On the singular value decomposition over finite fields and orbits of GU×GU
The singular value decomposition of a complex matrix is a fundamental concept in linear algebra and has proved extremely useful in many subjects. It is less clear what the situation is over a finite field. In this paper, we classify the orbits of GUm(q)×GUn(q) on Mm×n(q2) (which is the analog of the...
Saved in:
Published in | Indagationes mathematicae Vol. 32; no. 5; pp. 1083 - 1094 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The singular value decomposition of a complex matrix is a fundamental concept in linear algebra and has proved extremely useful in many subjects. It is less clear what the situation is over a finite field. In this paper, we classify the orbits of GUm(q)×GUn(q) on Mm×n(q2) (which is the analog of the singular value decomposition). The proof involves Kronecker’s theory of pencils and the Lang–Steinberg theorem for algebraic groups. Besides the motivation mentioned above, this problem came up in a recent paper of Guralnick et al. (2020) where a concept of character level for the complex irreducible characters of finite, general or special, linear and unitary groups was studied and bounds on the number of orbits was needed. A consequence of this work determines possible pairs of Jordan forms for nilpotent matrices of the form AA∗ and A∗A over a finite field and AA⊤ and A⊤A over arbitrary fields. |
---|---|
AbstractList | The singular value decomposition of a complex matrix is a fundamental concept in linear algebra and has proved extremely useful in many subjects. It is less clear what the situation is over a finite field. In this paper, we classify the orbits of GUm(q)×GUn(q) on Mm×n(q2) (which is the analog of the singular value decomposition). The proof involves Kronecker’s theory of pencils and the Lang–Steinberg theorem for algebraic groups. Besides the motivation mentioned above, this problem came up in a recent paper of Guralnick et al. (2020) where a concept of character level for the complex irreducible characters of finite, general or special, linear and unitary groups was studied and bounds on the number of orbits was needed. A consequence of this work determines possible pairs of Jordan forms for nilpotent matrices of the form AA∗ and A∗A over a finite field and AA⊤ and A⊤A over arbitrary fields. |
Author | Guralnick, Robert M. |
Author_xml | – sequence: 1 givenname: Robert M. orcidid: 0000-0002-9094-857X surname: Guralnick fullname: Guralnick, Robert M. email: guralnic@usc.edu organization: Department of Mathematics, University of Southern California, Los Angeles, CA 90089-2532, USA |
BookMark | eNp9kM1KAzEUhYNUsK0-gZu8wIw3mUwys3AhRatY6MauQyY_NWWalGRa8El8IF_MqboWDhzO4rtcvhmahBgsQrcESgKE3-1KH4zalhQoKWEM8As0JY2gBScAEzQFIG1R1UJcoVnOu3EKoHyKXtcBD-8WZx-2x14lfFL90WJjddwfYvaDjwHHk03Y-eAHO5btTcYqGBxT54eMo8PLzdfncnONLp3qs7356znaPD2-LZ6L1Xr5snhYFZrwZihcJxrF6rptwVHaGGAdU5xpcFxQwhRp1ThdS7qKUitsxZhjjla8Bt0yYao5qn7v6hRzTtbJQ_J7lT4kAXn2IXfyx4c8-5AwBvhI3f9Sdnzt5G2SWXsbtDU-WT1IE_2__Dcdrmub |
Cites_doi | 10.1080/00029890.1996.12004788 10.1007/BFb0081546 10.1016/0021-8693(82)90105-3 10.1016/j.laa.2010.03.022 10.1007/s00026-018-0390-4 10.2140/pjm.1959.9.893 10.1090/S0894-0347-97-00219-1 10.1007/BF01403155 |
ContentType | Journal Article |
Copyright | 2021 Royal Dutch Mathematical Society (KWG) |
Copyright_xml | – notice: 2021 Royal Dutch Mathematical Society (KWG) |
DBID | AAYXX CITATION |
DOI | 10.1016/j.indag.2021.01.006 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1872-6100 |
EndPage | 1094 |
ExternalDocumentID | 10_1016_j_indag_2021_01_006 S0019357721000112 |
GrantInformation_xml | – fundername: Simons Foundation, USA grantid: 609771 funderid: http://dx.doi.org/10.13039/100000893 – fundername: National Science Foundation, USA grantid: DMS-1901595 funderid: http://dx.doi.org/10.13039/100000001 |
GroupedDBID | --K --M --Z .~1 0R~ 0SF 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 6OB 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM L7B M25 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSW SSZ T5K UPT VH1 WUQ ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO ADVLN AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c168t-fb78a455990f228d04b4a64c0f67214a19aa64f91b322e7e344f4f23650c947d3 |
IEDL.DBID | .~1 |
ISSN | 0019-3577 |
IngestDate | Tue Jul 01 04:23:08 EDT 2025 Fri Feb 23 02:43:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Singular value decomposition over finite fields |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c168t-fb78a455990f228d04b4a64c0f67214a19aa64f91b322e7e344f4f23650c947d3 |
ORCID | 0000-0002-9094-857X |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1016_j_indag_2021_01_006 elsevier_sciencedirect_doi_10_1016_j_indag_2021_01_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2021 2021-09-00 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationTitle | Indagationes mathematicae |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | de Seguins Pazzis (b2) 2010; 433 Schiffler (b15) 2014 Fulman, Guralnick (b6) 2018; 22 V. Dlab, C.M. Ringel, Representations of Graphs and Algebras, in: Carleton Mathematical Lecture Notes, No. 8, Department of Mathematics, Carleton University, Ottawa. Springer (b16) 1998; vol. 9 Guralnick, Larsen, Tiep (b8) 2020; Pi Kac (b11) 1983; vol. 996 Kac. Infinite root systems (b19) 1980; 56 Taussky, Zassenhaus (b20) 1959; 9 Derksen, Weyman (b3) 2017; vol. 184 Flanders (b5) 1951; 2 Johnson, Schreiner (b9) 1996; 103 Kac (b10) 1982; 78 Steinberg (b18) 1977 Maslen, Rockmore (b14) 1997; 10 Kirillov (b12) 2016; vol. 174 T.A. Springer, R. Steinberg, Conjugacy classes, 1970 Seminar on Algebraic Groups and Related Finite Groups, in: Lecture Notes in Mathematics, vol. 131, Springer, Berlin, pp. 167–266. Gantmacher (b7) 1977 Lam (b13) 2001; vol. 131 W. Crawley-Boevey, Lectures on representations of quivers, preprint. 10.1016/j.indag.2021.01.006_b17 Lam (10.1016/j.indag.2021.01.006_b13) 2001; vol. 131 Derksen (10.1016/j.indag.2021.01.006_b3) 2017; vol. 184 Maslen (10.1016/j.indag.2021.01.006_b14) 1997; 10 Kac. Infinite root systems (10.1016/j.indag.2021.01.006_b19) 1980; 56 Kirillov (10.1016/j.indag.2021.01.006_b12) 2016; vol. 174 Taussky (10.1016/j.indag.2021.01.006_b20) 1959; 9 Springer (10.1016/j.indag.2021.01.006_b16) 1998; vol. 9 10.1016/j.indag.2021.01.006_b1 Kac (10.1016/j.indag.2021.01.006_b11) 1983; vol. 996 Gantmacher (10.1016/j.indag.2021.01.006_b7) 1977 Kac (10.1016/j.indag.2021.01.006_b10) 1982; 78 Fulman (10.1016/j.indag.2021.01.006_b6) 2018; 22 Guralnick (10.1016/j.indag.2021.01.006_b8) 2020; Pi 10.1016/j.indag.2021.01.006_b4 Schiffler (10.1016/j.indag.2021.01.006_b15) 2014 Johnson (10.1016/j.indag.2021.01.006_b9) 1996; 103 de Seguins Pazzis (10.1016/j.indag.2021.01.006_b2) 2010; 433 Steinberg (10.1016/j.indag.2021.01.006_b18) 1977 Flanders (10.1016/j.indag.2021.01.006_b5) 1951; 2 |
References_xml | – volume: vol. 184 year: 2017 ident: b3 publication-title: An Introduction to Quiver Representations – volume: vol. 131 year: 2001 ident: b13 publication-title: A First Course in Noncommutative Rings – year: 2014 ident: b15 publication-title: Quiver Representations – reference: T.A. Springer, R. Steinberg, Conjugacy classes, 1970 Seminar on Algebraic Groups and Related Finite Groups, in: Lecture Notes in Mathematics, vol. 131, Springer, Berlin, pp. 167–266. – volume: 2 start-page: 871 year: 1951 end-page: 874 ident: b5 article-title: Elementary divisors of publication-title: Proc. Amer. Math. Soc. – reference: W. Crawley-Boevey, Lectures on representations of quivers, preprint. – volume: vol. 996 start-page: 74 year: 1983 end-page: 108 ident: b11 article-title: Root systems, representations of quivers and invariant theory publication-title: Invariant Theory – volume: 78 start-page: 141 year: 1982 end-page: 162 ident: b10 article-title: Infinite root systems, representations of graphs and invariant theory. II publication-title: J. Algebra – volume: 22 start-page: 295 year: 2018 end-page: 316 ident: b6 article-title: Enumeration of commuting pairs in Lie algebras over finite fields publication-title: Annals Comb. – start-page: 349 year: 1977 end-page: 354 ident: b18 article-title: On theorems of Lie-Kolchin, Borel, and Lang publication-title: Contributions to Algebra (Collection of Papers Dedicated to Ellis Kolchin) – volume: 433 start-page: 618 year: 2010 end-page: 624 ident: b2 article-title: Invariance of simultaneous similarity and equivalence of matrcies under extension of the ground field publication-title: Linear Algebra Appl. – volume: 10 start-page: 169 year: 1997 end-page: 214 ident: b14 article-title: Separation of variables and the computation of Fourier transforms on finite groups. I publication-title: J. Amer. Math. Soc. – volume: 56 start-page: 57 year: 1980 end-page: 92 ident: b19 article-title: Representations of graphs and invariant theory publication-title: Invent. Math. – volume: 9 start-page: 893 year: 1959 end-page: 896 ident: b20 article-title: On the similarity transformation between a matrix and its transpose publication-title: Pacific J. Math. – year: 1977 ident: b7 article-title: Matrix Theory, Vol. 2 – volume: vol. 174 year: 2016 ident: b12 publication-title: Quiver Representations and Quiver Varieties – volume: Pi year: 2020 ident: b8 article-title: Character levels and character bounds publication-title: Forum Math. – reference: V. Dlab, C.M. Ringel, Representations of Graphs and Algebras, in: Carleton Mathematical Lecture Notes, No. 8, Department of Mathematics, Carleton University, Ottawa. – volume: vol. 9 year: 1998 ident: b16 publication-title: Linear Algebraic Groups – volume: 103 start-page: 578 year: 1996 end-page: 582 ident: b9 article-title: The relationship between publication-title: Amer. Math. Monthly – volume: 103 start-page: 578 year: 1996 ident: 10.1016/j.indag.2021.01.006_b9 article-title: The relationship between AB and BA publication-title: Amer. Math. Monthly doi: 10.1080/00029890.1996.12004788 – start-page: 349 year: 1977 ident: 10.1016/j.indag.2021.01.006_b18 article-title: On theorems of Lie-Kolchin, Borel, and Lang – year: 2014 ident: 10.1016/j.indag.2021.01.006_b15 – volume: vol. 9 year: 1998 ident: 10.1016/j.indag.2021.01.006_b16 – volume: Pi year: 2020 ident: 10.1016/j.indag.2021.01.006_b8 article-title: Character levels and character bounds publication-title: Forum Math. – volume: vol. 174 year: 2016 ident: 10.1016/j.indag.2021.01.006_b12 – ident: 10.1016/j.indag.2021.01.006_b17 doi: 10.1007/BFb0081546 – volume: 2 start-page: 871 year: 1951 ident: 10.1016/j.indag.2021.01.006_b5 article-title: Elementary divisors of AB and BA publication-title: Proc. Amer. Math. Soc. – ident: 10.1016/j.indag.2021.01.006_b1 – year: 1977 ident: 10.1016/j.indag.2021.01.006_b7 – volume: 78 start-page: 141 year: 1982 ident: 10.1016/j.indag.2021.01.006_b10 article-title: Infinite root systems, representations of graphs and invariant theory. II publication-title: J. Algebra doi: 10.1016/0021-8693(82)90105-3 – volume: 433 start-page: 618 year: 2010 ident: 10.1016/j.indag.2021.01.006_b2 article-title: Invariance of simultaneous similarity and equivalence of matrcies under extension of the ground field publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2010.03.022 – volume: 22 start-page: 295 year: 2018 ident: 10.1016/j.indag.2021.01.006_b6 article-title: Enumeration of commuting pairs in Lie algebras over finite fields publication-title: Annals Comb. doi: 10.1007/s00026-018-0390-4 – volume: vol. 131 year: 2001 ident: 10.1016/j.indag.2021.01.006_b13 – ident: 10.1016/j.indag.2021.01.006_b4 – volume: 9 start-page: 893 year: 1959 ident: 10.1016/j.indag.2021.01.006_b20 article-title: On the similarity transformation between a matrix and its transpose publication-title: Pacific J. Math. doi: 10.2140/pjm.1959.9.893 – volume: 10 start-page: 169 year: 1997 ident: 10.1016/j.indag.2021.01.006_b14 article-title: Separation of variables and the computation of Fourier transforms on finite groups. I publication-title: J. Amer. Math. Soc. doi: 10.1090/S0894-0347-97-00219-1 – volume: vol. 996 start-page: 74 year: 1983 ident: 10.1016/j.indag.2021.01.006_b11 article-title: Root systems, representations of quivers and invariant theory – volume: 56 start-page: 57 year: 1980 ident: 10.1016/j.indag.2021.01.006_b19 article-title: Representations of graphs and invariant theory publication-title: Invent. Math. doi: 10.1007/BF01403155 – volume: vol. 184 year: 2017 ident: 10.1016/j.indag.2021.01.006_b3 |
SSID | ssj0017026 |
Score | 2.2198718 |
Snippet | The singular value decomposition of a complex matrix is a fundamental concept in linear algebra and has proved extremely useful in many subjects. It is less... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 1083 |
SubjectTerms | Singular value decomposition over finite fields |
Title | On the singular value decomposition over finite fields and orbits of GU×GU |
URI | https://dx.doi.org/10.1016/j.indag.2021.01.006 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpn5YGR0MRx7WQsFX1QtSxE6hbZjo3CkFZtWPkb_CD-GD4nqUBCDEhZLrKl6LNz95303R1CNyowIfNJ5tnQozyqpfIE63FPCEZ8GTMTCqgdns3ZOKGPi96ihQZNLQzIKmvfX_l0563rN90aze4qz6HG15KPnmWHgSM24Icp5XDL7963Mo-A-27kGiz2YHXTechpvCDtfbFJIglc704Ye_RbdPoWcYYHaL-mirhffc0hauniCO3Ntn1WN8do-lRga2JI-EFPiqF3t8aZBqV4LcfCINLEJgdyiZ1gbYNFkeHlWublBi8NHiWfH6PkBCXDh-fB2KvHI3gqYFHpGckjQaFjmG8IiTKfSioYVb5hFhMqgtgCTk0cSPvTaq5DSg01JLScTMWUZ-EpahfLQp8hHEoiLQ_kRhJhEz4VRz2lhY4zxrmkkThHtw0s6arqgpE28rDX1KGYAoqpbx-fnSPWQJf-OMzU-um_Nl78d-Ml2gWrEn9doXa5ftPXli2UsuOuQwft9CfT8dxak8X9Fxn7v2o |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV29TsNADLZKGYAB8SvK7w2wEUgu10syMCD-CqVloRJbuEvuUBnSqi1CLLwGD8Ij8GLYaYJAQgxIlbIk0Z0cx7I_nz7bALuJZ33p8tTB0JM4wujEUbIeOEpJ7upIWl9R7XCrLRsdcXVXv6vAe1kLQ7TKwvePfXrurYsnh4U2D_vdLtX4IvioIzr0cmDDC2Zl07w8Y942PLo8xZ-8x_n52e1JwylGCziJJ8ORY3UQKkHdtlzLeZi6QgslReJaifsJ5UUorLCRp9HgTWB8Iayw3Ec8k0QiSH3cdwqmBboLGptw8PrFK_ECN5_xRtI5JF7Z6ignlVGe_YBZKffyZqE0Z-m3cPgtxJ0vwHyBTdnx-PMXoWKyJZhrfTV2HS5D8yZjeMvohIEIrIyahRuWGqKmF_wvRqxQZruEZlnOkBsylaWsN9Dd0ZD1LLvofLxddFagMxGlrUI162VmDZivuUbgGVjNFWaYSRTWE6NMlMog0CJUNdgv1RL3x2034pKP9hjnWoxJi7GLlytrIEvVxT-sJ8bA8NfC9f8u3IGZxm3rOr6-bDc3YJbejJlnm1AdDZ7MFkKVkd7OTYPB_aRt8RMgZPhW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+singular+value+decomposition+over+finite+fields+and+orbits+of+GU+%C3%97+GU&rft.jtitle=Indagationes+mathematicae&rft.au=Guralnick%2C+Robert+M.&rft.date=2021-09-01&rft.issn=0019-3577&rft.volume=32&rft.issue=5&rft.spage=1083&rft.epage=1094&rft_id=info:doi/10.1016%2Fj.indag.2021.01.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_indag_2021_01_006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-3577&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-3577&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-3577&client=summon |