A new two-stage low-light enhancement network with progressive attention fusion strategy
Low-light image enhancement is a very challenging subject in the field of computer vision such as visual surveillance, driving behavior analysis, and medical imaging . It has a large number of degradation problems such as accumulated noise, artifacts, and color distortion. Therefore, how to solve th...
Saved in:
Published in | Signal processing. Image communication Vol. 130; p. 117229 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Low-light image enhancement is a very challenging subject in the field of computer vision such as visual surveillance, driving behavior analysis, and medical imaging . It has a large number of degradation problems such as accumulated noise, artifacts, and color distortion. Therefore, how to solve the degradation problems and obtain clear images with high visual quality has become an important issue. It can effectively improve the performance of high-level computer vision tasks. In this study, we propose a new two-stage low-light enhancement network with a progressive attention fusion strategy, and the two hallmarks of this method are the use of global feature fusion (GFF) and local detail restoration (LDR), which can enrich the global content of the image and restore local details. Experimental results on the LOL dataset show that the proposed model can achieve good enhancement effects. Moreover, on the benchmark dataset without reference images, the proposed model also obtains a better NIQE score, which outperforms most existing state-of-the-art methods in both quantitative and qualitative evaluations. All these verify the effectiveness and superiority of the proposed method.
•Propose a two-stage low-light enhancement network with a progressive attention fusion strategy.•Design a global feature fusion block (GFF) to fuse features from different scales.•Propose a local detail restoration block (LDR), which can effectively reduce noise. |
---|---|
AbstractList | Low-light image enhancement is a very challenging subject in the field of computer vision such as visual surveillance, driving behavior analysis, and medical imaging . It has a large number of degradation problems such as accumulated noise, artifacts, and color distortion. Therefore, how to solve the degradation problems and obtain clear images with high visual quality has become an important issue. It can effectively improve the performance of high-level computer vision tasks. In this study, we propose a new two-stage low-light enhancement network with a progressive attention fusion strategy, and the two hallmarks of this method are the use of global feature fusion (GFF) and local detail restoration (LDR), which can enrich the global content of the image and restore local details. Experimental results on the LOL dataset show that the proposed model can achieve good enhancement effects. Moreover, on the benchmark dataset without reference images, the proposed model also obtains a better NIQE score, which outperforms most existing state-of-the-art methods in both quantitative and qualitative evaluations. All these verify the effectiveness and superiority of the proposed method.
•Propose a two-stage low-light enhancement network with a progressive attention fusion strategy.•Design a global feature fusion block (GFF) to fuse features from different scales.•Propose a local detail restoration block (LDR), which can effectively reduce noise. |
ArticleNumber | 117229 |
Author | Zhu, Hegui Liu, Yuelin Wang, Luyang Zhao, Qian Gao, Zhan |
Author_xml | – sequence: 1 givenname: Hegui orcidid: 0000-0002-6501-4097 surname: Zhu fullname: Zhu, Hegui email: zhuhegui@mail.neu.edu.cn organization: College of Sciences, Northeastern University, Shenyang, 110819, China – sequence: 2 givenname: Luyang surname: Wang fullname: Wang, Luyang organization: College of Sciences, Northeastern University, Shenyang, 110819, China – sequence: 3 givenname: Zhan surname: Gao fullname: Gao, Zhan organization: College of Sciences, Northeastern University, Shenyang, 110819, China – sequence: 4 givenname: Yuelin surname: Liu fullname: Liu, Yuelin organization: College of Sciences, Northeastern University, Shenyang, 110819, China – sequence: 5 givenname: Qian surname: Zhao fullname: Zhao, Qian organization: College of Sciences, Northeastern University, Shenyang, 110819, China |
BookMark | eNp9kM1OwzAQhH0oEm3hCbj4BRJsp07sA4eq4k-qxAUkbpbjbFKX1q5s06hvj0s5oz3MYWZWu98MTZx3gNAdJSUltL7flnavBygZYYuS0oYxOUFTIllVcFnzazSLcUtIdomcos8ldjDiNPoiplzDOz8WOztsEga30c7AHlzKmZwIX3i0aYMPwQ8BYrRHwDql7FvvcP8dzxJT0AmG0w266vUuwu2fztHH0-P76qVYvz2_rpbrwtBapKKjglSG9k2juSCG1ELwWmjRdmxRgWCLPLyVVNamBcKBQw8V0VI3pG2Yaao5qi57TfAxBujVIWQA4aQoUWcgaqt-gagzEHUBklsPlxbk044WgorGQv62swFMUp23__Z_ALeCb4s |
Cites_doi | 10.1016/j.patcog.2016.06.008 10.1007/s11263-020-01407-x 10.1109/TMM.2020.3039361 10.1109/TIP.2018.2810539 10.1109/TIP.2018.2794218 10.1109/LSP.2012.2227726 10.1109/CVPR52688.2022.00581 10.1007/BF03178082 10.1007/s11263-021-01466-8 10.1049/iet-ipr:20070012 10.1109/TIP.2009.2021548 10.1109/CVPR52688.2022.00555 10.1109/TMM.2020.2969790 10.1016/j.sigpro.2016.05.031 10.1109/TIP.2010.2068555 10.36227/techrxiv.17198216 10.1109/TIP.2016.2639450 10.1109/TIP.2021.3051462 10.1109/CVPR52688.2022.01719 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.image.2024.117229 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Computer Science |
ExternalDocumentID | 10_1016_j_image_2024_117229 S0923596524001309 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABDPE ABFNM ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K WUQ XPP ZMT ~G- AATTM AAYWO AAYXX AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c168t-d1803c1f77a580c0688568a8bd243e8242425b9196cbe05e5efe30a9a70b72c73 |
IEDL.DBID | .~1 |
ISSN | 0923-5965 |
IngestDate | Tue Jul 01 03:18:00 EDT 2025 Thu Jan 23 08:30:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Attention mechanism Local detail restoration Progressive attention fusion Global feature fusion Low-light image enhancement |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c168t-d1803c1f77a580c0688568a8bd243e8242425b9196cbe05e5efe30a9a70b72c73 |
ORCID | 0000-0002-6501-4097 |
ParticipantIDs | crossref_primary_10_1016_j_image_2024_117229 elsevier_sciencedirect_doi_10_1016_j_image_2024_117229 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2025 2025-01-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
PublicationDecade | 2020 |
PublicationTitle | Signal processing. Image communication |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Zhang, Fu, Shen, Zheng, Jia (b29) 2019 Fu, Zeng, Huang, Zhang, Ding (b4) 2016 Kingma, Ba (b35) 2014 Zamir, Arora, Khan, Hayat, Khan, Yang, Shao (b26) 2021 Hao, Han, Guo, Xu, Wang (b5) 2020; 22 Li, Liu, Yang, Sun, Guo (b28) 2018; 27 Xiao, Lian, Luo, Li (b23) 2018 Zhang, Zhang, Guo (b6) 2019 Jiang, Gong, Liu, Cheng, Fang, Shen, Yang, Zhou, Wang (b21) 2021; 30 Arici, Dikbas, Altunbasak (b11) 2009; 18 Lv, Li, Lu (b18) 2021; 129 Z. Zhang, H. Zheng, R. Hong, M. Xu, S. Yan, M. Wang, Deep color consistent network for low-light image enhancement, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 1899–1908. Hai, Xuan, Yang, Hao, Zou, Lin, Han (b32) 2021 Yang, Wang, Fang, Wang, Liu (b20) 2020 W. Wu, J. Weng, P. Zhang, X. Wang, W. Yang, J. Jiang, Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5901–5910. Guo, Li, Ling (b27) 2017; 26 Cai, Gu, Zhang (b30) 2018; 27 Pisano, Zong, Hemminger, DeLuca, Johnston, Muller, Braeuning, Pizer (b2) 1998; 11 Zhang, Guo, Ma, Liu, Zhang (b16) 2021; 129 Lim, Kim (b10) 2021; 23 Lore, Akintayo, Sarkar (b14) 2017; 61 X. Xu, R. Wang, C.-W. Fu, J. Jia, SNR-aware low-light image enhancement, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 17714–17724. Lv, Lu, Wu, Lim (b7) 2018; Vol. 220 Han, Yang, Lee (b3) 2011; 20 Vonikakis, Andreadis, Gasteratos (b39) 2008; 2 Liu, Ma, Zhang, Fan, Luo (b13) 2021 Woo, Park, Lee, Kweon (b25) 2018; vol. 11211 Chen, Chen, Xu, Koltun (b17) 2018 L. Ma, T. Ma, R. Liu, X. Fan, Z. Luo, Toward fast, flexible, and robust low-light image enhancement, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5637–5646. Li, Guo, Loy (b31) 2021 Zamir, Arora, Khan, Hayat, Khan, Yang, Shao (b24) 2020; vol. 12370 Fu, Zeng, Huang, Liao, Ding, Paisley (b36) 2016; 129 Han, Zeng, Shi, Xiao, Chen, Chen (b1) 2023; 20 Wei, Wang, Yang, Liu (b15) 2018 Mittal, Soundararajan, Bovik (b40) 2013; 20 Lee, Lee, Kim (b38) 2012 Guo, Li, Guo, Loy, Hou, Kwong, Cong (b9) 2020 Cai, Xu, Guo, Jia, Hu, Tao (b12) 2017 Choi, Jang, Kim, Kim (b8) 2007; vol. 1-11 Fu, Zeng, Huang, Ding, Zhang (b37) 2013 Lore (10.1016/j.image.2024.117229_b14) 2017; 61 Zamir (10.1016/j.image.2024.117229_b24) 2020; vol. 12370 Arici (10.1016/j.image.2024.117229_b11) 2009; 18 Cai (10.1016/j.image.2024.117229_b30) 2018; 27 Wang (10.1016/j.image.2024.117229_b29) 2019 Woo (10.1016/j.image.2024.117229_b25) 2018; vol. 11211 Li (10.1016/j.image.2024.117229_b28) 2018; 27 Guo (10.1016/j.image.2024.117229_b9) 2020 Chen (10.1016/j.image.2024.117229_b17) 2018 Guo (10.1016/j.image.2024.117229_b27) 2017; 26 Hao (10.1016/j.image.2024.117229_b5) 2020; 22 Zhang (10.1016/j.image.2024.117229_b6) 2019 Wei (10.1016/j.image.2024.117229_b15) 2018 Vonikakis (10.1016/j.image.2024.117229_b39) 2008; 2 10.1016/j.image.2024.117229_b19 Liu (10.1016/j.image.2024.117229_b13) 2021 Cai (10.1016/j.image.2024.117229_b12) 2017 Xiao (10.1016/j.image.2024.117229_b23) 2018 10.1016/j.image.2024.117229_b33 10.1016/j.image.2024.117229_b34 Fu (10.1016/j.image.2024.117229_b37) 2013 Han (10.1016/j.image.2024.117229_b1) 2023; 20 Zamir (10.1016/j.image.2024.117229_b26) 2021 Pisano (10.1016/j.image.2024.117229_b2) 1998; 11 Li (10.1016/j.image.2024.117229_b31) 2021 Fu (10.1016/j.image.2024.117229_b36) 2016; 129 Kingma (10.1016/j.image.2024.117229_b35) 2014 Choi (10.1016/j.image.2024.117229_b8) 2007; vol. 1-11 Mittal (10.1016/j.image.2024.117229_b40) 2013; 20 Zhang (10.1016/j.image.2024.117229_b16) 2021; 129 Jiang (10.1016/j.image.2024.117229_b21) 2021; 30 Lim (10.1016/j.image.2024.117229_b10) 2021; 23 Yang (10.1016/j.image.2024.117229_b20) 2020 Lv (10.1016/j.image.2024.117229_b7) 2018; Vol. 220 Lv (10.1016/j.image.2024.117229_b18) 2021; 129 Hai (10.1016/j.image.2024.117229_b32) 2021 Lee (10.1016/j.image.2024.117229_b38) 2012 Han (10.1016/j.image.2024.117229_b3) 2011; 20 10.1016/j.image.2024.117229_b22 Fu (10.1016/j.image.2024.117229_b4) 2016 |
References_xml | – volume: 129 start-page: 2175 year: 2021 end-page: 2193 ident: b18 article-title: Attention guided low-light image enhancement with a large scale low-light simulation dataset publication-title: Int. J. Comput. Vis. – volume: 27 start-page: 2828 year: 2018 end-page: 2841 ident: b28 article-title: Structure-revealing low-light image enhancement via robust retinex model publication-title: IEEE Trans. Image Process. – volume: 18 start-page: 1921 year: 2009 end-page: 1935 ident: b11 article-title: A histogram modification framework and its application for image contrast enhancement publication-title: IEEE Trans. Image Process. – start-page: 2782 year: 2016 end-page: 2790 ident: b4 article-title: A weighted variational model for simultaneous reflectance and illumination estimation publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1777 year: 2020 end-page: 1786 ident: b9 article-title: Zero-reference deep curve estimation for low-light image enhancement publication-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 23 start-page: 4272 year: 2021 end-page: 4284 ident: b10 article-title: DSLR: deep stacked laplacian restorer for low-light image enhancement publication-title: IEEE Trans. Multimed. – start-page: 3291 year: 2018 end-page: 3300 ident: b17 article-title: Learning to see in the dark publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 11 start-page: 193 year: 1998 end-page: 200 ident: b2 article-title: Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms publication-title: J. Digit. Imaging – volume: 61 start-page: 650 year: 2017 end-page: 662 ident: b14 article-title: LLNet: a deep autoencoder approach to natural low-light image enhancement publication-title: Pattern Recognit. – volume: 26 start-page: 982 year: 2017 end-page: 993 ident: b27 article-title: LIME: low-light image enhancement via illumination map estimation publication-title: IEEE Trans. Image Process. – start-page: 3060 year: 2020 end-page: 3069 ident: b20 article-title: From fidelity to perceptual quality: a semi-supervised approach for low-light image enhancement publication-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: vol. 12370 start-page: 492 year: 2020 end-page: 511 ident: b24 article-title: Learning enriched features for real image restoration and enhancement publication-title: Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, Uk, August 23-28, 2020, Proceedings, Part Xxv – year: 2021 ident: b31 article-title: Learning to enhance low-light image via zero-reference deep curve estimation – volume: 27 start-page: 2049 year: 2018 end-page: 2062 ident: b30 article-title: Learning a deep single image contrast enhancer from multi-exposure images publication-title: IEEE Trans. Image Process. – year: 2021 ident: b32 article-title: R2RNet: low-light image enhancement via real-low to real-normal network – reference: W. Wu, J. Weng, P. Zhang, X. Wang, W. Yang, J. Jiang, Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5901–5910. – reference: Z. Zhang, H. Zheng, R. Hong, M. Xu, S. Yan, M. Wang, Deep color consistent network for low-light image enhancement, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 1899–1908. – start-page: 14816 year: 2021 end-page: 14826 ident: b26 article-title: Multi-stage progressive image restoration publication-title: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: vol. 11211 start-page: 3 year: 2018 end-page: 19 ident: b25 article-title: Cbam: convolutional block attention module publication-title: Computer Vision - ECCV 2018, Pt Vii – start-page: 4020 year: 2017 end-page: 4029 ident: b12 article-title: A joint intrinsic-extrinsic prior model for retinex publication-title: 2017 IEEE International Conference on Computer Vision – volume: 30 start-page: 2340 year: 2021 end-page: 2349 ident: b21 article-title: Enlightengan: deep light enhancement without paired supervision publication-title: IEEE Trans. Image Process. – volume: Vol. 220 start-page: 1 year: 2018 end-page: 13 ident: b7 article-title: MBLLEN: low-light image/video enhancement using cnns publication-title: Bmvc – volume: 20 start-page: 86 year: 2023 ident: b1 article-title: Bic-net: learning efficient spatio-temporal relation for text-video retrieval publication-title: ACM Multim Comput. – start-page: 1085 year: 2013 end-page: 1088 ident: b37 article-title: A variational framework for single low light image enhancement using bright channel prior publication-title: 2013 IEEE Global Conference on Signal and Information Processing – volume: 2 start-page: 19 year: 2008 end-page: 34 ident: b39 article-title: Fast centre-surround contrast modification publication-title: IET Image Process. – reference: X. Xu, R. Wang, C.-W. Fu, J. Jia, SNR-aware low-light image enhancement, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 17714–17724. – reference: L. Ma, T. Ma, R. Liu, X. Fan, Z. Luo, Toward fast, flexible, and robust low-light image enhancement, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5637–5646. – volume: vol. 1-11 start-page: 3948 year: 2007 end-page: 3951 ident: b8 article-title: Color image enhancement based on single-scale retinex with a jnd-based nonlinear filter publication-title: 2007 IEEE International Symposium on Circuits and Systems – start-page: 327 year: 2018 end-page: 331 ident: b23 article-title: Weighted res-unet for high-quality retina vessel segmentation publication-title: 2018 Ninth International Conference on Information Technology in Medicine and Education – start-page: 6842 year: 2019 end-page: 6850 ident: b29 article-title: Underexposed photo enhancement using deep illumination estimation publication-title: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 129 start-page: 1013 year: 2021 end-page: 1037 ident: b16 article-title: Beyond brightening low-light images publication-title: Int. J. Comput. Vis. – start-page: 1632 year: 2019 end-page: 1640 ident: b6 article-title: Kindling the darkness: a practical low-light image enhancer publication-title: Proceedings of the 27th ACM International Conference on Multimedia – start-page: 965 year: 2012 end-page: 968 ident: b38 article-title: Contrast enhancement based on layered difference representation publication-title: 2012 IEEE International Conference on Image Processing – start-page: 10556 year: 2021 end-page: 10565 ident: b13 article-title: Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement publication-title: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 20 start-page: 209 year: 2013 end-page: 212 ident: b40 article-title: Making a “completely blind” image quality analyzer publication-title: IEEE Signal Process. Lett. – volume: 20 start-page: 506 year: 2011 end-page: 512 ident: b3 article-title: A novel 3-d color histogram equalization method with uniform 1-d gray scale histogram publication-title: IEEE Trans. Image Process. – year: 2014 ident: b35 article-title: Adam: a method for stochastic optimization – volume: 129 start-page: 82 year: 2016 end-page: 96 ident: b36 article-title: A fusion-based enhancing method for weakly illuminated images publication-title: Signal Process. – volume: 22 start-page: 3025 year: 2020 end-page: 3038 ident: b5 article-title: Low-light image enhancement with semi-decoupled decomposition publication-title: IEEE Trans. Multimed. – year: 2018 ident: b15 article-title: Deep retinex decomposition for low-light enhancement – volume: 61 start-page: 650 issue: SI year: 2017 ident: 10.1016/j.image.2024.117229_b14 article-title: LLNet: a deep autoencoder approach to natural low-light image enhancement publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.06.008 – start-page: 1085 year: 2013 ident: 10.1016/j.image.2024.117229_b37 article-title: A variational framework for single low light image enhancement using bright channel prior – volume: 129 start-page: 1013 issue: 4 year: 2021 ident: 10.1016/j.image.2024.117229_b16 article-title: Beyond brightening low-light images publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-020-01407-x – volume: 23 start-page: 4272 year: 2021 ident: 10.1016/j.image.2024.117229_b10 article-title: DSLR: deep stacked laplacian restorer for low-light image enhancement publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2020.3039361 – start-page: 3060 year: 2020 ident: 10.1016/j.image.2024.117229_b20 article-title: From fidelity to perceptual quality: a semi-supervised approach for low-light image enhancement – volume: 27 start-page: 2828 issue: 6 year: 2018 ident: 10.1016/j.image.2024.117229_b28 article-title: Structure-revealing low-light image enhancement via robust retinex model publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2810539 – volume: 27 start-page: 2049 issue: 4 year: 2018 ident: 10.1016/j.image.2024.117229_b30 article-title: Learning a deep single image contrast enhancer from multi-exposure images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2794218 – volume: 20 start-page: 209 issue: 3 year: 2013 ident: 10.1016/j.image.2024.117229_b40 article-title: Making a “completely blind” image quality analyzer publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2012.2227726 – start-page: 2782 year: 2016 ident: 10.1016/j.image.2024.117229_b4 article-title: A weighted variational model for simultaneous reflectance and illumination estimation – ident: 10.1016/j.image.2024.117229_b33 doi: 10.1109/CVPR52688.2022.00581 – volume: 11 start-page: 193 issue: 4 year: 1998 ident: 10.1016/j.image.2024.117229_b2 article-title: Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms publication-title: J. Digit. Imaging doi: 10.1007/BF03178082 – volume: vol. 11211 start-page: 3 year: 2018 ident: 10.1016/j.image.2024.117229_b25 article-title: Cbam: convolutional block attention module – year: 2021 ident: 10.1016/j.image.2024.117229_b31 – start-page: 327 year: 2018 ident: 10.1016/j.image.2024.117229_b23 article-title: Weighted res-unet for high-quality retina vessel segmentation – volume: 129 start-page: 2175 issue: 7 year: 2021 ident: 10.1016/j.image.2024.117229_b18 article-title: Attention guided low-light image enhancement with a large scale low-light simulation dataset publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-021-01466-8 – volume: 2 start-page: 19 issue: 1 year: 2008 ident: 10.1016/j.image.2024.117229_b39 article-title: Fast centre-surround contrast modification publication-title: IET Image Process. doi: 10.1049/iet-ipr:20070012 – volume: 18 start-page: 1921 issue: 9 year: 2009 ident: 10.1016/j.image.2024.117229_b11 article-title: A histogram modification framework and its application for image contrast enhancement publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2009.2021548 – start-page: 1632 year: 2019 ident: 10.1016/j.image.2024.117229_b6 article-title: Kindling the darkness: a practical low-light image enhancer – year: 2018 ident: 10.1016/j.image.2024.117229_b15 – start-page: 1777 year: 2020 ident: 10.1016/j.image.2024.117229_b9 article-title: Zero-reference deep curve estimation for low-light image enhancement – start-page: 3291 year: 2018 ident: 10.1016/j.image.2024.117229_b17 article-title: Learning to see in the dark – ident: 10.1016/j.image.2024.117229_b22 doi: 10.1109/CVPR52688.2022.00555 – volume: 22 start-page: 3025 issue: 12 year: 2020 ident: 10.1016/j.image.2024.117229_b5 article-title: Low-light image enhancement with semi-decoupled decomposition publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2020.2969790 – volume: 129 start-page: 82 year: 2016 ident: 10.1016/j.image.2024.117229_b36 article-title: A fusion-based enhancing method for weakly illuminated images publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.05.031 – year: 2021 ident: 10.1016/j.image.2024.117229_b32 – volume: 20 start-page: 506 issue: 2 year: 2011 ident: 10.1016/j.image.2024.117229_b3 article-title: A novel 3-d color histogram equalization method with uniform 1-d gray scale histogram publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2068555 – start-page: 10556 year: 2021 ident: 10.1016/j.image.2024.117229_b13 article-title: Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement – volume: vol. 12370 start-page: 492 year: 2020 ident: 10.1016/j.image.2024.117229_b24 article-title: Learning enriched features for real image restoration and enhancement – start-page: 965 year: 2012 ident: 10.1016/j.image.2024.117229_b38 article-title: Contrast enhancement based on layered difference representation – start-page: 14816 year: 2021 ident: 10.1016/j.image.2024.117229_b26 article-title: Multi-stage progressive image restoration – volume: vol. 1-11 start-page: 3948 year: 2007 ident: 10.1016/j.image.2024.117229_b8 article-title: Color image enhancement based on single-scale retinex with a jnd-based nonlinear filter – ident: 10.1016/j.image.2024.117229_b34 doi: 10.36227/techrxiv.17198216 – volume: 26 start-page: 982 issue: 2 year: 2017 ident: 10.1016/j.image.2024.117229_b27 article-title: LIME: low-light image enhancement via illumination map estimation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2639450 – start-page: 6842 year: 2019 ident: 10.1016/j.image.2024.117229_b29 article-title: Underexposed photo enhancement using deep illumination estimation – start-page: 4020 year: 2017 ident: 10.1016/j.image.2024.117229_b12 article-title: A joint intrinsic-extrinsic prior model for retinex – year: 2014 ident: 10.1016/j.image.2024.117229_b35 – volume: 20 start-page: 86 issue: 3 year: 2023 ident: 10.1016/j.image.2024.117229_b1 article-title: Bic-net: learning efficient spatio-temporal relation for text-video retrieval publication-title: ACM Multim Comput. – volume: 30 start-page: 2340 year: 2021 ident: 10.1016/j.image.2024.117229_b21 article-title: Enlightengan: deep light enhancement without paired supervision publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3051462 – ident: 10.1016/j.image.2024.117229_b19 doi: 10.1109/CVPR52688.2022.01719 – volume: Vol. 220 start-page: 1 year: 2018 ident: 10.1016/j.image.2024.117229_b7 article-title: MBLLEN: low-light image/video enhancement using cnns |
SSID | ssj0002409 |
Score | 2.3990808 |
Snippet | Low-light image enhancement is a very challenging subject in the field of computer vision such as visual surveillance, driving behavior analysis, and medical... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 117229 |
SubjectTerms | Attention mechanism Global feature fusion Local detail restoration Low-light image enhancement Progressive attention fusion |
Title | A new two-stage low-light enhancement network with progressive attention fusion strategy |
URI | https://dx.doi.org/10.1016/j.image.2024.117229 |
Volume | 130 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELUqWGDgo4AoH5UHRkwTx46dsaqoCoguUKlbFCcuFJW2oikVC7-dOycRRUIMrE4sRWf77vny7h0hF5kxAPJtwKyVhgkFFxSTCc4EREs74komEVYj3_fD3kDcDuWwRjpVLQzSKkvfX_h0563LkVZpzdZ8PG49eIBNZBRKZEGCJ8YiPiEU7vKrz2-aBzwt9PZ4wPDtSnnIcbzGr3Bo4ZLIBf685A5n_hKd1iJOd4_slFCRtouv2Sc1O62T3RI20vJQLmCo6sxQjdXJ9prM4AEZtimAZ5qvZgyw4JOlk9mKTfBWTu30GZcdU4TwjmOEU0zNUsfbQorsu6UowelIkXS0xOQaXRSSth-HZNC9fuz0WNlRgaV-qHOW-doLUn-kVCK1l2LDGRnqRJuMi8BqLBXh0kRwKlNjPWmlHdnAS6JEeUbxVAVHZGM6m9pjQmVkffAFWWBQ8k-IRPhpFGWRTrWGwKsa5LKyZDwvhDPiilH2EjvDx2j4uDB8g4SVteMf6x-Da_9r4sl_J56SLY69fF065Yxs5G9Lew4AIzdNt4OaZLN9c9frfwH5PM_b |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BOwAD34jy6YERq4ljJ_ZYVaACbRdA6hbFiQtF0CLaUvHvucsHAgkxsFq2FF3id8-X53cAZ5m1SPJdwJ1TlssIDyg2k4JLzJZuKCKVGLqN3OuHnXt5PVCDJWhXd2FIVllif4HpOVqXI80yms3X0ah56yE3USZUpIJEJDbLUCd3KlWDeuvqptP_AmScUFjuiYDTgsp8KJd5jV5w3-I5UUj6fylyqvlLgvqWdC43Yb1ki6xVPNAWLLnxNmyUzJGV-3KKQ1VzhmpsG9a-OQ3uwKDFkD-z2WLCkQ4-OPY8WfBnOpgzN36kN09VQpyTi8IZVWdZLt0iley7Y-TCmesi2XBO9TU2LVxtP3bh_vLirt3hZVMFnvqhnvHM116Q-sMoSpT2Uuo5o0KdaJsJGThNt0WEsgY3Zmqdp5xyQxd4iUkiz0YijYI9qI0nY7cPTBnnIxxkgSXXPykT6afGZEanWmPujRpwXkUyfi28M-JKVPYU54GPKfBxEfgGhFW04x-fQIzo_tfCg_8uPIWVzl2vG3ev-jeHsCqotW9eXTmC2uxt7o6Rb8zsSfk9fQIqT9KM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+two-stage+low-light+enhancement+network+with+progressive+attention+fusion+strategy&rft.jtitle=Signal+processing.+Image+communication&rft.au=Zhu%2C+Hegui&rft.au=Wang%2C+Luyang&rft.au=Gao%2C+Zhan&rft.au=Liu%2C+Yuelin&rft.date=2025-01-01&rft.pub=Elsevier+B.V&rft.issn=0923-5965&rft.volume=130&rft_id=info:doi/10.1016%2Fj.image.2024.117229&rft.externalDocID=S0923596524001309 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0923-5965&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0923-5965&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0923-5965&client=summon |