Federated multi-task learning with cross-device heterogeneous task subsets
Traditional Federated Learning (FL) predominantly focuses on task-consistent scenarios, assuming clients possess identical tasks or task sets. However, in multi-task scenarios, client task sets can vary greatly due to their operating environments, available resources, and hardware configurations. Co...
Saved in:
Published in | Journal of parallel and distributed computing Vol. 205; p. 105155 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.11.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traditional Federated Learning (FL) predominantly focuses on task-consistent scenarios, assuming clients possess identical tasks or task sets. However, in multi-task scenarios, client task sets can vary greatly due to their operating environments, available resources, and hardware configurations. Conventional task-consistent FL cannot address such heterogeneity effectively. We define this statistical heterogeneity of task sets, where each client performs a unique subset of server tasks, as cross-device task heterogeneity. In this work, we propose a novel Federated Partial Multi-task (FedPMT) method, allowing clients with diverse task sets to collaborate and train comprehensive models suitable for any task subset. Specifically, clients deploy partial multi-task models tailored to their localized task sets, while the server utilizes single-task models as an intermediate stage to address the model heterogeneity arising from differing task sets. Collaborative training is facilitated through bidirectional transformations between them. To alleviate the negative transfer caused by task set disparities, we introduce task attenuation factors to modulate the influence of different tasks. This adjustment enhances the performance and task generalization ability of cloud models, promoting models to converge towards a shared optimum across all task subsets. Extensive experiments conducted on the NYUD-v2, PASCAL Context and Cityscapes datasets validate the effectiveness and superiority of FedPMT.
•We propose cross-device task heterogeneity, a collaborative scenario for federated clients with heterogeneous task sets.•We propose FedPMT, enabling clients with diverse task sets to collaboratively train cloud models, with proven convergence.•We use different model architectures locally and in the cloud for their tasks, enabling collaboration through alignment.•We propose task attenuation factors to promote task collaboration, enabling cloud models to converge to shared optima.•Extensive experiments verify the effectiveness of our method in various heterogeneous task set scenarios. |
---|---|
AbstractList | Traditional Federated Learning (FL) predominantly focuses on task-consistent scenarios, assuming clients possess identical tasks or task sets. However, in multi-task scenarios, client task sets can vary greatly due to their operating environments, available resources, and hardware configurations. Conventional task-consistent FL cannot address such heterogeneity effectively. We define this statistical heterogeneity of task sets, where each client performs a unique subset of server tasks, as cross-device task heterogeneity. In this work, we propose a novel Federated Partial Multi-task (FedPMT) method, allowing clients with diverse task sets to collaborate and train comprehensive models suitable for any task subset. Specifically, clients deploy partial multi-task models tailored to their localized task sets, while the server utilizes single-task models as an intermediate stage to address the model heterogeneity arising from differing task sets. Collaborative training is facilitated through bidirectional transformations between them. To alleviate the negative transfer caused by task set disparities, we introduce task attenuation factors to modulate the influence of different tasks. This adjustment enhances the performance and task generalization ability of cloud models, promoting models to converge towards a shared optimum across all task subsets. Extensive experiments conducted on the NYUD-v2, PASCAL Context and Cityscapes datasets validate the effectiveness and superiority of FedPMT.
•We propose cross-device task heterogeneity, a collaborative scenario for federated clients with heterogeneous task sets.•We propose FedPMT, enabling clients with diverse task sets to collaboratively train cloud models, with proven convergence.•We use different model architectures locally and in the cloud for their tasks, enabling collaboration through alignment.•We propose task attenuation factors to promote task collaboration, enabling cloud models to converge to shared optima.•Extensive experiments verify the effectiveness of our method in various heterogeneous task set scenarios. |
ArticleNumber | 105155 |
Author | Wu, Fan Chen, Guihai Niu, Chaoyue Xin, Zewei Li, Qinya |
Author_xml | – sequence: 1 givenname: Zewei orcidid: 0009-0003-2824-4963 surname: Xin fullname: Xin, Zewei email: xin_zewei_12138@sjtu.edu.cn – sequence: 2 givenname: Qinya surname: Li fullname: Li, Qinya email: qinyali@sjtu.edu.cn – sequence: 3 givenname: Chaoyue surname: Niu fullname: Niu, Chaoyue email: rvince@cs.sjtu.edu.cn – sequence: 4 givenname: Fan surname: Wu fullname: Wu, Fan email: fwu@cs.sjtu.edu.cn – sequence: 5 givenname: Guihai orcidid: 0000-0002-6934-1685 surname: Chen fullname: Chen, Guihai email: gchen@cs.sjtu.edu.cn |
BookMark | eNp9kMtOwzAQRb0oEm3hB1jlBxJsJ35UYoMqykOV2MDacuxx65Amle0U8fc0DWtWVxrdM7o6CzTr-g4QuiO4IJjw-6ZojtYUFFN2PjDC2AzNsajKXJSEXaNFjA3GhDAh5-htAxaCTmCzw9Amnycdv7IWdOh8t8u-fdpnJvQx5hZO3kC2hwSh30EH_RCzSzsOdYQUb9CV022E279cos_N08f6Jd--P7-uH7e5IVymXFcOGOYlwdRo5ziH2lWWCmxqtmK2qp2gsKLSOF3bUlS8krWVUlvqsOPClktEp7-XXQGcOgZ_0OFHEaxGA6pRowE1GlCTgTP0MEFwXnbyEFQ0HjoD1gcwSdne_4f_AiMaamg |
Cites_doi | 10.1561/2200000083 10.1109/JIOT.2021.3063147 10.1145/3625558 10.1109/TPAMI.2004.1273918 10.1016/j.jpdc.2022.12.011 10.1016/j.cviu.2024.104014 10.1145/3298981 10.1109/TITS.2023.3297996 10.1109/TPDS.2021.3098467 10.1109/ACCESS.2023.3233983 10.1109/ACCESS.2020.2983149 10.1109/TPAMI.2017.2699184 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Inc. |
Copyright_xml | – notice: 2025 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jpdc.2025.105155 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_jpdc_2025_105155 S0743731525001224 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABDPE ABEFU ABFNM ABFSI ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADFGL ADHUB ADJOM ADMUD ADNMO ADTZH ADVLN AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 E.L EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 TWZ WUQ XJT XOL XPP ZMT ZU3 ZY4 ~G- AAYXX CITATION |
ID | FETCH-LOGICAL-c168t-a4fe5063102caff66ebf4d270cb595d4bf72e928cfabd374648bd88ad2f0f67d3 |
IEDL.DBID | .~1 |
ISSN | 0743-7315 |
IngestDate | Thu Aug 21 00:39:25 EDT 2025 Sat Aug 30 17:13:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Task set heterogeneity Multi-task learning Federated learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c168t-a4fe5063102caff66ebf4d270cb595d4bf72e928cfabd374648bd88ad2f0f67d3 |
ORCID | 0009-0003-2824-4963 0000-0002-6934-1685 |
ParticipantIDs | crossref_primary_10_1016_j_jpdc_2025_105155 elsevier_sciencedirect_doi_10_1016_j_jpdc_2025_105155 |
PublicationCentury | 2000 |
PublicationDate | November 2025 2025-11-00 |
PublicationDateYYYYMMDD | 2025-11-01 |
PublicationDate_xml | – month: 11 year: 2025 text: November 2025 |
PublicationDecade | 2020 |
PublicationTitle | Journal of parallel and distributed computing |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Li, Lin, Shang, Wu (br0520) 2023 Fu, Li, Yu, Luan, Zhao (br0060) 2023 Li, Sahu, Zaheer, Sanjabi, Talwalkar, Smith (br0510) 2020; 2 Ye, Xu (br0350) 2023 Chang, Li, Wu, Yu, Wang, Xu (br0450) 2023; 175 Hu, Xian, Wu, Fan, Yin, Zhao (br0330) 2024; 36 Zhou, Liu, Zhao (br0040) 2023 Mottaghi, Chen, Liu, Cho, Lee, Fidler, Urtasun, Yuille (br0470) 2014 Chen, Xu, Wang, Li, Li, Chen, Zhang (br0440) 2023 Xin, Sirejiding, Lu, Ding, Wang, Alsarhan, Lu (br0380) 2024 Li, Wang (br0250) 2019 Zhou, Qu, Guo, Luo, Guo, Xu, Akerkar (br0200) 2021; 8 Zhang, Hua, Wang, Song, Xue, Ma, Guan (br0540) 2023; 37 Cai, Chen, Liu, Srinivasa, Lee, Kompella, Wang (br0390) 2023 Hard, Rao, Mathews, Ramaswamy, Beaufays, Augenstein, Eichner, Kiddon, Ramage (br0030) 2018 Lu, Huang, Yang, Sirejiding, Ding, Lu (br0400) 2024 Vandenhende, Georgoulis, Van Gansbeke, Proesmans, Dai, Van Gool (br0110) 2021; 44 Tan, Yu, Cui, Yang (br0120) 2022 Zhuang, Wen, Lyu, Zhang (br0160) 2023 Chen, Papandreou, Kokkinos, Murphy, Yuille (br0220) 2017; 40 Bai, Zhang, Tao, Wu, Wang, Xu (br0320) 2023; 37 He, Zhang, Ren, Sun (br0570) 2015 Yu, Kumar, Gupta, Levine, Hausman, Finn (br0530) 2020; 33 Yang, Liu, Chen, Tong (br0020) 2019; 10 Chen, Shen, Ding, Chen, Zhao, Learned-Miller, Gan (br0360) 2023 McMahan, Moore, Ramage, Hampson, y Arcas (br0010) 2017 Corinzia, Beuret, Buhmann (br0420) 2019 Smith, Chiang, Sanjabi, Talwalkar (br0130) 2017; 30 Zhu, Lin, Lu, Lin, Han (br0300) 2021; 34 Bonawitz, Eichner, Grieskamp, Huba, Ingerman, Ivanov, Kiddon, Konečnỳ, Mazzocchi, McMahan (br0080) 2019; 1 Chen, Badrinarayanan, Lee, Rabinovich (br0310) 2018 Xu, Yang, Zhang (br0370) 2023; 37 Gallier, Quaintance (br0430) 2019 Yurtsever, Lambert, Carballo, Takeda (br0190) 2020; 8 Sun, Xiao, Liu, Wang (br0210) 2019 Silberman, Hoiem, Kohli, Fergus (br0460) 2012; vol. 12 Fan, Wang, Yao, Lyu, Zhang, Tian (br0240) 2022 Liu, Liu, Du, Li (br0070) 2019 Marfoq, Neglia, Bellet, Kameni, Vidal (br0140) 2021; 34 Kairouz, McMahan, Avent, Bellet, Bennis, Bhagoji, Bonawitz, Charles, Cormode, Cummings (br0230) 2021; 14 Ruder (br0100) 2017 Ye, Fang, Du, Yuen, Tao (br0270) 2023; 56 Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, Schiele (br0480) 2016 Van der Maaten, Hinton (br0410) 2008; 9 Diao, Ding, Tarokh (br0260) 2020 Yang, Andrew, Eichner, Sun, Li, Kong, Ramage, Beaufays (br0180) 2018 Glorot, Bengio (br0550) 2010 Vandenhende, Georgoulis, Van Gool (br0340) 2020 Liu, Lin, Cao, Hu, Wei, Zhang, Lin, Guo (br0490) 2021 Parekh, Patel, Gupta, Jadav, Tanwar, Alharbi, Tolba, Neagu, Raboaca (br0050) 2023; 11 Huang, Gupta, Song, Li, Arora (br0280) 2021; 34 Ramaswamy, Mathews, Rao, Beaufays (br0170) 2019 Karimireddy, Kale, Mohri, Reddi, Stich, Suresh (br0290) 2020 Martin, Fowlkes, Malik (br0500) 2004; 26 Mills, Hu, Min (br0150) 2021; 33 Zhuang, Wen, Zhang (br0090) 2022 Saxe, McClelland, Ganguli (br0560) 2013 Ruder (10.1016/j.jpdc.2025.105155_br0100) Yang (10.1016/j.jpdc.2025.105155_br0180) Hu (10.1016/j.jpdc.2025.105155_br0330) 2024; 36 Fan (10.1016/j.jpdc.2025.105155_br0240) 2022 McMahan (10.1016/j.jpdc.2025.105155_br0010) 2017 Mills (10.1016/j.jpdc.2025.105155_br0150) 2021; 33 Li (10.1016/j.jpdc.2025.105155_br0510) 2020; 2 Marfoq (10.1016/j.jpdc.2025.105155_br0140) 2021; 34 Tan (10.1016/j.jpdc.2025.105155_br0120) 2022 Yang (10.1016/j.jpdc.2025.105155_br0020) 2019; 10 Kairouz (10.1016/j.jpdc.2025.105155_br0230) 2021; 14 Chen (10.1016/j.jpdc.2025.105155_br0310) 2018 Zhang (10.1016/j.jpdc.2025.105155_br0540) 2023; 37 Diao (10.1016/j.jpdc.2025.105155_br0260) 2020 Karimireddy (10.1016/j.jpdc.2025.105155_br0290) 2020 Chen (10.1016/j.jpdc.2025.105155_br0440) 2023 Yu (10.1016/j.jpdc.2025.105155_br0530) 2020; 33 Mottaghi (10.1016/j.jpdc.2025.105155_br0470) 2014 Cordts (10.1016/j.jpdc.2025.105155_br0480) 2016 Chang (10.1016/j.jpdc.2025.105155_br0450) 2023; 175 Huang (10.1016/j.jpdc.2025.105155_br0280) 2021; 34 Ramaswamy (10.1016/j.jpdc.2025.105155_br0170) Bai (10.1016/j.jpdc.2025.105155_br0320) 2023; 37 Zhou (10.1016/j.jpdc.2025.105155_br0200) 2021; 8 Saxe (10.1016/j.jpdc.2025.105155_br0560) Li (10.1016/j.jpdc.2025.105155_br0520) 2023 Xin (10.1016/j.jpdc.2025.105155_br0380) 2024 Bonawitz (10.1016/j.jpdc.2025.105155_br0080) 2019; 1 Vandenhende (10.1016/j.jpdc.2025.105155_br0110) 2021; 44 He (10.1016/j.jpdc.2025.105155_br0570) 2015 Ye (10.1016/j.jpdc.2025.105155_br0270) 2023; 56 Lu (10.1016/j.jpdc.2025.105155_br0400) 2024 Xu (10.1016/j.jpdc.2025.105155_br0370) 2023; 37 Hard (10.1016/j.jpdc.2025.105155_br0030) Chen (10.1016/j.jpdc.2025.105155_br0220) 2017; 40 Gallier (10.1016/j.jpdc.2025.105155_br0430) 2019 Yurtsever (10.1016/j.jpdc.2025.105155_br0190) 2020; 8 Cai (10.1016/j.jpdc.2025.105155_br0390) 2023 Parekh (10.1016/j.jpdc.2025.105155_br0050) 2023; 11 Zhu (10.1016/j.jpdc.2025.105155_br0300) 2021; 34 Ye (10.1016/j.jpdc.2025.105155_br0350) 2023 Martin (10.1016/j.jpdc.2025.105155_br0500) 2004; 26 Zhou (10.1016/j.jpdc.2025.105155_br0040) 2023 Zhuang (10.1016/j.jpdc.2025.105155_br0160) 2023 Silberman (10.1016/j.jpdc.2025.105155_br0460) 2012; vol. 12 Liu (10.1016/j.jpdc.2025.105155_br0070) 2019 Zhuang (10.1016/j.jpdc.2025.105155_br0090) Corinzia (10.1016/j.jpdc.2025.105155_br0420) Smith (10.1016/j.jpdc.2025.105155_br0130) 2017; 30 Liu (10.1016/j.jpdc.2025.105155_br0490) 2021 Vandenhende (10.1016/j.jpdc.2025.105155_br0340) 2020 Van der Maaten (10.1016/j.jpdc.2025.105155_br0410) 2008; 9 Fu (10.1016/j.jpdc.2025.105155_br0060) 2023 Li (10.1016/j.jpdc.2025.105155_br0250) Glorot (10.1016/j.jpdc.2025.105155_br0550) 2010 Chen (10.1016/j.jpdc.2025.105155_br0360) 2023 Sun (10.1016/j.jpdc.2025.105155_br0210) 2019 |
References_xml | – volume: 30 year: 2017 ident: br0130 article-title: Federated multi-task learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 8 start-page: 11916 year: 2021 end-page: 11934 ident: br0200 article-title: On-device learning systems for edge intelligence: a software and hardware synergy perspective publication-title: IEEE Internet Things J. – year: 2023 ident: br0060 article-title: An incentive mechanism of incorporating supervision game for federated learning in autonomous driving publication-title: IEEE Trans. Intell. Transp. Syst. – year: 2019 ident: br0250 article-title: Fedmd: heterogenous federated learning via model distillation – volume: 33 start-page: 630 year: 2021 end-page: 641 ident: br0150 article-title: Multi-task federated learning for personalised deep neural networks in edge computing publication-title: IEEE Trans. Parallel Distrib. Syst. – start-page: 5693 year: 2019 end-page: 5703 ident: br0210 article-title: Deep high-resolution representation learning for human pose estimation publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 34 start-page: 7232 year: 2021 end-page: 7241 ident: br0280 article-title: Evaluating gradient inversion attacks and defenses in federated learning publication-title: Adv. Neural Inf. Process. Syst. – start-page: 794 year: 2018 end-page: 803 ident: br0310 article-title: Gradnorm: gradient normalization for adaptive loss balancing in deep multitask networks publication-title: International Conference on Machine Learning – volume: 9 year: 2008 ident: br0410 article-title: Visualizing data using t-sne publication-title: J. Mach. Learn. Res. – volume: 34 start-page: 15434 year: 2021 end-page: 15447 ident: br0140 article-title: Federated multi-task learning under a mixture of distributions publication-title: Adv. Neural Inf. Process. Syst. – volume: 37 start-page: 3072 year: 2023 end-page: 3080 ident: br0370 article-title: Demt: deformable mixer transformer for multi-task learning of dense prediction publication-title: Proc. AAAI Conf. Artif. Intell. – year: 2019 ident: br0170 article-title: Federated learning for emoji prediction in a mobile keyboard – volume: vol. 12 start-page: 746 year: 2012 end-page: 760 ident: br0460 article-title: Indoor segmentation and support inference from rgbd images publication-title: Computer Vision–ECCV 2012: 12th European Conference on Computer Vision – start-page: 131 year: 2022 end-page: 140 ident: br0240 article-title: Fedskip: combatting statistical heterogeneity with federated skip aggregation publication-title: 2022 IEEE International Conference on Data Mining (ICDM) – start-page: 270 year: 2019 end-page: 278 ident: br0430 article-title: Algebra, Topology, Differential Calculus, and Optimization Theory for Computer Science and Engineering – volume: 36 year: 2024 ident: br0330 article-title: Revisiting scalarization in multi-task learning: a theoretical perspective publication-title: Adv. Neural Inf. Process. Syst. – start-page: 5599 year: 2024 end-page: 5609 ident: br0400 article-title: Fedhca2: towards hetero-client federated multi-task learning publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 21828 year: 2023 end-page: 21837 ident: br0350 article-title: Taskexpert: dynamically assembling multi-task representations with memorial mixture-of-experts publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – year: 2018 ident: br0030 article-title: Federated learning for mobile keyboard prediction – start-page: 10012 year: 2021 end-page: 10022 ident: br0490 article-title: Swin transformer: hierarchical vision transformer using shifted windows publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – start-page: 527 year: 2020 end-page: 543 ident: br0340 article-title: Mti-net: multi-scale task interaction networks for multi-task learning publication-title: Computer Vision–ECCV 2020: 16th European Conference, Proceedings, Part IV 16 – volume: 2 start-page: 429 year: 2020 end-page: 450 ident: br0510 article-title: Federated optimization in heterogeneous networks publication-title: Proc. Mach. Learn. Syst. – start-page: 11828 year: 2023 end-page: 11837 ident: br0360 article-title: Mod-squad: designing mixtures of experts as modular multi-task learners publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – year: 2022 ident: br0090 article-title: Smart multi-tenant federated learning – year: 2016 ident: br0480 article-title: The cityscapes dataset for semantic urban scene understanding publication-title: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2022 ident: br0120 article-title: Towards personalized federated learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 14 start-page: 1 year: 2021 end-page: 210 ident: br0230 article-title: Advances and open problems in federated learning publication-title: Found. Trends Mach. Learn. – volume: 33 start-page: 5824 year: 2020 end-page: 5836 ident: br0530 article-title: Gradient surgery for multi-task learning publication-title: Adv. Neural Inf. Process. Syst. – year: 2017 ident: br0100 article-title: An overview of multi-task learning in deep neural networks – volume: 34 start-page: 29995 year: 2021 end-page: 30007 ident: br0300 article-title: Delayed gradient averaging: tolerate the communication latency for federated learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 40 start-page: 834 year: 2017 end-page: 848 ident: br0220 article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2018 ident: br0180 article-title: Applied federated learning: improving Google keyboard query suggestions – volume: 26 start-page: 530 year: 2004 end-page: 549 ident: br0500 article-title: Learning to detect natural image boundaries using local brightness, color, and texture cues publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 175 start-page: 37 year: 2023 end-page: 50 ident: br0450 article-title: Pagroup: privacy-aware grouping framework for high-performance federated learning publication-title: J. Parallel Distrib. Comput. – start-page: 891 year: 2014 end-page: 898 ident: br0470 article-title: The role of context for object detection and semantic segmentation in the wild publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 8 start-page: 58443 year: 2020 end-page: 58469 ident: br0190 article-title: A survey of autonomous driving: common practices and emerging technologies publication-title: IEEE Access – volume: 1 start-page: 374 year: 2019 end-page: 388 ident: br0080 article-title: Towards federated learning at scale: system design publication-title: Proc. Mach. Learn. Syst. – start-page: 5132 year: 2020 end-page: 5143 ident: br0290 article-title: Scaffold: stochastic controlled averaging for federated learning publication-title: International Conference on Machine Learning – volume: 11 start-page: 1825 year: 2023 end-page: 1839 ident: br0050 article-title: Gefl: gradient encryption-aided privacy preserved federated learning for autonomous vehicles publication-title: IEEE Access – year: 2020 ident: br0260 article-title: Heterofl: computation and communication efficient federated learning for heterogeneous clients publication-title: International Conference on Learning Representations – start-page: 1026 year: 2015 end-page: 1034 ident: br0570 article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification publication-title: Proceedings of the IEEE International Conference on Computer Vision – year: 2023 ident: br0440 article-title: Synchronize only the immature parameters: communication-efficient federated learning by freezing parameters adaptively publication-title: IEEE Trans. Parallel Distrib. Syst. – start-page: 249 year: 2010 end-page: 256 ident: br0550 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings – year: 2013 ident: br0560 article-title: Exact solutions to the nonlinear dynamics of learning in deep linear neural networks – volume: 44 start-page: 3614 year: 2021 end-page: 3633 ident: br0110 article-title: Multi-task learning for dense prediction tasks: a survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 37 start-page: 11237 year: 2023 end-page: 11244 ident: br0540 article-title: Fedala: adaptive local aggregation for personalized federated learning publication-title: Proc. AAAI Conf. Artif. Intell. – year: 2023 ident: br0040 article-title: Resource allocation of federated learning for the metaverse with mobile augmented reality publication-title: IEEE Trans. Wirel. Commun. – start-page: 1273 year: 2017 end-page: 1282 ident: br0010 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: Artificial Intelligence and Statistics – start-page: 23414 year: 2023 end-page: 23424 ident: br0160 article-title: Mas: towards resource-efficient federated multiple-task learning publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – year: 2019 ident: br0420 article-title: Variational federated multi-task learning – start-page: 19767 year: 2023 end-page: 19788 ident: br0520 article-title: Revisiting weighted aggregation in federated learning with neural networks publication-title: International Conference on Machine Learning – volume: 56 start-page: 1 year: 2023 end-page: 44 ident: br0270 article-title: Heterogeneous federated learning: state-of-the-art and research challenges publication-title: ACM Comput. Surv. – volume: 10 start-page: 1 year: 2019 end-page: 19 ident: br0020 article-title: Federated machine learning: concept and applications publication-title: ACM Trans. Intell. Syst. Technol. – volume: 37 start-page: 6728 year: 2023 end-page: 6736 ident: br0320 article-title: Picor: multi-task deep reinforcement learning with policy correction publication-title: Proc. AAAI Conf. Artif. Intell. – start-page: 5036 year: 2023 end-page: 5044 ident: br0390 article-title: Many-task federated learning: a new problem setting and a simple baseline publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 506 year: 2019 end-page: 515 ident: br0070 article-title: Performance analysis and characterization of training deep learning models on mobile device publication-title: 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) – year: 2024 ident: br0380 article-title: Tfut: task fusion upward transformer model for multi-task learning on dense prediction publication-title: Comput. Vis. Image Underst. – year: 2022 ident: 10.1016/j.jpdc.2025.105155_br0120 article-title: Towards personalized federated learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 37 start-page: 6728 year: 2023 ident: 10.1016/j.jpdc.2025.105155_br0320 article-title: Picor: multi-task deep reinforcement learning with policy correction publication-title: Proc. AAAI Conf. Artif. Intell. – volume: 37 start-page: 11237 year: 2023 ident: 10.1016/j.jpdc.2025.105155_br0540 article-title: Fedala: adaptive local aggregation for personalized federated learning publication-title: Proc. AAAI Conf. Artif. Intell. – start-page: 1273 year: 2017 ident: 10.1016/j.jpdc.2025.105155_br0010 article-title: Communication-efficient learning of deep networks from decentralized data – start-page: 10012 year: 2021 ident: 10.1016/j.jpdc.2025.105155_br0490 article-title: Swin transformer: hierarchical vision transformer using shifted windows – start-page: 131 year: 2022 ident: 10.1016/j.jpdc.2025.105155_br0240 article-title: Fedskip: combatting statistical heterogeneity with federated skip aggregation – volume: 34 start-page: 15434 year: 2021 ident: 10.1016/j.jpdc.2025.105155_br0140 article-title: Federated multi-task learning under a mixture of distributions publication-title: Adv. Neural Inf. Process. Syst. – volume: 14 start-page: 1 issue: 1–2 year: 2021 ident: 10.1016/j.jpdc.2025.105155_br0230 article-title: Advances and open problems in federated learning publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000083 – volume: 8 start-page: 11916 issue: 15 year: 2021 ident: 10.1016/j.jpdc.2025.105155_br0200 article-title: On-device learning systems for edge intelligence: a software and hardware synergy perspective publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3063147 – volume: 56 start-page: 1 issue: 3 year: 2023 ident: 10.1016/j.jpdc.2025.105155_br0270 article-title: Heterogeneous federated learning: state-of-the-art and research challenges publication-title: ACM Comput. Surv. doi: 10.1145/3625558 – ident: 10.1016/j.jpdc.2025.105155_br0420 – volume: 9 issue: 11 year: 2008 ident: 10.1016/j.jpdc.2025.105155_br0410 article-title: Visualizing data using t-sne publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.jpdc.2025.105155_br0170 – volume: 26 start-page: 530 issue: 5 year: 2004 ident: 10.1016/j.jpdc.2025.105155_br0500 article-title: Learning to detect natural image boundaries using local brightness, color, and texture cues publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2004.1273918 – volume: 2 start-page: 429 year: 2020 ident: 10.1016/j.jpdc.2025.105155_br0510 article-title: Federated optimization in heterogeneous networks publication-title: Proc. Mach. Learn. Syst. – start-page: 11828 year: 2023 ident: 10.1016/j.jpdc.2025.105155_br0360 article-title: Mod-squad: designing mixtures of experts as modular multi-task learners – year: 2020 ident: 10.1016/j.jpdc.2025.105155_br0260 article-title: Heterofl: computation and communication efficient federated learning for heterogeneous clients – volume: 175 start-page: 37 year: 2023 ident: 10.1016/j.jpdc.2025.105155_br0450 article-title: Pagroup: privacy-aware grouping framework for high-performance federated learning publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2022.12.011 – volume: 30 year: 2017 ident: 10.1016/j.jpdc.2025.105155_br0130 article-title: Federated multi-task learning publication-title: Adv. Neural Inf. Process. Syst. – start-page: 5693 year: 2019 ident: 10.1016/j.jpdc.2025.105155_br0210 article-title: Deep high-resolution representation learning for human pose estimation – year: 2016 ident: 10.1016/j.jpdc.2025.105155_br0480 article-title: The cityscapes dataset for semantic urban scene understanding – ident: 10.1016/j.jpdc.2025.105155_br0180 – volume: 1 start-page: 374 year: 2019 ident: 10.1016/j.jpdc.2025.105155_br0080 article-title: Towards federated learning at scale: system design publication-title: Proc. Mach. Learn. Syst. – start-page: 891 year: 2014 ident: 10.1016/j.jpdc.2025.105155_br0470 article-title: The role of context for object detection and semantic segmentation in the wild – start-page: 249 year: 2010 ident: 10.1016/j.jpdc.2025.105155_br0550 article-title: Understanding the difficulty of training deep feedforward neural networks – start-page: 5599 year: 2024 ident: 10.1016/j.jpdc.2025.105155_br0400 article-title: Fedhca2: towards hetero-client federated multi-task learning – year: 2024 ident: 10.1016/j.jpdc.2025.105155_br0380 article-title: Tfut: task fusion upward transformer model for multi-task learning on dense prediction publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2024.104014 – volume: 10 start-page: 1 issue: 2 year: 2019 ident: 10.1016/j.jpdc.2025.105155_br0020 article-title: Federated machine learning: concept and applications publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/3298981 – ident: 10.1016/j.jpdc.2025.105155_br0250 – start-page: 19767 year: 2023 ident: 10.1016/j.jpdc.2025.105155_br0520 article-title: Revisiting weighted aggregation in federated learning with neural networks – start-page: 1026 year: 2015 ident: 10.1016/j.jpdc.2025.105155_br0570 article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification – ident: 10.1016/j.jpdc.2025.105155_br0090 – volume: 33 start-page: 5824 year: 2020 ident: 10.1016/j.jpdc.2025.105155_br0530 article-title: Gradient surgery for multi-task learning publication-title: Adv. Neural Inf. Process. Syst. – year: 2023 ident: 10.1016/j.jpdc.2025.105155_br0060 article-title: An incentive mechanism of incorporating supervision game for federated learning in autonomous driving publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2023.3297996 – start-page: 5036 year: 2023 ident: 10.1016/j.jpdc.2025.105155_br0390 article-title: Many-task federated learning: a new problem setting and a simple baseline – start-page: 794 year: 2018 ident: 10.1016/j.jpdc.2025.105155_br0310 article-title: Gradnorm: gradient normalization for adaptive loss balancing in deep multitask networks – year: 2023 ident: 10.1016/j.jpdc.2025.105155_br0440 article-title: Synchronize only the immature parameters: communication-efficient federated learning by freezing parameters adaptively publication-title: IEEE Trans. Parallel Distrib. Syst. – ident: 10.1016/j.jpdc.2025.105155_br0100 – volume: 34 start-page: 29995 year: 2021 ident: 10.1016/j.jpdc.2025.105155_br0300 article-title: Delayed gradient averaging: tolerate the communication latency for federated learning publication-title: Adv. Neural Inf. Process. Syst. – start-page: 270 year: 2019 ident: 10.1016/j.jpdc.2025.105155_br0430 – start-page: 527 year: 2020 ident: 10.1016/j.jpdc.2025.105155_br0340 article-title: Mti-net: multi-scale task interaction networks for multi-task learning – volume: 36 year: 2024 ident: 10.1016/j.jpdc.2025.105155_br0330 article-title: Revisiting scalarization in multi-task learning: a theoretical perspective publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.jpdc.2025.105155_br0030 – volume: 33 start-page: 630 issue: 3 year: 2021 ident: 10.1016/j.jpdc.2025.105155_br0150 article-title: Multi-task federated learning for personalised deep neural networks in edge computing publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2021.3098467 – volume: 11 start-page: 1825 year: 2023 ident: 10.1016/j.jpdc.2025.105155_br0050 article-title: Gefl: gradient encryption-aided privacy preserved federated learning for autonomous vehicles publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3233983 – start-page: 506 year: 2019 ident: 10.1016/j.jpdc.2025.105155_br0070 article-title: Performance analysis and characterization of training deep learning models on mobile device – start-page: 23414 year: 2023 ident: 10.1016/j.jpdc.2025.105155_br0160 article-title: Mas: towards resource-efficient federated multiple-task learning – volume: 37 start-page: 3072 year: 2023 ident: 10.1016/j.jpdc.2025.105155_br0370 article-title: Demt: deformable mixer transformer for multi-task learning of dense prediction publication-title: Proc. AAAI Conf. Artif. Intell. – start-page: 5132 year: 2020 ident: 10.1016/j.jpdc.2025.105155_br0290 article-title: Scaffold: stochastic controlled averaging for federated learning – volume: 44 start-page: 3614 issue: 7 year: 2021 ident: 10.1016/j.jpdc.2025.105155_br0110 article-title: Multi-task learning for dense prediction tasks: a survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 8 start-page: 58443 year: 2020 ident: 10.1016/j.jpdc.2025.105155_br0190 article-title: A survey of autonomous driving: common practices and emerging technologies publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2983149 – volume: 34 start-page: 7232 year: 2021 ident: 10.1016/j.jpdc.2025.105155_br0280 article-title: Evaluating gradient inversion attacks and defenses in federated learning publication-title: Adv. Neural Inf. Process. Syst. – volume: vol. 12 start-page: 746 year: 2012 ident: 10.1016/j.jpdc.2025.105155_br0460 article-title: Indoor segmentation and support inference from rgbd images – start-page: 21828 year: 2023 ident: 10.1016/j.jpdc.2025.105155_br0350 article-title: Taskexpert: dynamically assembling multi-task representations with memorial mixture-of-experts – volume: 40 start-page: 834 issue: 4 year: 2017 ident: 10.1016/j.jpdc.2025.105155_br0220 article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – year: 2023 ident: 10.1016/j.jpdc.2025.105155_br0040 article-title: Resource allocation of federated learning for the metaverse with mobile augmented reality publication-title: IEEE Trans. Wirel. Commun. – ident: 10.1016/j.jpdc.2025.105155_br0560 |
SSID | ssj0011578 |
Score | 2.4269915 |
Snippet | Traditional Federated Learning (FL) predominantly focuses on task-consistent scenarios, assuming clients possess identical tasks or task sets. However, in... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 105155 |
SubjectTerms | Federated learning Multi-task learning Task set heterogeneity |
Title | Federated multi-task learning with cross-device heterogeneous task subsets |
URI | https://dx.doi.org/10.1016/j.jpdc.2025.105155 |
Volume | 205 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VZWHhjSiPygMbMk0TvzpWFVUpogtU6hY5sQ0tUlu1YeW340scBBJiYExkK9Hny93n-Ls7gGvHu7YX54ZGjGnKfIih2pmIctvjMTPCbzowUfhxIkZTNp7xWQMGdS4MyiqD7698eumtw51OQLOzns87Txj8ZIL9e6rzIcxgZxKt_PbjS-aBtWRUXYoTR4fEmUrjtVgbLGMYc2x328V0v9-C07eAMzyAvcAUSb96mUNo2OUR7NddGEj4KI9hPMR6EJ4yGlKqA2mht28kdIN4IfijlZSPo8aiWyCvqIBZecOxftdPytFb7z5ssT2B6fDueTCioUMCzbtCFVQzZ7knGZ4l5No5ISzq7mIZ5RnvccMyJ2O_FCp3OjOJZIKpzCilTewiJ6RJTqG5XC3tGRBnmeLKc22RJyyXTvvNqzbCKeOhY7FuwU0NTbquCmGktUJskSKQKQKZVkC2gNfopT-WM_We-o955_-cdwG7eFUlCV5Cs9i82yvPFoqsXZpDG3b69w-jySeobr9X |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T-QwEB5xUNw1x1u8cQHVyeyu13a8BQUCVsuzASS64MQ2j5N2VyQI0dyfuj_ITOKgQzpRINEmcRJ_GX0zdr6ZAdgKquN7Ine8LaXlEl0Mt8G1ufI9JaTTuOigROGzcz24ksfX6noC_ja5MCSrjNxfc3rF1vFIK6LZGt_fty7I-SVd6t9T_x-KysoT__KM67Zi9-gAP_K2EP3Dy_0Bj60FeN7RpuRWBq_QO6N7zW0IWnsSrImknWeqp5zMQiJwDiYPNnPdRGppMmeMdSK0g05cF-_7DaYk0gW1Tdj586YroeI1pqn9Sa8XM3VqUdnD2FHdRKGov26H8gv_5w3_8XD9GfgZQ1O2V89-Fib8cA6mm7YPLLLAPBz3qQAFxqiOVXJEXtriN4vtJ24Z7eyy6nHceeIhdkeSmxFaqh89Fay6ukC-8mWxAFdfgtsiTA5HQ78ELHhplMHgXuddmSfB4mrZOh2MQ-iksMvwq4EmHdeVN9JGkvaQEpApAZnWQC6DatBL39lPiq7hg3Ernxy3Cd8Hl2en6enR-ckq_KAzdYbiGkyWj09-HUOVMtuoTIPBzVfb4ishafy1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+multi-task+learning+with+cross-device+heterogeneous+task+subsets&rft.jtitle=Journal+of+parallel+and+distributed+computing&rft.au=Xin%2C+Zewei&rft.au=Li%2C+Qinya&rft.au=Niu%2C+Chaoyue&rft.au=Wu%2C+Fan&rft.date=2025-11-01&rft.issn=0743-7315&rft.volume=205&rft.spage=105155&rft_id=info:doi/10.1016%2Fj.jpdc.2025.105155&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpdc_2025_105155 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7315&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7315&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7315&client=summon |