A new two-stage low-light enhancement network with progressive attention fusion strategy

Low-light image enhancement is a very challenging subject in the field of computer vision such as visual surveillance, driving behavior analysis, and medical imaging . It has a large number of degradation problems such as accumulated noise, artifacts, and color distortion. Therefore, how to solve th...

Full description

Saved in:
Bibliographic Details
Published inSignal processing. Image communication Vol. 130; p. 117229
Main Authors Zhu, Hegui, Wang, Luyang, Gao, Zhan, Liu, Yuelin, Zhao, Qian
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Low-light image enhancement is a very challenging subject in the field of computer vision such as visual surveillance, driving behavior analysis, and medical imaging . It has a large number of degradation problems such as accumulated noise, artifacts, and color distortion. Therefore, how to solve the degradation problems and obtain clear images with high visual quality has become an important issue. It can effectively improve the performance of high-level computer vision tasks. In this study, we propose a new two-stage low-light enhancement network with a progressive attention fusion strategy, and the two hallmarks of this method are the use of global feature fusion (GFF) and local detail restoration (LDR), which can enrich the global content of the image and restore local details. Experimental results on the LOL dataset show that the proposed model can achieve good enhancement effects. Moreover, on the benchmark dataset without reference images, the proposed model also obtains a better NIQE score, which outperforms most existing state-of-the-art methods in both quantitative and qualitative evaluations. All these verify the effectiveness and superiority of the proposed method. •Propose a two-stage low-light enhancement network with a progressive attention fusion strategy.•Design a global feature fusion block (GFF) to fuse features from different scales.•Propose a local detail restoration block (LDR), which can effectively reduce noise.
AbstractList Low-light image enhancement is a very challenging subject in the field of computer vision such as visual surveillance, driving behavior analysis, and medical imaging . It has a large number of degradation problems such as accumulated noise, artifacts, and color distortion. Therefore, how to solve the degradation problems and obtain clear images with high visual quality has become an important issue. It can effectively improve the performance of high-level computer vision tasks. In this study, we propose a new two-stage low-light enhancement network with a progressive attention fusion strategy, and the two hallmarks of this method are the use of global feature fusion (GFF) and local detail restoration (LDR), which can enrich the global content of the image and restore local details. Experimental results on the LOL dataset show that the proposed model can achieve good enhancement effects. Moreover, on the benchmark dataset without reference images, the proposed model also obtains a better NIQE score, which outperforms most existing state-of-the-art methods in both quantitative and qualitative evaluations. All these verify the effectiveness and superiority of the proposed method. •Propose a two-stage low-light enhancement network with a progressive attention fusion strategy.•Design a global feature fusion block (GFF) to fuse features from different scales.•Propose a local detail restoration block (LDR), which can effectively reduce noise.
ArticleNumber 117229
Author Zhu, Hegui
Liu, Yuelin
Wang, Luyang
Zhao, Qian
Gao, Zhan
Author_xml – sequence: 1
  givenname: Hegui
  orcidid: 0000-0002-6501-4097
  surname: Zhu
  fullname: Zhu, Hegui
  email: zhuhegui@mail.neu.edu.cn
  organization: College of Sciences, Northeastern University, Shenyang, 110819, China
– sequence: 2
  givenname: Luyang
  surname: Wang
  fullname: Wang, Luyang
  organization: College of Sciences, Northeastern University, Shenyang, 110819, China
– sequence: 3
  givenname: Zhan
  surname: Gao
  fullname: Gao, Zhan
  organization: College of Sciences, Northeastern University, Shenyang, 110819, China
– sequence: 4
  givenname: Yuelin
  surname: Liu
  fullname: Liu, Yuelin
  organization: College of Sciences, Northeastern University, Shenyang, 110819, China
– sequence: 5
  givenname: Qian
  surname: Zhao
  fullname: Zhao, Qian
  organization: College of Sciences, Northeastern University, Shenyang, 110819, China
BookMark eNp9kM1OwzAQhH0oEm3hCbj4BRJsp07sA4eq4k-qxAUkbpbjbFKX1q5s06hvj0s5oz3MYWZWu98MTZx3gNAdJSUltL7flnavBygZYYuS0oYxOUFTIllVcFnzazSLcUtIdomcos8ldjDiNPoiplzDOz8WOztsEga30c7AHlzKmZwIX3i0aYMPwQ8BYrRHwDql7FvvcP8dzxJT0AmG0w266vUuwu2fztHH0-P76qVYvz2_rpbrwtBapKKjglSG9k2juSCG1ELwWmjRdmxRgWCLPLyVVNamBcKBQw8V0VI3pG2Yaao5qi57TfAxBujVIWQA4aQoUWcgaqt-gagzEHUBklsPlxbk044WgorGQv62swFMUp23__Z_ALeCb4s
Cites_doi 10.1016/j.patcog.2016.06.008
10.1007/s11263-020-01407-x
10.1109/TMM.2020.3039361
10.1109/TIP.2018.2810539
10.1109/TIP.2018.2794218
10.1109/LSP.2012.2227726
10.1109/CVPR52688.2022.00581
10.1007/BF03178082
10.1007/s11263-021-01466-8
10.1049/iet-ipr:20070012
10.1109/TIP.2009.2021548
10.1109/CVPR52688.2022.00555
10.1109/TMM.2020.2969790
10.1016/j.sigpro.2016.05.031
10.1109/TIP.2010.2068555
10.36227/techrxiv.17198216
10.1109/TIP.2016.2639450
10.1109/TIP.2021.3051462
10.1109/CVPR52688.2022.01719
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.image.2024.117229
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
ExternalDocumentID 10_1016_j_image_2024_117229
S0923596524001309
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABDPE
ABFNM
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c168t-d1803c1f77a580c0688568a8bd243e8242425b9196cbe05e5efe30a9a70b72c73
IEDL.DBID .~1
ISSN 0923-5965
IngestDate Tue Jul 01 03:18:00 EDT 2025
Thu Jan 23 08:30:51 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Attention mechanism
Local detail restoration
Progressive attention fusion
Global feature fusion
Low-light image enhancement
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c168t-d1803c1f77a580c0688568a8bd243e8242425b9196cbe05e5efe30a9a70b72c73
ORCID 0000-0002-6501-4097
ParticipantIDs crossref_primary_10_1016_j_image_2024_117229
elsevier_sciencedirect_doi_10_1016_j_image_2024_117229
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationTitle Signal processing. Image communication
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Zhang, Fu, Shen, Zheng, Jia (b29) 2019
Fu, Zeng, Huang, Zhang, Ding (b4) 2016
Kingma, Ba (b35) 2014
Zamir, Arora, Khan, Hayat, Khan, Yang, Shao (b26) 2021
Hao, Han, Guo, Xu, Wang (b5) 2020; 22
Li, Liu, Yang, Sun, Guo (b28) 2018; 27
Xiao, Lian, Luo, Li (b23) 2018
Zhang, Zhang, Guo (b6) 2019
Jiang, Gong, Liu, Cheng, Fang, Shen, Yang, Zhou, Wang (b21) 2021; 30
Arici, Dikbas, Altunbasak (b11) 2009; 18
Lv, Li, Lu (b18) 2021; 129
Z. Zhang, H. Zheng, R. Hong, M. Xu, S. Yan, M. Wang, Deep color consistent network for low-light image enhancement, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 1899–1908.
Hai, Xuan, Yang, Hao, Zou, Lin, Han (b32) 2021
Yang, Wang, Fang, Wang, Liu (b20) 2020
W. Wu, J. Weng, P. Zhang, X. Wang, W. Yang, J. Jiang, Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5901–5910.
Guo, Li, Ling (b27) 2017; 26
Cai, Gu, Zhang (b30) 2018; 27
Pisano, Zong, Hemminger, DeLuca, Johnston, Muller, Braeuning, Pizer (b2) 1998; 11
Zhang, Guo, Ma, Liu, Zhang (b16) 2021; 129
Lim, Kim (b10) 2021; 23
Lore, Akintayo, Sarkar (b14) 2017; 61
X. Xu, R. Wang, C.-W. Fu, J. Jia, SNR-aware low-light image enhancement, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 17714–17724.
Lv, Lu, Wu, Lim (b7) 2018; Vol. 220
Han, Yang, Lee (b3) 2011; 20
Vonikakis, Andreadis, Gasteratos (b39) 2008; 2
Liu, Ma, Zhang, Fan, Luo (b13) 2021
Woo, Park, Lee, Kweon (b25) 2018; vol. 11211
Chen, Chen, Xu, Koltun (b17) 2018
L. Ma, T. Ma, R. Liu, X. Fan, Z. Luo, Toward fast, flexible, and robust low-light image enhancement, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5637–5646.
Li, Guo, Loy (b31) 2021
Zamir, Arora, Khan, Hayat, Khan, Yang, Shao (b24) 2020; vol. 12370
Fu, Zeng, Huang, Liao, Ding, Paisley (b36) 2016; 129
Han, Zeng, Shi, Xiao, Chen, Chen (b1) 2023; 20
Wei, Wang, Yang, Liu (b15) 2018
Mittal, Soundararajan, Bovik (b40) 2013; 20
Lee, Lee, Kim (b38) 2012
Guo, Li, Guo, Loy, Hou, Kwong, Cong (b9) 2020
Cai, Xu, Guo, Jia, Hu, Tao (b12) 2017
Choi, Jang, Kim, Kim (b8) 2007; vol. 1-11
Fu, Zeng, Huang, Ding, Zhang (b37) 2013
Lore (10.1016/j.image.2024.117229_b14) 2017; 61
Zamir (10.1016/j.image.2024.117229_b24) 2020; vol. 12370
Arici (10.1016/j.image.2024.117229_b11) 2009; 18
Cai (10.1016/j.image.2024.117229_b30) 2018; 27
Wang (10.1016/j.image.2024.117229_b29) 2019
Woo (10.1016/j.image.2024.117229_b25) 2018; vol. 11211
Li (10.1016/j.image.2024.117229_b28) 2018; 27
Guo (10.1016/j.image.2024.117229_b9) 2020
Chen (10.1016/j.image.2024.117229_b17) 2018
Guo (10.1016/j.image.2024.117229_b27) 2017; 26
Hao (10.1016/j.image.2024.117229_b5) 2020; 22
Zhang (10.1016/j.image.2024.117229_b6) 2019
Wei (10.1016/j.image.2024.117229_b15) 2018
Vonikakis (10.1016/j.image.2024.117229_b39) 2008; 2
10.1016/j.image.2024.117229_b19
Liu (10.1016/j.image.2024.117229_b13) 2021
Cai (10.1016/j.image.2024.117229_b12) 2017
Xiao (10.1016/j.image.2024.117229_b23) 2018
10.1016/j.image.2024.117229_b33
10.1016/j.image.2024.117229_b34
Fu (10.1016/j.image.2024.117229_b37) 2013
Han (10.1016/j.image.2024.117229_b1) 2023; 20
Zamir (10.1016/j.image.2024.117229_b26) 2021
Pisano (10.1016/j.image.2024.117229_b2) 1998; 11
Li (10.1016/j.image.2024.117229_b31) 2021
Fu (10.1016/j.image.2024.117229_b36) 2016; 129
Kingma (10.1016/j.image.2024.117229_b35) 2014
Choi (10.1016/j.image.2024.117229_b8) 2007; vol. 1-11
Mittal (10.1016/j.image.2024.117229_b40) 2013; 20
Zhang (10.1016/j.image.2024.117229_b16) 2021; 129
Jiang (10.1016/j.image.2024.117229_b21) 2021; 30
Lim (10.1016/j.image.2024.117229_b10) 2021; 23
Yang (10.1016/j.image.2024.117229_b20) 2020
Lv (10.1016/j.image.2024.117229_b7) 2018; Vol. 220
Lv (10.1016/j.image.2024.117229_b18) 2021; 129
Hai (10.1016/j.image.2024.117229_b32) 2021
Lee (10.1016/j.image.2024.117229_b38) 2012
Han (10.1016/j.image.2024.117229_b3) 2011; 20
10.1016/j.image.2024.117229_b22
Fu (10.1016/j.image.2024.117229_b4) 2016
References_xml – volume: 129
  start-page: 2175
  year: 2021
  end-page: 2193
  ident: b18
  article-title: Attention guided low-light image enhancement with a large scale low-light simulation dataset
  publication-title: Int. J. Comput. Vis.
– volume: 27
  start-page: 2828
  year: 2018
  end-page: 2841
  ident: b28
  article-title: Structure-revealing low-light image enhancement via robust retinex model
  publication-title: IEEE Trans. Image Process.
– volume: 18
  start-page: 1921
  year: 2009
  end-page: 1935
  ident: b11
  article-title: A histogram modification framework and its application for image contrast enhancement
  publication-title: IEEE Trans. Image Process.
– start-page: 2782
  year: 2016
  end-page: 2790
  ident: b4
  article-title: A weighted variational model for simultaneous reflectance and illumination estimation
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1777
  year: 2020
  end-page: 1786
  ident: b9
  article-title: Zero-reference deep curve estimation for low-light image enhancement
  publication-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 23
  start-page: 4272
  year: 2021
  end-page: 4284
  ident: b10
  article-title: DSLR: deep stacked laplacian restorer for low-light image enhancement
  publication-title: IEEE Trans. Multimed.
– start-page: 3291
  year: 2018
  end-page: 3300
  ident: b17
  article-title: Learning to see in the dark
  publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 11
  start-page: 193
  year: 1998
  end-page: 200
  ident: b2
  article-title: Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms
  publication-title: J. Digit. Imaging
– volume: 61
  start-page: 650
  year: 2017
  end-page: 662
  ident: b14
  article-title: LLNet: a deep autoencoder approach to natural low-light image enhancement
  publication-title: Pattern Recognit.
– volume: 26
  start-page: 982
  year: 2017
  end-page: 993
  ident: b27
  article-title: LIME: low-light image enhancement via illumination map estimation
  publication-title: IEEE Trans. Image Process.
– start-page: 3060
  year: 2020
  end-page: 3069
  ident: b20
  article-title: From fidelity to perceptual quality: a semi-supervised approach for low-light image enhancement
  publication-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: vol. 12370
  start-page: 492
  year: 2020
  end-page: 511
  ident: b24
  article-title: Learning enriched features for real image restoration and enhancement
  publication-title: Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, Uk, August 23-28, 2020, Proceedings, Part Xxv
– year: 2021
  ident: b31
  article-title: Learning to enhance low-light image via zero-reference deep curve estimation
– volume: 27
  start-page: 2049
  year: 2018
  end-page: 2062
  ident: b30
  article-title: Learning a deep single image contrast enhancer from multi-exposure images
  publication-title: IEEE Trans. Image Process.
– year: 2021
  ident: b32
  article-title: R2RNet: low-light image enhancement via real-low to real-normal network
– reference: W. Wu, J. Weng, P. Zhang, X. Wang, W. Yang, J. Jiang, Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5901–5910.
– reference: Z. Zhang, H. Zheng, R. Hong, M. Xu, S. Yan, M. Wang, Deep color consistent network for low-light image enhancement, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 1899–1908.
– start-page: 14816
  year: 2021
  end-page: 14826
  ident: b26
  article-title: Multi-stage progressive image restoration
  publication-title: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: vol. 11211
  start-page: 3
  year: 2018
  end-page: 19
  ident: b25
  article-title: Cbam: convolutional block attention module
  publication-title: Computer Vision - ECCV 2018, Pt Vii
– start-page: 4020
  year: 2017
  end-page: 4029
  ident: b12
  article-title: A joint intrinsic-extrinsic prior model for retinex
  publication-title: 2017 IEEE International Conference on Computer Vision
– volume: 30
  start-page: 2340
  year: 2021
  end-page: 2349
  ident: b21
  article-title: Enlightengan: deep light enhancement without paired supervision
  publication-title: IEEE Trans. Image Process.
– volume: Vol. 220
  start-page: 1
  year: 2018
  end-page: 13
  ident: b7
  article-title: MBLLEN: low-light image/video enhancement using cnns
  publication-title: Bmvc
– volume: 20
  start-page: 86
  year: 2023
  ident: b1
  article-title: Bic-net: learning efficient spatio-temporal relation for text-video retrieval
  publication-title: ACM Multim Comput.
– start-page: 1085
  year: 2013
  end-page: 1088
  ident: b37
  article-title: A variational framework for single low light image enhancement using bright channel prior
  publication-title: 2013 IEEE Global Conference on Signal and Information Processing
– volume: 2
  start-page: 19
  year: 2008
  end-page: 34
  ident: b39
  article-title: Fast centre-surround contrast modification
  publication-title: IET Image Process.
– reference: X. Xu, R. Wang, C.-W. Fu, J. Jia, SNR-aware low-light image enhancement, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 17714–17724.
– reference: L. Ma, T. Ma, R. Liu, X. Fan, Z. Luo, Toward fast, flexible, and robust low-light image enhancement, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5637–5646.
– volume: vol. 1-11
  start-page: 3948
  year: 2007
  end-page: 3951
  ident: b8
  article-title: Color image enhancement based on single-scale retinex with a jnd-based nonlinear filter
  publication-title: 2007 IEEE International Symposium on Circuits and Systems
– start-page: 327
  year: 2018
  end-page: 331
  ident: b23
  article-title: Weighted res-unet for high-quality retina vessel segmentation
  publication-title: 2018 Ninth International Conference on Information Technology in Medicine and Education
– start-page: 6842
  year: 2019
  end-page: 6850
  ident: b29
  article-title: Underexposed photo enhancement using deep illumination estimation
  publication-title: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 129
  start-page: 1013
  year: 2021
  end-page: 1037
  ident: b16
  article-title: Beyond brightening low-light images
  publication-title: Int. J. Comput. Vis.
– start-page: 1632
  year: 2019
  end-page: 1640
  ident: b6
  article-title: Kindling the darkness: a practical low-light image enhancer
  publication-title: Proceedings of the 27th ACM International Conference on Multimedia
– start-page: 965
  year: 2012
  end-page: 968
  ident: b38
  article-title: Contrast enhancement based on layered difference representation
  publication-title: 2012 IEEE International Conference on Image Processing
– start-page: 10556
  year: 2021
  end-page: 10565
  ident: b13
  article-title: Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement
  publication-title: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 20
  start-page: 209
  year: 2013
  end-page: 212
  ident: b40
  article-title: Making a “completely blind” image quality analyzer
  publication-title: IEEE Signal Process. Lett.
– volume: 20
  start-page: 506
  year: 2011
  end-page: 512
  ident: b3
  article-title: A novel 3-d color histogram equalization method with uniform 1-d gray scale histogram
  publication-title: IEEE Trans. Image Process.
– year: 2014
  ident: b35
  article-title: Adam: a method for stochastic optimization
– volume: 129
  start-page: 82
  year: 2016
  end-page: 96
  ident: b36
  article-title: A fusion-based enhancing method for weakly illuminated images
  publication-title: Signal Process.
– volume: 22
  start-page: 3025
  year: 2020
  end-page: 3038
  ident: b5
  article-title: Low-light image enhancement with semi-decoupled decomposition
  publication-title: IEEE Trans. Multimed.
– year: 2018
  ident: b15
  article-title: Deep retinex decomposition for low-light enhancement
– volume: 61
  start-page: 650
  issue: SI
  year: 2017
  ident: 10.1016/j.image.2024.117229_b14
  article-title: LLNet: a deep autoencoder approach to natural low-light image enhancement
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.06.008
– start-page: 1085
  year: 2013
  ident: 10.1016/j.image.2024.117229_b37
  article-title: A variational framework for single low light image enhancement using bright channel prior
– volume: 129
  start-page: 1013
  issue: 4
  year: 2021
  ident: 10.1016/j.image.2024.117229_b16
  article-title: Beyond brightening low-light images
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-020-01407-x
– volume: 23
  start-page: 4272
  year: 2021
  ident: 10.1016/j.image.2024.117229_b10
  article-title: DSLR: deep stacked laplacian restorer for low-light image enhancement
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2020.3039361
– start-page: 3060
  year: 2020
  ident: 10.1016/j.image.2024.117229_b20
  article-title: From fidelity to perceptual quality: a semi-supervised approach for low-light image enhancement
– volume: 27
  start-page: 2828
  issue: 6
  year: 2018
  ident: 10.1016/j.image.2024.117229_b28
  article-title: Structure-revealing low-light image enhancement via robust retinex model
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2810539
– volume: 27
  start-page: 2049
  issue: 4
  year: 2018
  ident: 10.1016/j.image.2024.117229_b30
  article-title: Learning a deep single image contrast enhancer from multi-exposure images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2794218
– volume: 20
  start-page: 209
  issue: 3
  year: 2013
  ident: 10.1016/j.image.2024.117229_b40
  article-title: Making a “completely blind” image quality analyzer
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2012.2227726
– start-page: 2782
  year: 2016
  ident: 10.1016/j.image.2024.117229_b4
  article-title: A weighted variational model for simultaneous reflectance and illumination estimation
– ident: 10.1016/j.image.2024.117229_b33
  doi: 10.1109/CVPR52688.2022.00581
– volume: 11
  start-page: 193
  issue: 4
  year: 1998
  ident: 10.1016/j.image.2024.117229_b2
  article-title: Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms
  publication-title: J. Digit. Imaging
  doi: 10.1007/BF03178082
– volume: vol. 11211
  start-page: 3
  year: 2018
  ident: 10.1016/j.image.2024.117229_b25
  article-title: Cbam: convolutional block attention module
– year: 2021
  ident: 10.1016/j.image.2024.117229_b31
– start-page: 327
  year: 2018
  ident: 10.1016/j.image.2024.117229_b23
  article-title: Weighted res-unet for high-quality retina vessel segmentation
– volume: 129
  start-page: 2175
  issue: 7
  year: 2021
  ident: 10.1016/j.image.2024.117229_b18
  article-title: Attention guided low-light image enhancement with a large scale low-light simulation dataset
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-021-01466-8
– volume: 2
  start-page: 19
  issue: 1
  year: 2008
  ident: 10.1016/j.image.2024.117229_b39
  article-title: Fast centre-surround contrast modification
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr:20070012
– volume: 18
  start-page: 1921
  issue: 9
  year: 2009
  ident: 10.1016/j.image.2024.117229_b11
  article-title: A histogram modification framework and its application for image contrast enhancement
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2009.2021548
– start-page: 1632
  year: 2019
  ident: 10.1016/j.image.2024.117229_b6
  article-title: Kindling the darkness: a practical low-light image enhancer
– year: 2018
  ident: 10.1016/j.image.2024.117229_b15
– start-page: 1777
  year: 2020
  ident: 10.1016/j.image.2024.117229_b9
  article-title: Zero-reference deep curve estimation for low-light image enhancement
– start-page: 3291
  year: 2018
  ident: 10.1016/j.image.2024.117229_b17
  article-title: Learning to see in the dark
– ident: 10.1016/j.image.2024.117229_b22
  doi: 10.1109/CVPR52688.2022.00555
– volume: 22
  start-page: 3025
  issue: 12
  year: 2020
  ident: 10.1016/j.image.2024.117229_b5
  article-title: Low-light image enhancement with semi-decoupled decomposition
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2020.2969790
– volume: 129
  start-page: 82
  year: 2016
  ident: 10.1016/j.image.2024.117229_b36
  article-title: A fusion-based enhancing method for weakly illuminated images
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.05.031
– year: 2021
  ident: 10.1016/j.image.2024.117229_b32
– volume: 20
  start-page: 506
  issue: 2
  year: 2011
  ident: 10.1016/j.image.2024.117229_b3
  article-title: A novel 3-d color histogram equalization method with uniform 1-d gray scale histogram
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2068555
– start-page: 10556
  year: 2021
  ident: 10.1016/j.image.2024.117229_b13
  article-title: Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement
– volume: vol. 12370
  start-page: 492
  year: 2020
  ident: 10.1016/j.image.2024.117229_b24
  article-title: Learning enriched features for real image restoration and enhancement
– start-page: 965
  year: 2012
  ident: 10.1016/j.image.2024.117229_b38
  article-title: Contrast enhancement based on layered difference representation
– start-page: 14816
  year: 2021
  ident: 10.1016/j.image.2024.117229_b26
  article-title: Multi-stage progressive image restoration
– volume: vol. 1-11
  start-page: 3948
  year: 2007
  ident: 10.1016/j.image.2024.117229_b8
  article-title: Color image enhancement based on single-scale retinex with a jnd-based nonlinear filter
– ident: 10.1016/j.image.2024.117229_b34
  doi: 10.36227/techrxiv.17198216
– volume: 26
  start-page: 982
  issue: 2
  year: 2017
  ident: 10.1016/j.image.2024.117229_b27
  article-title: LIME: low-light image enhancement via illumination map estimation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2639450
– start-page: 6842
  year: 2019
  ident: 10.1016/j.image.2024.117229_b29
  article-title: Underexposed photo enhancement using deep illumination estimation
– start-page: 4020
  year: 2017
  ident: 10.1016/j.image.2024.117229_b12
  article-title: A joint intrinsic-extrinsic prior model for retinex
– year: 2014
  ident: 10.1016/j.image.2024.117229_b35
– volume: 20
  start-page: 86
  issue: 3
  year: 2023
  ident: 10.1016/j.image.2024.117229_b1
  article-title: Bic-net: learning efficient spatio-temporal relation for text-video retrieval
  publication-title: ACM Multim Comput.
– volume: 30
  start-page: 2340
  year: 2021
  ident: 10.1016/j.image.2024.117229_b21
  article-title: Enlightengan: deep light enhancement without paired supervision
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3051462
– ident: 10.1016/j.image.2024.117229_b19
  doi: 10.1109/CVPR52688.2022.01719
– volume: Vol. 220
  start-page: 1
  year: 2018
  ident: 10.1016/j.image.2024.117229_b7
  article-title: MBLLEN: low-light image/video enhancement using cnns
SSID ssj0002409
Score 2.3990808
Snippet Low-light image enhancement is a very challenging subject in the field of computer vision such as visual surveillance, driving behavior analysis, and medical...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 117229
SubjectTerms Attention mechanism
Global feature fusion
Local detail restoration
Low-light image enhancement
Progressive attention fusion
Title A new two-stage low-light enhancement network with progressive attention fusion strategy
URI https://dx.doi.org/10.1016/j.image.2024.117229
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELUqWGDgo4AoH5UHRkwTx46dsaqoCoguUKlbFCcuFJW2oikVC7-dOycRRUIMrE4sRWf77vny7h0hF5kxAPJtwKyVhgkFFxSTCc4EREs74komEVYj3_fD3kDcDuWwRjpVLQzSKkvfX_h0563LkVZpzdZ8PG49eIBNZBRKZEGCJ8YiPiEU7vKrz2-aBzwt9PZ4wPDtSnnIcbzGr3Bo4ZLIBf685A5n_hKd1iJOd4_slFCRtouv2Sc1O62T3RI20vJQLmCo6sxQjdXJ9prM4AEZtimAZ5qvZgyw4JOlk9mKTfBWTu30GZcdU4TwjmOEU0zNUsfbQorsu6UowelIkXS0xOQaXRSSth-HZNC9fuz0WNlRgaV-qHOW-doLUn-kVCK1l2LDGRnqRJuMi8BqLBXh0kRwKlNjPWmlHdnAS6JEeUbxVAVHZGM6m9pjQmVkffAFWWBQ8k-IRPhpFGWRTrWGwKsa5LKyZDwvhDPiilH2EjvDx2j4uDB8g4SVteMf6x-Da_9r4sl_J56SLY69fF065Yxs5G9Lew4AIzdNt4OaZLN9c9frfwH5PM_b
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BOwAD34jy6YERq4ljJ_ZYVaACbRdA6hbFiQtF0CLaUvHvucsHAgkxsFq2FF3id8-X53cAZ5m1SPJdwJ1TlssIDyg2k4JLzJZuKCKVGLqN3OuHnXt5PVCDJWhXd2FIVllif4HpOVqXI80yms3X0ah56yE3USZUpIJEJDbLUCd3KlWDeuvqptP_AmScUFjuiYDTgsp8KJd5jV5w3-I5UUj6fylyqvlLgvqWdC43Yb1ki6xVPNAWLLnxNmyUzJGV-3KKQ1VzhmpsG9a-OQ3uwKDFkD-z2WLCkQ4-OPY8WfBnOpgzN36kN09VQpyTi8IZVWdZLt0iley7Y-TCmesi2XBO9TU2LVxtP3bh_vLirt3hZVMFnvqhnvHM116Q-sMoSpT2Uuo5o0KdaJsJGThNt0WEsgY3Zmqdp5xyQxd4iUkiz0YijYI9qI0nY7cPTBnnIxxkgSXXPykT6afGZEanWmPujRpwXkUyfi28M-JKVPYU54GPKfBxEfgGhFW04x-fQIzo_tfCg_8uPIWVzl2vG3ev-jeHsCqotW9eXTmC2uxt7o6Rb8zsSfk9fQIqT9KM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+two-stage+low-light+enhancement+network+with+progressive+attention+fusion+strategy&rft.jtitle=Signal+processing.+Image+communication&rft.au=Zhu%2C+Hegui&rft.au=Wang%2C+Luyang&rft.au=Gao%2C+Zhan&rft.au=Liu%2C+Yuelin&rft.date=2025-01-01&rft.pub=Elsevier+B.V&rft.issn=0923-5965&rft.volume=130&rft_id=info:doi/10.1016%2Fj.image.2024.117229&rft.externalDocID=S0923596524001309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0923-5965&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0923-5965&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0923-5965&client=summon