only using language markers. If we harmonize both language and emotion features, the performance decreases. However, if we do harmonization on language and without harmonization on emotion, then the performance of subject classification increases to 0.701 AUC. Conclusion Our study has shown the additional benefits of emotion variables to augment language variables in the early detection of MCI. Multimodality analyses need careful selection of harmonization: harmonization strategy should be chosen for individual modality rather than the concatenated feature variables.
Author Dodge, Hiroko H
Hoang, Bao
Zhou, Jiayu
Pang, Yijiang
AuthorAffiliation 2 Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
3 Harvard Medical School, Boston, MA USA
1 Michigan State University, East Lansing, MI USA
AuthorAffiliation_xml – name: 3 Harvard Medical School, Boston, MA USA
– name: 1 Michigan State University, East Lansing, MI USA
– name: 2 Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
Author_xml – sequence: 1
  givenname: Bao
  surname: Hoang
  fullname: Hoang, Bao
  organization: Michigan State University, East Lansing, MI
– sequence: 2
  givenname: Yijiang
  surname: Pang
  fullname: Pang, Yijiang
  organization: Michigan State University, East Lansing, MI
– sequence: 3
  givenname: Hiroko H
  surname: Dodge
  fullname: Dodge, Hiroko H
  organization: Harvard Medical School, Boston, MA
– sequence: 4
  givenname: Jiayu
  surname: Zhou
  fullname: Zhou, Jiayu
  email: jiayuz@msu.edu
  organization: Michigan State University, East Lansing, MI
BookMark eNp9kbFOwzAQhi1UJEph4Qk8I7XYcZISFoRaoJVaMQALi3VJLsElsSs7KbQTD8DAM_IkGBWQWFjuTvL_fzrfv0862mgk5IizAWcsOIFqM2CnsQjZDunyKAr6UTBMOr9zzPbIvnMLxkJ2yqMuebtt0wVmDZ2ArY1WG2iU0dQUdN5Wjfp4fZ-bHCo6VqVqfJ-DfULrzui0XlqzwpyOsfH-H5OqcjoypVaNWuGXCJStUTf03ild0hnosoUSKeicXkGmPPLyZWnROU84ILsFVA4Pv3uP3F9d3o0m_dnN9XR0MetnPE5YPxchAPipEGmShCGGvEh4kKH_I0ZcxIUvwTCMQ-GPgrEoRJbwKCgSQBR5KnrkfMtdtmmNeeb3s1DJpVU12LU0oOTfF60eZWlWkvMhjxLBPeF4S8iscc5i8WvmTH4lIX0ScpuEF_Ot-FlVuP5HKS9mD9-eTx02kPU
ContentType Journal Article
Copyright 2024 The Alzheimer's Association. published by Wiley Periodicals LLC on behalf of Alzheimer's Association.
Copyright_xml – notice: 2024 The Alzheimer's Association. published by Wiley Periodicals LLC on behalf of Alzheimer's Association.
DBID 24P
AAYXX
CITATION
5PM
DOI 10.1002/alz.086340
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate BIOMARKERS
EISSN 1552-5279
EndPage n/a
ExternalDocumentID PMC11715931
10_1002_alz_086340
ALZ086340
Genre abstract
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1OC
1~.
1~5
24P
33P
4.4
457
4G.
53G
5VS
7-5
71M
7RV
7X7
8FI
8FJ
8P~
AAEDT
AAIKJ
AAKOC
AALRI
AAMMB
AANLZ
AAOAW
AAXLA
AAXUO
AAYCA
AAYWO
ABBQC
ABCQJ
ABCUV
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABWVN
ACCMX
ACCZN
ACGFS
ACGOF
ACPOU
ACRPL
ACVFH
ACXQS
ADBBV
ADBTR
ADCNI
ADEZE
ADHUB
ADKYN
ADMUD
ADNMO
ADPDF
ADVLN
ADZMN
AEFGJ
AEIGN
AEKER
AENEX
AEUPX
AEUYR
AEVXI
AFKRA
AFPUW
AFTJW
AFWVQ
AGHFR
AGHNM
AGUBO
AGWIK
AGXDD
AGYEJ
AIDQK
AIDYY
AIGII
AITUG
AIURR
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMRAJ
AMYDB
ANZVX
AZQEC
BENPR
BFHJK
BLXMC
C45
CCPQU
DCZOG
EBS
EJD
EMOBN
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYUFA
G-Q
GBLVA
HMCUK
HVGLF
HX~
HZ~
IHE
J1W
K9-
LATKE
LEEKS
M0R
M41
MO0
MOBAO
N9A
NAPCQ
O-L
O9-
OAUVE
OVD
OVEED
OZT
P-8
P-9
P2P
PC.
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PSYQQ
Q38
QTD
RIG
ROL
RPM
RPZ
SDF
SDG
SEL
SES
SSZ
SUPJJ
TEORI
UKHRP
~G-
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
5PM
ID FETCH-LOGICAL-c1690-d34aaa690f3b9944e41f912ce552e5136f513274643100e63f3c9152f9aee3db3
IEDL.DBID 24P
ISSN 1552-5260
IngestDate Thu Aug 21 18:28:40 EDT 2025
Tue Jul 01 02:06:03 EDT 2025
Mon Aug 11 05:48:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue S2
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1690-d34aaa690f3b9944e41f912ce552e5136f513274643100e63f3c9152f9aee3db3
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.086340
PageCount 2
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11715931
crossref_primary_10_1002_alz_086340
wiley_primary_10_1002_alz_086340_ALZ086340
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2024
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Alzheimer's & dementia
PublicationYear 2024
Publisher John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons Inc
SSID ssj0040815
Score 2.4082801
Snippet Background Mild Cognitive Impairment (MCI) is the prodromal stage of dementia, including Alzheimer’s Disease (AD). Early identification and accurate assessment...
SourceID pubmedcentral
crossref
wiley
SourceType Open Access Repository
Index Database
Publisher
SubjectTerms Biomarkers
Title Subject Harmonization of Multi‐Modal Digital Markers: Improved Detection of Mild Cognitive Impairment Using Language and Facial Expression
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.086340
https://pubmed.ncbi.nlm.nih.gov/PMC11715931
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA2lbtyIomJ9lICuhLHNJDPjiJvSB0WsuLBQ3Ax5aqFMpVYQV36AC7_RL_EmmWmtC8HNMDDJLG4e99yTe08QOkkSHnGdkCCWJgmsxlTAiaZBIsF7xFpR4Y5iBjdxf8iuRtGogi7LWhivD7Eg3OzKcPu1XeBcPDeWoqF88nYGeJwyCNjXbG2tVc4P2W25DzNwdpFTS41suBU3F-KkYWPZd8Ud_U6L_AlXnb_pbaKNAijilh_ZLVTR-Tb6gHVuiRPc5zOYP0UNJZ4a7Appv94_B1MFvTrjB3sZCLaVOIDvLrDnDrTCHT13yVe-03iicLtMILKN-Hhm6ULsMgnwdUFmYp4r3OOWXcfd1yJ1Nt9Bw173rt0PivsUAmkPwwJFGecc3gwVacqYZsSkJJQaLKQjQmMDD4hSAaSAlXRMDZUp-HeTcq2pEnQXVfNprvcQTiNh701vAriREMDIlBsVQbBDEyEhAhQ1dFyaNXvyshmZF0gOMzB-5o1fQ-crFl80tZrXq1_y8aPTviYkAQBGSQ2dusH54-9Z6_rev-3_p_EBWg8BuPiUlUNUnc9e9BEAj7mou_lVd4zQN2_i14E
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSgMxEA6iB72IomL9DehJWNtsshvXW-kPVbfFQwvFy5JNsrpQtlIqiCcfwIPP6JM4Sbat9SB4WQKb5DDJZL6ZzHxB6JxzEQjNiRfKjHuGY8oTRFOPS7AeoVY0tVcx3V7YGbDbYTAsc3NMLYzjh5gH3Ixm2PPaKLgJSFcXrKFi9HYJgJwy8NjXWOhzo5c-u58dxAysXWDpUgPjb4W1OTupX12MXbJHv_Mif-JVa3DaW2izRIq47pZ2G63oYgd9gKKbyAnuiAlsoLKIEo8zbCtpv94_u2MFo5r5o3kNBJtSHAB419gFD7TCTT212VduUD5SuDHLIDKdRD4x8UJsUwlwXEYzsSgUbgsTXset1zJ3tthFg3ar3-h45YMKnjS3YZ6iTAgBrYymUcSYZiSLiC81SEgHhIYZfMBNBZQCUtIhzaiMwMBnkdCaqpTuodViXOh9hKMgNQ-n1wDdSPBgZCQyFYC3Q3kqwQVMK-hsJtbk2fFmJI4h2U9A-IkTfgVdLUl83tWQXi__KfInS35NCAcERkkFXdjF-WP2pB4_uNbBfzqfovVOvxsn8U3v7hBt-IBiXP7KEVqdTl70MaCQaXpi99o3_3vZ3Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA2lgrgRRcX6DOhKGNs083DETWk7VG1LFxaKmyGThw6UaSkVxJUf4MJv9Eu8SWZa60JwMwQmyeLmcc99nSB0HgTMYzIgjs9V4GiOKYcRSZ2Ag_bwpaCJCcX0-n5n6N6NvFEJ3RS1MJYfYuFw0yfD3Nf6gE-Fqi5JQ9n47RLwOHXBYF8z0T7N6-wOinvYBWXnGbZUT5tbfm1BTlqvLseuqKPfaZE_4arRN9EW2syBIm7Yld1GJZntoA8459pxgjtsBvsnr6HEE4VNIe3X-2dvImBUK33Sj4FgXYkD-O4aW9-BFLgl5yb5yg5KxwI3iwQi3YmlM-0uxCaTAHdzZyZmmcAR09513H7NU2ezXTSM2g_NjpO_p-BwHQxzBHUZY9BSNAlD15UuUSGpcwkSkh6hvoIPWKkAUkBK0qeK8hD0uwqZlFQkdA-Vs0km9xEOvUS_m14DcMPBgOEhU8IDY4cGCQcLMKmgs0Ks8dTSZsSWILkeg_BjK_wKulqR-KKr5rxe_ZOlz4b7mpAAABglFXRhFueP2eNG99G2Dv7T-RStD1pR3L3t3x-ijTpgGJu9coTK89mLPAYMMk9OzFb7Bt-92Q8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject+Harmonization+of+Multi%E2%80%90Modal+Digital+Markers%3A+Improved+Detection+of+Mild+Cognitive+Impairment+Using+Language+and+Facial+Expression&rft.jtitle=Alzheimer%27s+%26+dementia&rft.au=Hoang%2C+Bao&rft.au=Pang%2C+Yijiang&rft.au=Dodge%2C+Hiroko+H&rft.au=Zhou%2C+Jiayu&rft.date=2024-12-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1552-5260&rft.eissn=1552-5279&rft.volume=20&rft.issue=Suppl+2&rft_id=info:doi/10.1002%2Falz.086340&rft.externalDocID=PMC11715931
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5260&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5260&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5260&client=summon