Federated multi-task learning with cross-device heterogeneous task subsets

Traditional Federated Learning (FL) predominantly focuses on task-consistent scenarios, assuming clients possess identical tasks or task sets. However, in multi-task scenarios, client task sets can vary greatly due to their operating environments, available resources, and hardware configurations. Co...

Full description

Saved in:
Bibliographic Details
Published inJournal of parallel and distributed computing Vol. 205; p. 105155
Main Authors Xin, Zewei, Li, Qinya, Niu, Chaoyue, Wu, Fan, Chen, Guihai
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.11.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traditional Federated Learning (FL) predominantly focuses on task-consistent scenarios, assuming clients possess identical tasks or task sets. However, in multi-task scenarios, client task sets can vary greatly due to their operating environments, available resources, and hardware configurations. Conventional task-consistent FL cannot address such heterogeneity effectively. We define this statistical heterogeneity of task sets, where each client performs a unique subset of server tasks, as cross-device task heterogeneity. In this work, we propose a novel Federated Partial Multi-task (FedPMT) method, allowing clients with diverse task sets to collaborate and train comprehensive models suitable for any task subset. Specifically, clients deploy partial multi-task models tailored to their localized task sets, while the server utilizes single-task models as an intermediate stage to address the model heterogeneity arising from differing task sets. Collaborative training is facilitated through bidirectional transformations between them. To alleviate the negative transfer caused by task set disparities, we introduce task attenuation factors to modulate the influence of different tasks. This adjustment enhances the performance and task generalization ability of cloud models, promoting models to converge towards a shared optimum across all task subsets. Extensive experiments conducted on the NYUD-v2, PASCAL Context and Cityscapes datasets validate the effectiveness and superiority of FedPMT. •We propose cross-device task heterogeneity, a collaborative scenario for federated clients with heterogeneous task sets.•We propose FedPMT, enabling clients with diverse task sets to collaboratively train cloud models, with proven convergence.•We use different model architectures locally and in the cloud for their tasks, enabling collaboration through alignment.•We propose task attenuation factors to promote task collaboration, enabling cloud models to converge to shared optima.•Extensive experiments verify the effectiveness of our method in various heterogeneous task set scenarios.
AbstractList Traditional Federated Learning (FL) predominantly focuses on task-consistent scenarios, assuming clients possess identical tasks or task sets. However, in multi-task scenarios, client task sets can vary greatly due to their operating environments, available resources, and hardware configurations. Conventional task-consistent FL cannot address such heterogeneity effectively. We define this statistical heterogeneity of task sets, where each client performs a unique subset of server tasks, as cross-device task heterogeneity. In this work, we propose a novel Federated Partial Multi-task (FedPMT) method, allowing clients with diverse task sets to collaborate and train comprehensive models suitable for any task subset. Specifically, clients deploy partial multi-task models tailored to their localized task sets, while the server utilizes single-task models as an intermediate stage to address the model heterogeneity arising from differing task sets. Collaborative training is facilitated through bidirectional transformations between them. To alleviate the negative transfer caused by task set disparities, we introduce task attenuation factors to modulate the influence of different tasks. This adjustment enhances the performance and task generalization ability of cloud models, promoting models to converge towards a shared optimum across all task subsets. Extensive experiments conducted on the NYUD-v2, PASCAL Context and Cityscapes datasets validate the effectiveness and superiority of FedPMT. •We propose cross-device task heterogeneity, a collaborative scenario for federated clients with heterogeneous task sets.•We propose FedPMT, enabling clients with diverse task sets to collaboratively train cloud models, with proven convergence.•We use different model architectures locally and in the cloud for their tasks, enabling collaboration through alignment.•We propose task attenuation factors to promote task collaboration, enabling cloud models to converge to shared optima.•Extensive experiments verify the effectiveness of our method in various heterogeneous task set scenarios.
ArticleNumber 105155
Author Wu, Fan
Chen, Guihai
Niu, Chaoyue
Xin, Zewei
Li, Qinya
Author_xml – sequence: 1
  givenname: Zewei
  orcidid: 0009-0003-2824-4963
  surname: Xin
  fullname: Xin, Zewei
  email: xin_zewei_12138@sjtu.edu.cn
– sequence: 2
  givenname: Qinya
  surname: Li
  fullname: Li, Qinya
  email: qinyali@sjtu.edu.cn
– sequence: 3
  givenname: Chaoyue
  surname: Niu
  fullname: Niu, Chaoyue
  email: rvince@cs.sjtu.edu.cn
– sequence: 4
  givenname: Fan
  surname: Wu
  fullname: Wu, Fan
  email: fwu@cs.sjtu.edu.cn
– sequence: 5
  givenname: Guihai
  orcidid: 0000-0002-6934-1685
  surname: Chen
  fullname: Chen, Guihai
  email: gchen@cs.sjtu.edu.cn
BookMark eNp9kMtOwzAQRb0oEm3hB1jlBxJsJ35UYoMqykOV2MDacuxx65Amle0U8fc0DWtWVxrdM7o6CzTr-g4QuiO4IJjw-6ZojtYUFFN2PjDC2AzNsajKXJSEXaNFjA3GhDAh5-htAxaCTmCzw9Amnycdv7IWdOh8t8u-fdpnJvQx5hZO3kC2hwSh30EH_RCzSzsOdYQUb9CV022E279cos_N08f6Jd--P7-uH7e5IVymXFcOGOYlwdRo5ziH2lWWCmxqtmK2qp2gsKLSOF3bUlS8krWVUlvqsOPClktEp7-XXQGcOgZ_0OFHEaxGA6pRowE1GlCTgTP0MEFwXnbyEFQ0HjoD1gcwSdne_4f_AiMaamg
Cites_doi 10.1561/2200000083
10.1109/JIOT.2021.3063147
10.1145/3625558
10.1109/TPAMI.2004.1273918
10.1016/j.jpdc.2022.12.011
10.1016/j.cviu.2024.104014
10.1145/3298981
10.1109/TITS.2023.3297996
10.1109/TPDS.2021.3098467
10.1109/ACCESS.2023.3233983
10.1109/ACCESS.2020.2983149
10.1109/TPAMI.2017.2699184
ContentType Journal Article
Copyright 2025 Elsevier Inc.
Copyright_xml – notice: 2025 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jpdc.2025.105155
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_jpdc_2025_105155
S0743731525001224
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABDPE
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADFGL
ADHUB
ADJOM
ADMUD
ADNMO
ADTZH
ADVLN
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
E.L
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
TWZ
WUQ
XJT
XOL
XPP
ZMT
ZU3
ZY4
~G-
AAYXX
CITATION
ID FETCH-LOGICAL-c168t-a4fe5063102caff66ebf4d270cb595d4bf72e928cfabd374648bd88ad2f0f67d3
IEDL.DBID .~1
ISSN 0743-7315
IngestDate Thu Aug 21 00:39:25 EDT 2025
Sat Aug 30 17:13:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Task set heterogeneity
Multi-task learning
Federated learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c168t-a4fe5063102caff66ebf4d270cb595d4bf72e928cfabd374648bd88ad2f0f67d3
ORCID 0009-0003-2824-4963
0000-0002-6934-1685
ParticipantIDs crossref_primary_10_1016_j_jpdc_2025_105155
elsevier_sciencedirect_doi_10_1016_j_jpdc_2025_105155
PublicationCentury 2000
PublicationDate November 2025
2025-11-00
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: November 2025
PublicationDecade 2020
PublicationTitle Journal of parallel and distributed computing
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Li, Lin, Shang, Wu (br0520) 2023
Fu, Li, Yu, Luan, Zhao (br0060) 2023
Li, Sahu, Zaheer, Sanjabi, Talwalkar, Smith (br0510) 2020; 2
Ye, Xu (br0350) 2023
Chang, Li, Wu, Yu, Wang, Xu (br0450) 2023; 175
Hu, Xian, Wu, Fan, Yin, Zhao (br0330) 2024; 36
Zhou, Liu, Zhao (br0040) 2023
Mottaghi, Chen, Liu, Cho, Lee, Fidler, Urtasun, Yuille (br0470) 2014
Chen, Xu, Wang, Li, Li, Chen, Zhang (br0440) 2023
Xin, Sirejiding, Lu, Ding, Wang, Alsarhan, Lu (br0380) 2024
Li, Wang (br0250) 2019
Zhou, Qu, Guo, Luo, Guo, Xu, Akerkar (br0200) 2021; 8
Zhang, Hua, Wang, Song, Xue, Ma, Guan (br0540) 2023; 37
Cai, Chen, Liu, Srinivasa, Lee, Kompella, Wang (br0390) 2023
Hard, Rao, Mathews, Ramaswamy, Beaufays, Augenstein, Eichner, Kiddon, Ramage (br0030) 2018
Lu, Huang, Yang, Sirejiding, Ding, Lu (br0400) 2024
Vandenhende, Georgoulis, Van Gansbeke, Proesmans, Dai, Van Gool (br0110) 2021; 44
Tan, Yu, Cui, Yang (br0120) 2022
Zhuang, Wen, Lyu, Zhang (br0160) 2023
Chen, Papandreou, Kokkinos, Murphy, Yuille (br0220) 2017; 40
Bai, Zhang, Tao, Wu, Wang, Xu (br0320) 2023; 37
He, Zhang, Ren, Sun (br0570) 2015
Yu, Kumar, Gupta, Levine, Hausman, Finn (br0530) 2020; 33
Yang, Liu, Chen, Tong (br0020) 2019; 10
Chen, Shen, Ding, Chen, Zhao, Learned-Miller, Gan (br0360) 2023
McMahan, Moore, Ramage, Hampson, y Arcas (br0010) 2017
Corinzia, Beuret, Buhmann (br0420) 2019
Smith, Chiang, Sanjabi, Talwalkar (br0130) 2017; 30
Zhu, Lin, Lu, Lin, Han (br0300) 2021; 34
Bonawitz, Eichner, Grieskamp, Huba, Ingerman, Ivanov, Kiddon, Konečnỳ, Mazzocchi, McMahan (br0080) 2019; 1
Chen, Badrinarayanan, Lee, Rabinovich (br0310) 2018
Xu, Yang, Zhang (br0370) 2023; 37
Gallier, Quaintance (br0430) 2019
Yurtsever, Lambert, Carballo, Takeda (br0190) 2020; 8
Sun, Xiao, Liu, Wang (br0210) 2019
Silberman, Hoiem, Kohli, Fergus (br0460) 2012; vol. 12
Fan, Wang, Yao, Lyu, Zhang, Tian (br0240) 2022
Liu, Liu, Du, Li (br0070) 2019
Marfoq, Neglia, Bellet, Kameni, Vidal (br0140) 2021; 34
Kairouz, McMahan, Avent, Bellet, Bennis, Bhagoji, Bonawitz, Charles, Cormode, Cummings (br0230) 2021; 14
Ruder (br0100) 2017
Ye, Fang, Du, Yuen, Tao (br0270) 2023; 56
Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, Schiele (br0480) 2016
Van der Maaten, Hinton (br0410) 2008; 9
Diao, Ding, Tarokh (br0260) 2020
Yang, Andrew, Eichner, Sun, Li, Kong, Ramage, Beaufays (br0180) 2018
Glorot, Bengio (br0550) 2010
Vandenhende, Georgoulis, Van Gool (br0340) 2020
Liu, Lin, Cao, Hu, Wei, Zhang, Lin, Guo (br0490) 2021
Parekh, Patel, Gupta, Jadav, Tanwar, Alharbi, Tolba, Neagu, Raboaca (br0050) 2023; 11
Huang, Gupta, Song, Li, Arora (br0280) 2021; 34
Ramaswamy, Mathews, Rao, Beaufays (br0170) 2019
Karimireddy, Kale, Mohri, Reddi, Stich, Suresh (br0290) 2020
Martin, Fowlkes, Malik (br0500) 2004; 26
Mills, Hu, Min (br0150) 2021; 33
Zhuang, Wen, Zhang (br0090) 2022
Saxe, McClelland, Ganguli (br0560) 2013
Ruder (10.1016/j.jpdc.2025.105155_br0100)
Yang (10.1016/j.jpdc.2025.105155_br0180)
Hu (10.1016/j.jpdc.2025.105155_br0330) 2024; 36
Fan (10.1016/j.jpdc.2025.105155_br0240) 2022
McMahan (10.1016/j.jpdc.2025.105155_br0010) 2017
Mills (10.1016/j.jpdc.2025.105155_br0150) 2021; 33
Li (10.1016/j.jpdc.2025.105155_br0510) 2020; 2
Marfoq (10.1016/j.jpdc.2025.105155_br0140) 2021; 34
Tan (10.1016/j.jpdc.2025.105155_br0120) 2022
Yang (10.1016/j.jpdc.2025.105155_br0020) 2019; 10
Kairouz (10.1016/j.jpdc.2025.105155_br0230) 2021; 14
Chen (10.1016/j.jpdc.2025.105155_br0310) 2018
Zhang (10.1016/j.jpdc.2025.105155_br0540) 2023; 37
Diao (10.1016/j.jpdc.2025.105155_br0260) 2020
Karimireddy (10.1016/j.jpdc.2025.105155_br0290) 2020
Chen (10.1016/j.jpdc.2025.105155_br0440) 2023
Yu (10.1016/j.jpdc.2025.105155_br0530) 2020; 33
Mottaghi (10.1016/j.jpdc.2025.105155_br0470) 2014
Cordts (10.1016/j.jpdc.2025.105155_br0480) 2016
Chang (10.1016/j.jpdc.2025.105155_br0450) 2023; 175
Huang (10.1016/j.jpdc.2025.105155_br0280) 2021; 34
Ramaswamy (10.1016/j.jpdc.2025.105155_br0170)
Bai (10.1016/j.jpdc.2025.105155_br0320) 2023; 37
Zhou (10.1016/j.jpdc.2025.105155_br0200) 2021; 8
Saxe (10.1016/j.jpdc.2025.105155_br0560)
Li (10.1016/j.jpdc.2025.105155_br0520) 2023
Xin (10.1016/j.jpdc.2025.105155_br0380) 2024
Bonawitz (10.1016/j.jpdc.2025.105155_br0080) 2019; 1
Vandenhende (10.1016/j.jpdc.2025.105155_br0110) 2021; 44
He (10.1016/j.jpdc.2025.105155_br0570) 2015
Ye (10.1016/j.jpdc.2025.105155_br0270) 2023; 56
Lu (10.1016/j.jpdc.2025.105155_br0400) 2024
Xu (10.1016/j.jpdc.2025.105155_br0370) 2023; 37
Hard (10.1016/j.jpdc.2025.105155_br0030)
Chen (10.1016/j.jpdc.2025.105155_br0220) 2017; 40
Gallier (10.1016/j.jpdc.2025.105155_br0430) 2019
Yurtsever (10.1016/j.jpdc.2025.105155_br0190) 2020; 8
Cai (10.1016/j.jpdc.2025.105155_br0390) 2023
Parekh (10.1016/j.jpdc.2025.105155_br0050) 2023; 11
Zhu (10.1016/j.jpdc.2025.105155_br0300) 2021; 34
Ye (10.1016/j.jpdc.2025.105155_br0350) 2023
Martin (10.1016/j.jpdc.2025.105155_br0500) 2004; 26
Zhou (10.1016/j.jpdc.2025.105155_br0040) 2023
Zhuang (10.1016/j.jpdc.2025.105155_br0160) 2023
Silberman (10.1016/j.jpdc.2025.105155_br0460) 2012; vol. 12
Liu (10.1016/j.jpdc.2025.105155_br0070) 2019
Zhuang (10.1016/j.jpdc.2025.105155_br0090)
Corinzia (10.1016/j.jpdc.2025.105155_br0420)
Smith (10.1016/j.jpdc.2025.105155_br0130) 2017; 30
Liu (10.1016/j.jpdc.2025.105155_br0490) 2021
Vandenhende (10.1016/j.jpdc.2025.105155_br0340) 2020
Van der Maaten (10.1016/j.jpdc.2025.105155_br0410) 2008; 9
Fu (10.1016/j.jpdc.2025.105155_br0060) 2023
Li (10.1016/j.jpdc.2025.105155_br0250)
Glorot (10.1016/j.jpdc.2025.105155_br0550) 2010
Chen (10.1016/j.jpdc.2025.105155_br0360) 2023
Sun (10.1016/j.jpdc.2025.105155_br0210) 2019
References_xml – volume: 30
  year: 2017
  ident: br0130
  article-title: Federated multi-task learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 8
  start-page: 11916
  year: 2021
  end-page: 11934
  ident: br0200
  article-title: On-device learning systems for edge intelligence: a software and hardware synergy perspective
  publication-title: IEEE Internet Things J.
– year: 2023
  ident: br0060
  article-title: An incentive mechanism of incorporating supervision game for federated learning in autonomous driving
  publication-title: IEEE Trans. Intell. Transp. Syst.
– year: 2019
  ident: br0250
  article-title: Fedmd: heterogenous federated learning via model distillation
– volume: 33
  start-page: 630
  year: 2021
  end-page: 641
  ident: br0150
  article-title: Multi-task federated learning for personalised deep neural networks in edge computing
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– start-page: 5693
  year: 2019
  end-page: 5703
  ident: br0210
  article-title: Deep high-resolution representation learning for human pose estimation
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 34
  start-page: 7232
  year: 2021
  end-page: 7241
  ident: br0280
  article-title: Evaluating gradient inversion attacks and defenses in federated learning
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 794
  year: 2018
  end-page: 803
  ident: br0310
  article-title: Gradnorm: gradient normalization for adaptive loss balancing in deep multitask networks
  publication-title: International Conference on Machine Learning
– volume: 9
  year: 2008
  ident: br0410
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– volume: 34
  start-page: 15434
  year: 2021
  end-page: 15447
  ident: br0140
  article-title: Federated multi-task learning under a mixture of distributions
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 37
  start-page: 3072
  year: 2023
  end-page: 3080
  ident: br0370
  article-title: Demt: deformable mixer transformer for multi-task learning of dense prediction
  publication-title: Proc. AAAI Conf. Artif. Intell.
– year: 2019
  ident: br0170
  article-title: Federated learning for emoji prediction in a mobile keyboard
– volume: vol. 12
  start-page: 746
  year: 2012
  end-page: 760
  ident: br0460
  article-title: Indoor segmentation and support inference from rgbd images
  publication-title: Computer Vision–ECCV 2012: 12th European Conference on Computer Vision
– start-page: 131
  year: 2022
  end-page: 140
  ident: br0240
  article-title: Fedskip: combatting statistical heterogeneity with federated skip aggregation
  publication-title: 2022 IEEE International Conference on Data Mining (ICDM)
– start-page: 270
  year: 2019
  end-page: 278
  ident: br0430
  article-title: Algebra, Topology, Differential Calculus, and Optimization Theory for Computer Science and Engineering
– volume: 36
  year: 2024
  ident: br0330
  article-title: Revisiting scalarization in multi-task learning: a theoretical perspective
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 5599
  year: 2024
  end-page: 5609
  ident: br0400
  article-title: Fedhca2: towards hetero-client federated multi-task learning
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 21828
  year: 2023
  end-page: 21837
  ident: br0350
  article-title: Taskexpert: dynamically assembling multi-task representations with memorial mixture-of-experts
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– year: 2018
  ident: br0030
  article-title: Federated learning for mobile keyboard prediction
– start-page: 10012
  year: 2021
  end-page: 10022
  ident: br0490
  article-title: Swin transformer: hierarchical vision transformer using shifted windows
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– start-page: 527
  year: 2020
  end-page: 543
  ident: br0340
  article-title: Mti-net: multi-scale task interaction networks for multi-task learning
  publication-title: Computer Vision–ECCV 2020: 16th European Conference, Proceedings, Part IV 16
– volume: 2
  start-page: 429
  year: 2020
  end-page: 450
  ident: br0510
  article-title: Federated optimization in heterogeneous networks
  publication-title: Proc. Mach. Learn. Syst.
– start-page: 11828
  year: 2023
  end-page: 11837
  ident: br0360
  article-title: Mod-squad: designing mixtures of experts as modular multi-task learners
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– year: 2022
  ident: br0090
  article-title: Smart multi-tenant federated learning
– year: 2016
  ident: br0480
  article-title: The cityscapes dataset for semantic urban scene understanding
  publication-title: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2022
  ident: br0120
  article-title: Towards personalized federated learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 14
  start-page: 1
  year: 2021
  end-page: 210
  ident: br0230
  article-title: Advances and open problems in federated learning
  publication-title: Found. Trends Mach. Learn.
– volume: 33
  start-page: 5824
  year: 2020
  end-page: 5836
  ident: br0530
  article-title: Gradient surgery for multi-task learning
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2017
  ident: br0100
  article-title: An overview of multi-task learning in deep neural networks
– volume: 34
  start-page: 29995
  year: 2021
  end-page: 30007
  ident: br0300
  article-title: Delayed gradient averaging: tolerate the communication latency for federated learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 40
  start-page: 834
  year: 2017
  end-page: 848
  ident: br0220
  article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2018
  ident: br0180
  article-title: Applied federated learning: improving Google keyboard query suggestions
– volume: 26
  start-page: 530
  year: 2004
  end-page: 549
  ident: br0500
  article-title: Learning to detect natural image boundaries using local brightness, color, and texture cues
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 175
  start-page: 37
  year: 2023
  end-page: 50
  ident: br0450
  article-title: Pagroup: privacy-aware grouping framework for high-performance federated learning
  publication-title: J. Parallel Distrib. Comput.
– start-page: 891
  year: 2014
  end-page: 898
  ident: br0470
  article-title: The role of context for object detection and semantic segmentation in the wild
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 8
  start-page: 58443
  year: 2020
  end-page: 58469
  ident: br0190
  article-title: A survey of autonomous driving: common practices and emerging technologies
  publication-title: IEEE Access
– volume: 1
  start-page: 374
  year: 2019
  end-page: 388
  ident: br0080
  article-title: Towards federated learning at scale: system design
  publication-title: Proc. Mach. Learn. Syst.
– start-page: 5132
  year: 2020
  end-page: 5143
  ident: br0290
  article-title: Scaffold: stochastic controlled averaging for federated learning
  publication-title: International Conference on Machine Learning
– volume: 11
  start-page: 1825
  year: 2023
  end-page: 1839
  ident: br0050
  article-title: Gefl: gradient encryption-aided privacy preserved federated learning for autonomous vehicles
  publication-title: IEEE Access
– year: 2020
  ident: br0260
  article-title: Heterofl: computation and communication efficient federated learning for heterogeneous clients
  publication-title: International Conference on Learning Representations
– start-page: 1026
  year: 2015
  end-page: 1034
  ident: br0570
  article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– year: 2023
  ident: br0440
  article-title: Synchronize only the immature parameters: communication-efficient federated learning by freezing parameters adaptively
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– start-page: 249
  year: 2010
  end-page: 256
  ident: br0550
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings
– year: 2013
  ident: br0560
  article-title: Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
– volume: 44
  start-page: 3614
  year: 2021
  end-page: 3633
  ident: br0110
  article-title: Multi-task learning for dense prediction tasks: a survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 37
  start-page: 11237
  year: 2023
  end-page: 11244
  ident: br0540
  article-title: Fedala: adaptive local aggregation for personalized federated learning
  publication-title: Proc. AAAI Conf. Artif. Intell.
– year: 2023
  ident: br0040
  article-title: Resource allocation of federated learning for the metaverse with mobile augmented reality
  publication-title: IEEE Trans. Wirel. Commun.
– start-page: 1273
  year: 2017
  end-page: 1282
  ident: br0010
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Artificial Intelligence and Statistics
– start-page: 23414
  year: 2023
  end-page: 23424
  ident: br0160
  article-title: Mas: towards resource-efficient federated multiple-task learning
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– year: 2019
  ident: br0420
  article-title: Variational federated multi-task learning
– start-page: 19767
  year: 2023
  end-page: 19788
  ident: br0520
  article-title: Revisiting weighted aggregation in federated learning with neural networks
  publication-title: International Conference on Machine Learning
– volume: 56
  start-page: 1
  year: 2023
  end-page: 44
  ident: br0270
  article-title: Heterogeneous federated learning: state-of-the-art and research challenges
  publication-title: ACM Comput. Surv.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 19
  ident: br0020
  article-title: Federated machine learning: concept and applications
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 37
  start-page: 6728
  year: 2023
  end-page: 6736
  ident: br0320
  article-title: Picor: multi-task deep reinforcement learning with policy correction
  publication-title: Proc. AAAI Conf. Artif. Intell.
– start-page: 5036
  year: 2023
  end-page: 5044
  ident: br0390
  article-title: Many-task federated learning: a new problem setting and a simple baseline
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 506
  year: 2019
  end-page: 515
  ident: br0070
  article-title: Performance analysis and characterization of training deep learning models on mobile device
  publication-title: 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS)
– year: 2024
  ident: br0380
  article-title: Tfut: task fusion upward transformer model for multi-task learning on dense prediction
  publication-title: Comput. Vis. Image Underst.
– year: 2022
  ident: 10.1016/j.jpdc.2025.105155_br0120
  article-title: Towards personalized federated learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 37
  start-page: 6728
  year: 2023
  ident: 10.1016/j.jpdc.2025.105155_br0320
  article-title: Picor: multi-task deep reinforcement learning with policy correction
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: 37
  start-page: 11237
  year: 2023
  ident: 10.1016/j.jpdc.2025.105155_br0540
  article-title: Fedala: adaptive local aggregation for personalized federated learning
  publication-title: Proc. AAAI Conf. Artif. Intell.
– start-page: 1273
  year: 2017
  ident: 10.1016/j.jpdc.2025.105155_br0010
  article-title: Communication-efficient learning of deep networks from decentralized data
– start-page: 10012
  year: 2021
  ident: 10.1016/j.jpdc.2025.105155_br0490
  article-title: Swin transformer: hierarchical vision transformer using shifted windows
– start-page: 131
  year: 2022
  ident: 10.1016/j.jpdc.2025.105155_br0240
  article-title: Fedskip: combatting statistical heterogeneity with federated skip aggregation
– volume: 34
  start-page: 15434
  year: 2021
  ident: 10.1016/j.jpdc.2025.105155_br0140
  article-title: Federated multi-task learning under a mixture of distributions
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 14
  start-page: 1
  issue: 1–2
  year: 2021
  ident: 10.1016/j.jpdc.2025.105155_br0230
  article-title: Advances and open problems in federated learning
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000083
– volume: 8
  start-page: 11916
  issue: 15
  year: 2021
  ident: 10.1016/j.jpdc.2025.105155_br0200
  article-title: On-device learning systems for edge intelligence: a software and hardware synergy perspective
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3063147
– volume: 56
  start-page: 1
  issue: 3
  year: 2023
  ident: 10.1016/j.jpdc.2025.105155_br0270
  article-title: Heterogeneous federated learning: state-of-the-art and research challenges
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3625558
– ident: 10.1016/j.jpdc.2025.105155_br0420
– volume: 9
  issue: 11
  year: 2008
  ident: 10.1016/j.jpdc.2025.105155_br0410
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.jpdc.2025.105155_br0170
– volume: 26
  start-page: 530
  issue: 5
  year: 2004
  ident: 10.1016/j.jpdc.2025.105155_br0500
  article-title: Learning to detect natural image boundaries using local brightness, color, and texture cues
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2004.1273918
– volume: 2
  start-page: 429
  year: 2020
  ident: 10.1016/j.jpdc.2025.105155_br0510
  article-title: Federated optimization in heterogeneous networks
  publication-title: Proc. Mach. Learn. Syst.
– start-page: 11828
  year: 2023
  ident: 10.1016/j.jpdc.2025.105155_br0360
  article-title: Mod-squad: designing mixtures of experts as modular multi-task learners
– year: 2020
  ident: 10.1016/j.jpdc.2025.105155_br0260
  article-title: Heterofl: computation and communication efficient federated learning for heterogeneous clients
– volume: 175
  start-page: 37
  year: 2023
  ident: 10.1016/j.jpdc.2025.105155_br0450
  article-title: Pagroup: privacy-aware grouping framework for high-performance federated learning
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2022.12.011
– volume: 30
  year: 2017
  ident: 10.1016/j.jpdc.2025.105155_br0130
  article-title: Federated multi-task learning
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 5693
  year: 2019
  ident: 10.1016/j.jpdc.2025.105155_br0210
  article-title: Deep high-resolution representation learning for human pose estimation
– year: 2016
  ident: 10.1016/j.jpdc.2025.105155_br0480
  article-title: The cityscapes dataset for semantic urban scene understanding
– ident: 10.1016/j.jpdc.2025.105155_br0180
– volume: 1
  start-page: 374
  year: 2019
  ident: 10.1016/j.jpdc.2025.105155_br0080
  article-title: Towards federated learning at scale: system design
  publication-title: Proc. Mach. Learn. Syst.
– start-page: 891
  year: 2014
  ident: 10.1016/j.jpdc.2025.105155_br0470
  article-title: The role of context for object detection and semantic segmentation in the wild
– start-page: 249
  year: 2010
  ident: 10.1016/j.jpdc.2025.105155_br0550
  article-title: Understanding the difficulty of training deep feedforward neural networks
– start-page: 5599
  year: 2024
  ident: 10.1016/j.jpdc.2025.105155_br0400
  article-title: Fedhca2: towards hetero-client federated multi-task learning
– year: 2024
  ident: 10.1016/j.jpdc.2025.105155_br0380
  article-title: Tfut: task fusion upward transformer model for multi-task learning on dense prediction
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2024.104014
– volume: 10
  start-page: 1
  issue: 2
  year: 2019
  ident: 10.1016/j.jpdc.2025.105155_br0020
  article-title: Federated machine learning: concept and applications
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/3298981
– ident: 10.1016/j.jpdc.2025.105155_br0250
– start-page: 19767
  year: 2023
  ident: 10.1016/j.jpdc.2025.105155_br0520
  article-title: Revisiting weighted aggregation in federated learning with neural networks
– start-page: 1026
  year: 2015
  ident: 10.1016/j.jpdc.2025.105155_br0570
  article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification
– ident: 10.1016/j.jpdc.2025.105155_br0090
– volume: 33
  start-page: 5824
  year: 2020
  ident: 10.1016/j.jpdc.2025.105155_br0530
  article-title: Gradient surgery for multi-task learning
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2023
  ident: 10.1016/j.jpdc.2025.105155_br0060
  article-title: An incentive mechanism of incorporating supervision game for federated learning in autonomous driving
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2023.3297996
– start-page: 5036
  year: 2023
  ident: 10.1016/j.jpdc.2025.105155_br0390
  article-title: Many-task federated learning: a new problem setting and a simple baseline
– start-page: 794
  year: 2018
  ident: 10.1016/j.jpdc.2025.105155_br0310
  article-title: Gradnorm: gradient normalization for adaptive loss balancing in deep multitask networks
– year: 2023
  ident: 10.1016/j.jpdc.2025.105155_br0440
  article-title: Synchronize only the immature parameters: communication-efficient federated learning by freezing parameters adaptively
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– ident: 10.1016/j.jpdc.2025.105155_br0100
– volume: 34
  start-page: 29995
  year: 2021
  ident: 10.1016/j.jpdc.2025.105155_br0300
  article-title: Delayed gradient averaging: tolerate the communication latency for federated learning
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 270
  year: 2019
  ident: 10.1016/j.jpdc.2025.105155_br0430
– start-page: 527
  year: 2020
  ident: 10.1016/j.jpdc.2025.105155_br0340
  article-title: Mti-net: multi-scale task interaction networks for multi-task learning
– volume: 36
  year: 2024
  ident: 10.1016/j.jpdc.2025.105155_br0330
  article-title: Revisiting scalarization in multi-task learning: a theoretical perspective
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.jpdc.2025.105155_br0030
– volume: 33
  start-page: 630
  issue: 3
  year: 2021
  ident: 10.1016/j.jpdc.2025.105155_br0150
  article-title: Multi-task federated learning for personalised deep neural networks in edge computing
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2021.3098467
– volume: 11
  start-page: 1825
  year: 2023
  ident: 10.1016/j.jpdc.2025.105155_br0050
  article-title: Gefl: gradient encryption-aided privacy preserved federated learning for autonomous vehicles
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3233983
– start-page: 506
  year: 2019
  ident: 10.1016/j.jpdc.2025.105155_br0070
  article-title: Performance analysis and characterization of training deep learning models on mobile device
– start-page: 23414
  year: 2023
  ident: 10.1016/j.jpdc.2025.105155_br0160
  article-title: Mas: towards resource-efficient federated multiple-task learning
– volume: 37
  start-page: 3072
  year: 2023
  ident: 10.1016/j.jpdc.2025.105155_br0370
  article-title: Demt: deformable mixer transformer for multi-task learning of dense prediction
  publication-title: Proc. AAAI Conf. Artif. Intell.
– start-page: 5132
  year: 2020
  ident: 10.1016/j.jpdc.2025.105155_br0290
  article-title: Scaffold: stochastic controlled averaging for federated learning
– volume: 44
  start-page: 3614
  issue: 7
  year: 2021
  ident: 10.1016/j.jpdc.2025.105155_br0110
  article-title: Multi-task learning for dense prediction tasks: a survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 8
  start-page: 58443
  year: 2020
  ident: 10.1016/j.jpdc.2025.105155_br0190
  article-title: A survey of autonomous driving: common practices and emerging technologies
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2983149
– volume: 34
  start-page: 7232
  year: 2021
  ident: 10.1016/j.jpdc.2025.105155_br0280
  article-title: Evaluating gradient inversion attacks and defenses in federated learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: vol. 12
  start-page: 746
  year: 2012
  ident: 10.1016/j.jpdc.2025.105155_br0460
  article-title: Indoor segmentation and support inference from rgbd images
– start-page: 21828
  year: 2023
  ident: 10.1016/j.jpdc.2025.105155_br0350
  article-title: Taskexpert: dynamically assembling multi-task representations with memorial mixture-of-experts
– volume: 40
  start-page: 834
  issue: 4
  year: 2017
  ident: 10.1016/j.jpdc.2025.105155_br0220
  article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– year: 2023
  ident: 10.1016/j.jpdc.2025.105155_br0040
  article-title: Resource allocation of federated learning for the metaverse with mobile augmented reality
  publication-title: IEEE Trans. Wirel. Commun.
– ident: 10.1016/j.jpdc.2025.105155_br0560
SSID ssj0011578
Score 2.4269915
Snippet Traditional Federated Learning (FL) predominantly focuses on task-consistent scenarios, assuming clients possess identical tasks or task sets. However, in...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 105155
SubjectTerms Federated learning
Multi-task learning
Task set heterogeneity
Title Federated multi-task learning with cross-device heterogeneous task subsets
URI https://dx.doi.org/10.1016/j.jpdc.2025.105155
Volume 205
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VZWHhjSiPygMbMk0TvzpWFVUpogtU6hY5sQ0tUlu1YeW340scBBJiYExkK9Hny93n-Ls7gGvHu7YX54ZGjGnKfIih2pmIctvjMTPCbzowUfhxIkZTNp7xWQMGdS4MyiqD7698eumtw51OQLOzns87Txj8ZIL9e6rzIcxgZxKt_PbjS-aBtWRUXYoTR4fEmUrjtVgbLGMYc2x328V0v9-C07eAMzyAvcAUSb96mUNo2OUR7NddGEj4KI9hPMR6EJ4yGlKqA2mht28kdIN4IfijlZSPo8aiWyCvqIBZecOxftdPytFb7z5ssT2B6fDueTCioUMCzbtCFVQzZ7knGZ4l5No5ISzq7mIZ5RnvccMyJ2O_FCp3OjOJZIKpzCilTewiJ6RJTqG5XC3tGRBnmeLKc22RJyyXTvvNqzbCKeOhY7FuwU0NTbquCmGktUJskSKQKQKZVkC2gNfopT-WM_We-o955_-cdwG7eFUlCV5Cs9i82yvPFoqsXZpDG3b69w-jySeobr9X
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T-QwEB5xUNw1x1u8cQHVyeyu13a8BQUCVsuzASS64MQ2j5N2VyQI0dyfuj_ITOKgQzpRINEmcRJ_GX0zdr6ZAdgKquN7Ine8LaXlEl0Mt8G1ufI9JaTTuOigROGzcz24ksfX6noC_ja5MCSrjNxfc3rF1vFIK6LZGt_fty7I-SVd6t9T_x-KysoT__KM67Zi9-gAP_K2EP3Dy_0Bj60FeN7RpuRWBq_QO6N7zW0IWnsSrImknWeqp5zMQiJwDiYPNnPdRGppMmeMdSK0g05cF-_7DaYk0gW1Tdj586YroeI1pqn9Sa8XM3VqUdnD2FHdRKGov26H8gv_5w3_8XD9GfgZQ1O2V89-Fib8cA6mm7YPLLLAPBz3qQAFxqiOVXJEXtriN4vtJ24Z7eyy6nHceeIhdkeSmxFaqh89Fay6ukC-8mWxAFdfgtsiTA5HQ78ELHhplMHgXuddmSfB4mrZOh2MQ-iksMvwq4EmHdeVN9JGkvaQEpApAZnWQC6DatBL39lPiq7hg3Ernxy3Cd8Hl2en6enR-ckq_KAzdYbiGkyWj09-HUOVMtuoTIPBzVfb4ishafy1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+multi-task+learning+with+cross-device+heterogeneous+task+subsets&rft.jtitle=Journal+of+parallel+and+distributed+computing&rft.au=Xin%2C+Zewei&rft.au=Li%2C+Qinya&rft.au=Niu%2C+Chaoyue&rft.au=Wu%2C+Fan&rft.date=2025-11-01&rft.issn=0743-7315&rft.volume=205&rft.spage=105155&rft_id=info:doi/10.1016%2Fj.jpdc.2025.105155&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpdc_2025_105155
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7315&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7315&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7315&client=summon