On the singular value decomposition over finite fields and orbits of GU×GU

The singular value decomposition of a complex matrix is a fundamental concept in linear algebra and has proved extremely useful in many subjects. It is less clear what the situation is over a finite field. In this paper, we classify the orbits of GUm(q)×GUn(q) on Mm×n(q2) (which is the analog of the...

Full description

Saved in:
Bibliographic Details
Published inIndagationes mathematicae Vol. 32; no. 5; pp. 1083 - 1094
Main Author Guralnick, Robert M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The singular value decomposition of a complex matrix is a fundamental concept in linear algebra and has proved extremely useful in many subjects. It is less clear what the situation is over a finite field. In this paper, we classify the orbits of GUm(q)×GUn(q) on Mm×n(q2) (which is the analog of the singular value decomposition). The proof involves Kronecker’s theory of pencils and the Lang–Steinberg theorem for algebraic groups. Besides the motivation mentioned above, this problem came up in a recent paper of Guralnick et al. (2020) where a concept of character level for the complex irreducible characters of finite, general or special, linear and unitary groups was studied and bounds on the number of orbits was needed. A consequence of this work determines possible pairs of Jordan forms for nilpotent matrices of the form AA∗ and A∗A over a finite field and AA⊤ and A⊤A over arbitrary fields.
AbstractList The singular value decomposition of a complex matrix is a fundamental concept in linear algebra and has proved extremely useful in many subjects. It is less clear what the situation is over a finite field. In this paper, we classify the orbits of GUm(q)×GUn(q) on Mm×n(q2) (which is the analog of the singular value decomposition). The proof involves Kronecker’s theory of pencils and the Lang–Steinberg theorem for algebraic groups. Besides the motivation mentioned above, this problem came up in a recent paper of Guralnick et al. (2020) where a concept of character level for the complex irreducible characters of finite, general or special, linear and unitary groups was studied and bounds on the number of orbits was needed. A consequence of this work determines possible pairs of Jordan forms for nilpotent matrices of the form AA∗ and A∗A over a finite field and AA⊤ and A⊤A over arbitrary fields.
Author Guralnick, Robert M.
Author_xml – sequence: 1
  givenname: Robert M.
  orcidid: 0000-0002-9094-857X
  surname: Guralnick
  fullname: Guralnick, Robert M.
  email: guralnic@usc.edu
  organization: Department of Mathematics, University of Southern California, Los Angeles, CA 90089-2532, USA
BookMark eNp9kM1KAzEUhYNUsK0-gZu8wIw3mUwys3AhRatY6MauQyY_NWWalGRa8El8IF_MqboWDhzO4rtcvhmahBgsQrcESgKE3-1KH4zalhQoKWEM8As0JY2gBScAEzQFIG1R1UJcoVnOu3EKoHyKXtcBD-8WZx-2x14lfFL90WJjddwfYvaDjwHHk03Y-eAHO5btTcYqGBxT54eMo8PLzdfncnONLp3qs7356znaPD2-LZ6L1Xr5snhYFZrwZihcJxrF6rptwVHaGGAdU5xpcFxQwhRp1ThdS7qKUitsxZhjjla8Bt0yYao5qn7v6hRzTtbJQ_J7lT4kAXn2IXfyx4c8-5AwBvhI3f9Sdnzt5G2SWXsbtDU-WT1IE_2__Dcdrmub
Cites_doi 10.1080/00029890.1996.12004788
10.1007/BFb0081546
10.1016/0021-8693(82)90105-3
10.1016/j.laa.2010.03.022
10.1007/s00026-018-0390-4
10.2140/pjm.1959.9.893
10.1090/S0894-0347-97-00219-1
10.1007/BF01403155
ContentType Journal Article
Copyright 2021 Royal Dutch Mathematical Society (KWG)
Copyright_xml – notice: 2021 Royal Dutch Mathematical Society (KWG)
DBID AAYXX
CITATION
DOI 10.1016/j.indag.2021.01.006
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6100
EndPage 1094
ExternalDocumentID 10_1016_j_indag_2021_01_006
S0019357721000112
GrantInformation_xml – fundername: Simons Foundation, USA
  grantid: 609771
  funderid: http://dx.doi.org/10.13039/100000893
– fundername: National Science Foundation, USA
  grantid: DMS-1901595
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID --K
--M
--Z
.~1
0R~
0SF
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
L7B
M25
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
UPT
VH1
WUQ
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c168t-fb78a455990f228d04b4a64c0f67214a19aa64f91b322e7e344f4f23650c947d3
IEDL.DBID .~1
ISSN 0019-3577
IngestDate Tue Jul 01 04:23:08 EDT 2025
Fri Feb 23 02:43:13 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Singular value decomposition over finite fields
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c168t-fb78a455990f228d04b4a64c0f67214a19aa64f91b322e7e344f4f23650c947d3
ORCID 0000-0002-9094-857X
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_indag_2021_01_006
elsevier_sciencedirect_doi_10_1016_j_indag_2021_01_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Indagationes mathematicae
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References de Seguins Pazzis (b2) 2010; 433
Schiffler (b15) 2014
Fulman, Guralnick (b6) 2018; 22
V. Dlab, C.M. Ringel, Representations of Graphs and Algebras, in: Carleton Mathematical Lecture Notes, No. 8, Department of Mathematics, Carleton University, Ottawa.
Springer (b16) 1998; vol. 9
Guralnick, Larsen, Tiep (b8) 2020; Pi
Kac (b11) 1983; vol. 996
Kac. Infinite root systems (b19) 1980; 56
Taussky, Zassenhaus (b20) 1959; 9
Derksen, Weyman (b3) 2017; vol. 184
Flanders (b5) 1951; 2
Johnson, Schreiner (b9) 1996; 103
Kac (b10) 1982; 78
Steinberg (b18) 1977
Maslen, Rockmore (b14) 1997; 10
Kirillov (b12) 2016; vol. 174
T.A. Springer, R. Steinberg, Conjugacy classes, 1970 Seminar on Algebraic Groups and Related Finite Groups, in: Lecture Notes in Mathematics, vol. 131, Springer, Berlin, pp. 167–266.
Gantmacher (b7) 1977
Lam (b13) 2001; vol. 131
W. Crawley-Boevey, Lectures on representations of quivers, preprint.
10.1016/j.indag.2021.01.006_b17
Lam (10.1016/j.indag.2021.01.006_b13) 2001; vol. 131
Derksen (10.1016/j.indag.2021.01.006_b3) 2017; vol. 184
Maslen (10.1016/j.indag.2021.01.006_b14) 1997; 10
Kac. Infinite root systems (10.1016/j.indag.2021.01.006_b19) 1980; 56
Kirillov (10.1016/j.indag.2021.01.006_b12) 2016; vol. 174
Taussky (10.1016/j.indag.2021.01.006_b20) 1959; 9
Springer (10.1016/j.indag.2021.01.006_b16) 1998; vol. 9
10.1016/j.indag.2021.01.006_b1
Kac (10.1016/j.indag.2021.01.006_b11) 1983; vol. 996
Gantmacher (10.1016/j.indag.2021.01.006_b7) 1977
Kac (10.1016/j.indag.2021.01.006_b10) 1982; 78
Fulman (10.1016/j.indag.2021.01.006_b6) 2018; 22
Guralnick (10.1016/j.indag.2021.01.006_b8) 2020; Pi
10.1016/j.indag.2021.01.006_b4
Schiffler (10.1016/j.indag.2021.01.006_b15) 2014
Johnson (10.1016/j.indag.2021.01.006_b9) 1996; 103
de Seguins Pazzis (10.1016/j.indag.2021.01.006_b2) 2010; 433
Steinberg (10.1016/j.indag.2021.01.006_b18) 1977
Flanders (10.1016/j.indag.2021.01.006_b5) 1951; 2
References_xml – volume: vol. 184
  year: 2017
  ident: b3
  publication-title: An Introduction to Quiver Representations
– volume: vol. 131
  year: 2001
  ident: b13
  publication-title: A First Course in Noncommutative Rings
– year: 2014
  ident: b15
  publication-title: Quiver Representations
– reference: T.A. Springer, R. Steinberg, Conjugacy classes, 1970 Seminar on Algebraic Groups and Related Finite Groups, in: Lecture Notes in Mathematics, vol. 131, Springer, Berlin, pp. 167–266.
– volume: 2
  start-page: 871
  year: 1951
  end-page: 874
  ident: b5
  article-title: Elementary divisors of
  publication-title: Proc. Amer. Math. Soc.
– reference: W. Crawley-Boevey, Lectures on representations of quivers, preprint.
– volume: vol. 996
  start-page: 74
  year: 1983
  end-page: 108
  ident: b11
  article-title: Root systems, representations of quivers and invariant theory
  publication-title: Invariant Theory
– volume: 78
  start-page: 141
  year: 1982
  end-page: 162
  ident: b10
  article-title: Infinite root systems, representations of graphs and invariant theory. II
  publication-title: J. Algebra
– volume: 22
  start-page: 295
  year: 2018
  end-page: 316
  ident: b6
  article-title: Enumeration of commuting pairs in Lie algebras over finite fields
  publication-title: Annals Comb.
– start-page: 349
  year: 1977
  end-page: 354
  ident: b18
  article-title: On theorems of Lie-Kolchin, Borel, and Lang
  publication-title: Contributions to Algebra (Collection of Papers Dedicated to Ellis Kolchin)
– volume: 433
  start-page: 618
  year: 2010
  end-page: 624
  ident: b2
  article-title: Invariance of simultaneous similarity and equivalence of matrcies under extension of the ground field
  publication-title: Linear Algebra Appl.
– volume: 10
  start-page: 169
  year: 1997
  end-page: 214
  ident: b14
  article-title: Separation of variables and the computation of Fourier transforms on finite groups. I
  publication-title: J. Amer. Math. Soc.
– volume: 56
  start-page: 57
  year: 1980
  end-page: 92
  ident: b19
  article-title: Representations of graphs and invariant theory
  publication-title: Invent. Math.
– volume: 9
  start-page: 893
  year: 1959
  end-page: 896
  ident: b20
  article-title: On the similarity transformation between a matrix and its transpose
  publication-title: Pacific J. Math.
– year: 1977
  ident: b7
  article-title: Matrix Theory, Vol. 2
– volume: vol. 174
  year: 2016
  ident: b12
  publication-title: Quiver Representations and Quiver Varieties
– volume: Pi
  year: 2020
  ident: b8
  article-title: Character levels and character bounds
  publication-title: Forum Math.
– reference: V. Dlab, C.M. Ringel, Representations of Graphs and Algebras, in: Carleton Mathematical Lecture Notes, No. 8, Department of Mathematics, Carleton University, Ottawa.
– volume: vol. 9
  year: 1998
  ident: b16
  publication-title: Linear Algebraic Groups
– volume: 103
  start-page: 578
  year: 1996
  end-page: 582
  ident: b9
  article-title: The relationship between
  publication-title: Amer. Math. Monthly
– volume: 103
  start-page: 578
  year: 1996
  ident: 10.1016/j.indag.2021.01.006_b9
  article-title: The relationship between AB and BA
  publication-title: Amer. Math. Monthly
  doi: 10.1080/00029890.1996.12004788
– start-page: 349
  year: 1977
  ident: 10.1016/j.indag.2021.01.006_b18
  article-title: On theorems of Lie-Kolchin, Borel, and Lang
– year: 2014
  ident: 10.1016/j.indag.2021.01.006_b15
– volume: vol. 9
  year: 1998
  ident: 10.1016/j.indag.2021.01.006_b16
– volume: Pi
  year: 2020
  ident: 10.1016/j.indag.2021.01.006_b8
  article-title: Character levels and character bounds
  publication-title: Forum Math.
– volume: vol. 174
  year: 2016
  ident: 10.1016/j.indag.2021.01.006_b12
– ident: 10.1016/j.indag.2021.01.006_b17
  doi: 10.1007/BFb0081546
– volume: 2
  start-page: 871
  year: 1951
  ident: 10.1016/j.indag.2021.01.006_b5
  article-title: Elementary divisors of AB and BA
  publication-title: Proc. Amer. Math. Soc.
– ident: 10.1016/j.indag.2021.01.006_b1
– year: 1977
  ident: 10.1016/j.indag.2021.01.006_b7
– volume: 78
  start-page: 141
  year: 1982
  ident: 10.1016/j.indag.2021.01.006_b10
  article-title: Infinite root systems, representations of graphs and invariant theory. II
  publication-title: J. Algebra
  doi: 10.1016/0021-8693(82)90105-3
– volume: 433
  start-page: 618
  year: 2010
  ident: 10.1016/j.indag.2021.01.006_b2
  article-title: Invariance of simultaneous similarity and equivalence of matrcies under extension of the ground field
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2010.03.022
– volume: 22
  start-page: 295
  year: 2018
  ident: 10.1016/j.indag.2021.01.006_b6
  article-title: Enumeration of commuting pairs in Lie algebras over finite fields
  publication-title: Annals Comb.
  doi: 10.1007/s00026-018-0390-4
– volume: vol. 131
  year: 2001
  ident: 10.1016/j.indag.2021.01.006_b13
– ident: 10.1016/j.indag.2021.01.006_b4
– volume: 9
  start-page: 893
  year: 1959
  ident: 10.1016/j.indag.2021.01.006_b20
  article-title: On the similarity transformation between a matrix and its transpose
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.1959.9.893
– volume: 10
  start-page: 169
  year: 1997
  ident: 10.1016/j.indag.2021.01.006_b14
  article-title: Separation of variables and the computation of Fourier transforms on finite groups. I
  publication-title: J. Amer. Math. Soc.
  doi: 10.1090/S0894-0347-97-00219-1
– volume: vol. 996
  start-page: 74
  year: 1983
  ident: 10.1016/j.indag.2021.01.006_b11
  article-title: Root systems, representations of quivers and invariant theory
– volume: 56
  start-page: 57
  year: 1980
  ident: 10.1016/j.indag.2021.01.006_b19
  article-title: Representations of graphs and invariant theory
  publication-title: Invent. Math.
  doi: 10.1007/BF01403155
– volume: vol. 184
  year: 2017
  ident: 10.1016/j.indag.2021.01.006_b3
SSID ssj0017026
Score 2.2198718
Snippet The singular value decomposition of a complex matrix is a fundamental concept in linear algebra and has proved extremely useful in many subjects. It is less...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 1083
SubjectTerms Singular value decomposition over finite fields
Title On the singular value decomposition over finite fields and orbits of GU×GU
URI https://dx.doi.org/10.1016/j.indag.2021.01.006
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpn5YGR0MRx7WQsFX1QtSxE6hbZjo3CkFZtWPkb_CD-GD4nqUBCDEhZLrKl6LNz95303R1CNyowIfNJ5tnQozyqpfIE63FPCEZ8GTMTCqgdns3ZOKGPi96ihQZNLQzIKmvfX_l0563rN90aze4qz6HG15KPnmWHgSM24Icp5XDL7963Mo-A-27kGiz2YHXTechpvCDtfbFJIglc704Ye_RbdPoWcYYHaL-mirhffc0hauniCO3Ntn1WN8do-lRga2JI-EFPiqF3t8aZBqV4LcfCINLEJgdyiZ1gbYNFkeHlWublBi8NHiWfH6PkBCXDh-fB2KvHI3gqYFHpGckjQaFjmG8IiTKfSioYVb5hFhMqgtgCTk0cSPvTaq5DSg01JLScTMWUZ-EpahfLQp8hHEoiLQ_kRhJhEz4VRz2lhY4zxrmkkThHtw0s6arqgpE28rDX1KGYAoqpbx-fnSPWQJf-OMzU-um_Nl78d-Ml2gWrEn9doXa5ftPXli2UsuOuQwft9CfT8dxak8X9Fxn7v2o
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV29TsNADLZKGYAB8SvK7w2wEUgu10syMCD-CqVloRJbuEvuUBnSqi1CLLwGD8Ij8GLYaYJAQgxIlbIk0Z0cx7I_nz7bALuJZ33p8tTB0JM4wujEUbIeOEpJ7upIWl9R7XCrLRsdcXVXv6vAe1kLQ7TKwvePfXrurYsnh4U2D_vdLtX4IvioIzr0cmDDC2Zl07w8Y942PLo8xZ-8x_n52e1JwylGCziJJ8ORY3UQKkHdtlzLeZi6QgslReJaifsJ5UUorLCRp9HgTWB8Iayw3Ec8k0QiSH3cdwqmBboLGptw8PrFK_ECN5_xRtI5JF7Z6ignlVGe_YBZKffyZqE0Z-m3cPgtxJ0vwHyBTdnx-PMXoWKyJZhrfTV2HS5D8yZjeMvohIEIrIyahRuWGqKmF_wvRqxQZruEZlnOkBsylaWsN9Dd0ZD1LLvofLxddFagMxGlrUI162VmDZivuUbgGVjNFWaYSRTWE6NMlMog0CJUNdgv1RL3x2034pKP9hjnWoxJi7GLlytrIEvVxT-sJ8bA8NfC9f8u3IGZxm3rOr6-bDc3YJbejJlnm1AdDZ7MFkKVkd7OTYPB_aRt8RMgZPhW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+singular+value+decomposition+over+finite+fields+and+orbits+of+GU+%C3%97+GU&rft.jtitle=Indagationes+mathematicae&rft.au=Guralnick%2C+Robert+M.&rft.date=2021-09-01&rft.issn=0019-3577&rft.volume=32&rft.issue=5&rft.spage=1083&rft.epage=1094&rft_id=info:doi/10.1016%2Fj.indag.2021.01.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_indag_2021_01_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-3577&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-3577&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-3577&client=summon