The e-positivity of the chromatic symmetric function for twinned paths and cycles

The operation of twinning a graph at a vertex was introduced by Foley, Hoàng, and Merkel (2019), who conjectured that twinning preserves e-positivity of the chromatic symmetric function. A counterexample to this conjecture was given by Li, Li, Wang, and Yang (2021). In this paper, we prove that e-po...

Full description

Saved in:
Bibliographic Details
Published inDiscrete mathematics Vol. 348; no. 12; p. 114687
Main Authors Banaian, Esther, Celano, Kyle, Chang-Lee, Megan, Colmenarejo, Laura, Goff, Owen, Kimble, Jamie, Kimpel, Lauren, Lentfer, John, Liang, Jinting, Sundaram, Sheila
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2025
Subjects
Online AccessGet full text
ISSN0012-365X
DOI10.1016/j.disc.2025.114687

Cover

Loading…
Abstract The operation of twinning a graph at a vertex was introduced by Foley, Hoàng, and Merkel (2019), who conjectured that twinning preserves e-positivity of the chromatic symmetric function. A counterexample to this conjecture was given by Li, Li, Wang, and Yang (2021). In this paper, we prove that e-positivity is preserved by the twinning operation on cycles, by giving an e-positive generating function for the chromatic symmetric function, as well as an e-positive recurrence. We derive similar e-positive generating functions and recurrences for twins of paths. Our methods make use of the important triple deletion formulas of Orellana and Scott (2014), as well as new symmetric function identities.
AbstractList The operation of twinning a graph at a vertex was introduced by Foley, Hoàng, and Merkel (2019), who conjectured that twinning preserves e-positivity of the chromatic symmetric function. A counterexample to this conjecture was given by Li, Li, Wang, and Yang (2021). In this paper, we prove that e-positivity is preserved by the twinning operation on cycles, by giving an e-positive generating function for the chromatic symmetric function, as well as an e-positive recurrence. We derive similar e-positive generating functions and recurrences for twins of paths. Our methods make use of the important triple deletion formulas of Orellana and Scott (2014), as well as new symmetric function identities.
ArticleNumber 114687
Author Celano, Kyle
Liang, Jinting
Kimble, Jamie
Banaian, Esther
Colmenarejo, Laura
Chang-Lee, Megan
Sundaram, Sheila
Goff, Owen
Lentfer, John
Kimpel, Lauren
Author_xml – sequence: 1
  givenname: Esther
  surname: Banaian
  fullname: Banaian, Esther
  email: estherb@ucr.edu
  organization: Department of Mathematics, University of California, Riverside, CA, United States of America
– sequence: 2
  givenname: Kyle
  surname: Celano
  fullname: Celano, Kyle
  email: celanok@wfu.edu
  organization: Department of Mathematics, Wake Forest University, NC, United States of America
– sequence: 3
  givenname: Megan
  surname: Chang-Lee
  fullname: Chang-Lee, Megan
  email: megan_chang-lee@brown.edu
  organization: Department of Mathematics, Brown University, Providence, RI, United States of America
– sequence: 4
  givenname: Laura
  surname: Colmenarejo
  fullname: Colmenarejo, Laura
  email: lcolmen@ncsu.edu
  organization: Department of Mathematics, North Carolina State University, Raleigh, NC, United States of America
– sequence: 5
  givenname: Owen
  surname: Goff
  fullname: Goff, Owen
  email: owencgoff@gmail.com
  organization: Department of Mathematics, University of Wisconsin, Madison, WI, United States of America
– sequence: 6
  givenname: Jamie
  surname: Kimble
  fullname: Kimble, Jamie
  email: jamkimble@gmail.com
  organization: Department of Mathematics, Michigan State University, East Lansing, MI, United States of America
– sequence: 7
  givenname: Lauren
  surname: Kimpel
  fullname: Kimpel, Lauren
  email: lkimpel@udel.edu
  organization: Department of Mathematics, University of Delaware, Newark, DE, United States of America
– sequence: 8
  givenname: John
  surname: Lentfer
  fullname: Lentfer, John
  email: jlentfer@berkeley.edu
  organization: Department of Mathematics, University of California, Berkeley, CA, United States of America
– sequence: 9
  givenname: Jinting
  surname: Liang
  fullname: Liang, Jinting
  email: liangj@math.ubc.ca
  organization: Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
– sequence: 10
  givenname: Sheila
  orcidid: 0000-0002-1583-4740
  surname: Sundaram
  fullname: Sundaram, Sheila
  email: shsund@umn.edu
  organization: School of Mathematics, University of Minnesota, Minneapolis, MN, United States of America
BookMark eNp9kMtKAzEUhrOoYFt9AVd5gRlzMpnMDLiR4qVQEKGCuzAmJzSlk5QkVubtnVLXrs4Fvp-fb0FmPngk5A5YCQzk_b40LumSM16XAEK2zYzMGQNeVLL-vCaLlPZsumXVzsn7docUi2NILruTyyMNlubpp3cxDH12mqZxGDDHabPfXmcXPLUh0vzjvEdDj33eJdp7Q_WoD5huyJXtDwlv_-aSfDw_bVevxebtZb163BQaZJsLwWoOwrYMGjANE7KWorUWq45LbbCruKiErTtoQfcATDDTflnTaCGqDhpRLQm_5OoYUopo1TG6oY-jAqbOItRenUWoswh1ETFBDxcIp2Ynh1El7dBrNC6izsoE9x_-C9dcalg
Cites_doi 10.1007/s00373-019-02034-1
10.4171/jems/974
10.1016/0097-3165(93)90048-D
10.11650/tjm/210703
10.1016/j.disc.2013.12.006
10.1137/17M1144805
10.1007/s00373-020-02230-4
10.1007/s10801-022-01175-6
10.1006/aima.1995.1020
10.1023/A:1011258714032
10.1016/0012-365X(92)90378-S
10.1007/BF01170773
10.1016/j.aim.2015.12.018
10.1137/18M1216201
10.1007/s00373-018-1928-2
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.disc.2025.114687
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_disc_2025_114687
S0012365X2500295X
GroupedDBID --K
--M
-DZ
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
41~
457
4G.
5GY
5VS
6OB
6TJ
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADIYS
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEXQZ
AFFNX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M26
M41
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
VH1
WH7
WUQ
XJT
XOL
XPP
ZCG
ZMT
ZY4
~G-
AAYXX
CITATION
ID FETCH-LOGICAL-c168t-405214f80171d70465648ffe3926cde932434f59181ca11040d8bfd7c44391743
IEDL.DBID .~1
ISSN 0012-365X
IngestDate Wed Aug 27 16:29:04 EDT 2025
Sat Aug 30 17:17:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Elementary symmetric function
Chromatic symmetric function
Graph twinning
e-positivity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c168t-405214f80171d70465648ffe3926cde932434f59181ca11040d8bfd7c44391743
ORCID 0000-0002-1583-4740
ParticipantIDs crossref_primary_10_1016_j_disc_2025_114687
elsevier_sciencedirect_doi_10_1016_j_disc_2025_114687
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle Discrete mathematics
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cho, Huh (br0030) 2019; 33
Li, Li, Wang, Yang (br0120) 2021; 25
Wang (br0140) 2024
Dahlberg (br0040) 2020; 82B
Foley, Hoàng, Merkel (br0080) 2019; 26
Dahlberg, van Willigenburg (br0070) 2018; 32
Macdonald (br0160) 1998
Orellana, Scott (br0170) 2014; 320
Tom (br0240) 2023
Wang, Zhou (br0150) 2024
Carlitz, Scoville, Vaughan (br0020) 1976; 19
Stanley (br0210) 1999
Foley, Kazdan, Kröll, Martínez Alberga, Melnyk, Tenenbaum (br0090) 2021; 37
Aliniaeifard, Wang, van Willigenburg (br0010) 2021
Stanley (br0200) 1995; 111
Dahlberg, Foley, van Willigenburg (br0050) 2020; 22
Hamel, Hoàng, Tuero (br0110) 2019; 35
Dahlberg, She, van Willigenburg (br0060) 2020; 27
Stembridge (br0230) 1992; 99
Shareshian, Wachs (br0180) 2012; vol. 14
Wang, Wang (br0270) 2023; 57
Tsujie (br0260) 2018; 34
Wolfe (br0280) 1998; 10
Foster Tom, Aarush Vailaya, The chromatic symmetric function of graphs glued at a single vertex, 2025.
Li, Yang (br0130) 2021; 28
Stanley, Stembridge (br0220) 1993; 62
Shareshian, Wachs (br0190) 2016; 295
Gebhard, Sagan (br0100) 2001; 13
Stanley (10.1016/j.disc.2025.114687_br0220) 1993; 62
Orellana (10.1016/j.disc.2025.114687_br0170) 2014; 320
Stanley (10.1016/j.disc.2025.114687_br0210) 1999
Foley (10.1016/j.disc.2025.114687_br0090) 2021; 37
Cho (10.1016/j.disc.2025.114687_br0030) 2019; 33
Li (10.1016/j.disc.2025.114687_br0130) 2021; 28
Aliniaeifard (10.1016/j.disc.2025.114687_br0010)
Wolfe (10.1016/j.disc.2025.114687_br0280) 1998; 10
Dahlberg (10.1016/j.disc.2025.114687_br0070) 2018; 32
Carlitz (10.1016/j.disc.2025.114687_br0020) 1976; 19
Stanley (10.1016/j.disc.2025.114687_br0200) 1995; 111
Shareshian (10.1016/j.disc.2025.114687_br0190) 2016; 295
Dahlberg (10.1016/j.disc.2025.114687_br0040) 2020; 82B
Shareshian (10.1016/j.disc.2025.114687_br0180) 2012; vol. 14
Li (10.1016/j.disc.2025.114687_br0120) 2021; 25
10.1016/j.disc.2025.114687_br0250
Gebhard (10.1016/j.disc.2025.114687_br0100) 2001; 13
Tsujie (10.1016/j.disc.2025.114687_br0260) 2018; 34
Dahlberg (10.1016/j.disc.2025.114687_br0060) 2020; 27
Stembridge (10.1016/j.disc.2025.114687_br0230) 1992; 99
Foley (10.1016/j.disc.2025.114687_br0080) 2019; 26
Wang (10.1016/j.disc.2025.114687_br0140)
Macdonald (10.1016/j.disc.2025.114687_br0160) 1998
Wang (10.1016/j.disc.2025.114687_br0150)
Dahlberg (10.1016/j.disc.2025.114687_br0050) 2020; 22
Wang (10.1016/j.disc.2025.114687_br0270) 2023; 57
Hamel (10.1016/j.disc.2025.114687_br0110) 2019; 35
Tom (10.1016/j.disc.2025.114687_br0240)
References_xml – volume: 34
  start-page: 1037
  year: 2018
  end-page: 1048
  ident: br0260
  article-title: The chromatic symmetric functions of trivially perfect graphs and cographs
  publication-title: Graphs Comb.
– volume: 37
  start-page: 87
  year: 2021
  end-page: 110
  ident: br0090
  article-title: Spiders and their kin: an investigation of Stanley's chromatic symmetric function for spiders and related graphs
  publication-title: Graphs Comb.
– volume: 13
  start-page: 227
  year: 2001
  end-page: 255
  ident: br0100
  article-title: A chromatic symmetric function in noncommuting variables
  publication-title: J. Algebr. Comb.
– reference: Foster Tom, Aarush Vailaya, The chromatic symmetric function of graphs glued at a single vertex, 2025.
– volume: 22
  start-page: 2673
  year: 2020
  end-page: 2696
  ident: br0050
  article-title: Resolving Stanley's
  publication-title: J. Eur. Math. Soc.
– volume: 19
  start-page: 211
  year: 1976
  end-page: 243
  ident: br0020
  article-title: Enumeration of pairs of sequences by rises, falls and levels
  publication-title: Manuscr. Math.
– volume: 111
  start-page: 166
  year: 1995
  end-page: 194
  ident: br0200
  article-title: A symmetric function generalization of the chromatic polynomial of a graph
  publication-title: Adv. Math.
– volume: 295
  start-page: 497
  year: 2016
  end-page: 551
  ident: br0190
  article-title: Chromatic quasisymmetric functions
  publication-title: Adv. Math.
– volume: 62
  start-page: 261
  year: 1993
  end-page: 279
  ident: br0220
  article-title: On immanants of Jacobi-Trudi matrices and permutations with restricted position
  publication-title: J. Comb. Theory, Ser. A
– volume: 33
  start-page: 2286
  year: 2019
  end-page: 2315
  ident: br0030
  article-title: On e-positivity and e-unimodality of chromatic quasisymmetric functions
  publication-title: SIAM J. Discrete Math.
– year: 2023
  ident: br0240
  article-title: A signed
– year: 1999
  ident: br0210
  article-title: Enumerative Combinatorics, vol. 2
– year: 2024
  ident: br0140
  article-title: All cycle-chords are
– volume: 57
  start-page: 495
  year: 2023
  end-page: 514
  ident: br0270
  article-title: The
  publication-title: J. Algebr. Comb.
– year: 2021
  ident: br0010
  article-title: The chromatic symmetric function of a graph centred at a vertex
– volume: 28
  year: 2021
  ident: br0130
  article-title: On the
  publication-title: Electron. J. Comb.
– volume: 320
  start-page: 1
  year: 2014
  end-page: 14
  ident: br0170
  article-title: Graphs with equal chromatic symmetric functions
  publication-title: Discrete Math.
– volume: 10
  start-page: 643
  year: 1998
  end-page: 657
  ident: br0280
  article-title: Symmetric chromatic functions
  publication-title: Pi Mu Epsilon J.
– volume: vol. 14
  start-page: 433
  year: 2012
  end-page: 460
  ident: br0180
  article-title: Chromatic quasisymmetric functions and Hessenberg varieties
  publication-title: Configuration Spaces
– year: 2024
  ident: br0150
  article-title: Composition method for chromatic symmetric functions: neat noncommutative analogs
– volume: 26
  year: 2019
  ident: br0080
  article-title: Classes of graphs with
  publication-title: Electron. J. Comb.
– volume: 35
  start-page: 815
  year: 2019
  end-page: 825
  ident: br0110
  article-title: Chromatic symmetric functions and
  publication-title: Graphs Comb.
– year: 1998
  ident: br0160
  article-title: Symmetric Functions and Hall Polynomials
– volume: 27
  year: 2020
  ident: br0060
  article-title: Schur and
  publication-title: Electron. J. Comb.
– volume: 32
  start-page: 1029
  year: 2018
  end-page: 1039
  ident: br0070
  article-title: Lollipop and lariat symmetric functions
  publication-title: SIAM J. Discrete Math.
– volume: 99
  start-page: 307
  year: 1992
  end-page: 320
  ident: br0230
  article-title: Eulerian numbers, tableaux, and the Betti numbers of a toric variety
  publication-title: Discrete Math.
– volume: 82B
  year: 2020
  ident: br0040
  article-title: A new formula for Stanley's chromatic symmetric function for unit interval graphs and
  publication-title: Sémin. Lothar. Comb.
– volume: 25
  start-page: 1089
  year: 2021
  end-page: 1111
  ident: br0120
  article-title: The twinning operation on graphs does not always preserve
  publication-title: Taiwan. J. Math.
– ident: 10.1016/j.disc.2025.114687_br0250
– ident: 10.1016/j.disc.2025.114687_br0150
– volume: 35
  start-page: 815
  issue: 4
  year: 2019
  ident: 10.1016/j.disc.2025.114687_br0110
  article-title: Chromatic symmetric functions and H-free graphs
  publication-title: Graphs Comb.
  doi: 10.1007/s00373-019-02034-1
– ident: 10.1016/j.disc.2025.114687_br0140
– volume: 22
  start-page: 2673
  issue: 8
  year: 2020
  ident: 10.1016/j.disc.2025.114687_br0050
  article-title: Resolving Stanley's e-positivity of claw-contractible-free graphs
  publication-title: J. Eur. Math. Soc.
  doi: 10.4171/jems/974
– volume: 28
  issue: 2
  year: 2021
  ident: 10.1016/j.disc.2025.114687_br0130
  article-title: On the e-positivity of (claw,2K2)-free graphs
  publication-title: Electron. J. Comb.
– year: 1998
  ident: 10.1016/j.disc.2025.114687_br0160
– volume: 62
  start-page: 261
  issue: 2
  year: 1993
  ident: 10.1016/j.disc.2025.114687_br0220
  article-title: On immanants of Jacobi-Trudi matrices and permutations with restricted position
  publication-title: J. Comb. Theory, Ser. A
  doi: 10.1016/0097-3165(93)90048-D
– ident: 10.1016/j.disc.2025.114687_br0240
– volume: 82B
  year: 2020
  ident: 10.1016/j.disc.2025.114687_br0040
  article-title: A new formula for Stanley's chromatic symmetric function for unit interval graphs and e-positivity for triangular ladder graphs
  publication-title: Sémin. Lothar. Comb.
– volume: 25
  start-page: 1089
  issue: 6
  year: 2021
  ident: 10.1016/j.disc.2025.114687_br0120
  article-title: The twinning operation on graphs does not always preserve e-positivity
  publication-title: Taiwan. J. Math.
  doi: 10.11650/tjm/210703
– volume: 320
  start-page: 1
  year: 2014
  ident: 10.1016/j.disc.2025.114687_br0170
  article-title: Graphs with equal chromatic symmetric functions
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2013.12.006
– ident: 10.1016/j.disc.2025.114687_br0010
– volume: 32
  start-page: 1029
  issue: 2
  year: 2018
  ident: 10.1016/j.disc.2025.114687_br0070
  article-title: Lollipop and lariat symmetric functions
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/17M1144805
– volume: 37
  start-page: 87
  issue: 1
  year: 2021
  ident: 10.1016/j.disc.2025.114687_br0090
  article-title: Spiders and their kin: an investigation of Stanley's chromatic symmetric function for spiders and related graphs
  publication-title: Graphs Comb.
  doi: 10.1007/s00373-020-02230-4
– year: 1999
  ident: 10.1016/j.disc.2025.114687_br0210
– volume: 57
  start-page: 495
  issue: 2
  year: 2023
  ident: 10.1016/j.disc.2025.114687_br0270
  article-title: The e-positivity of two classes of cycle-chord graphs
  publication-title: J. Algebr. Comb.
  doi: 10.1007/s10801-022-01175-6
– volume: 111
  start-page: 166
  issue: 1
  year: 1995
  ident: 10.1016/j.disc.2025.114687_br0200
  article-title: A symmetric function generalization of the chromatic polynomial of a graph
  publication-title: Adv. Math.
  doi: 10.1006/aima.1995.1020
– volume: 13
  start-page: 227
  issue: 3
  year: 2001
  ident: 10.1016/j.disc.2025.114687_br0100
  article-title: A chromatic symmetric function in noncommuting variables
  publication-title: J. Algebr. Comb.
  doi: 10.1023/A:1011258714032
– volume: 27
  issue: 1
  year: 2020
  ident: 10.1016/j.disc.2025.114687_br0060
  article-title: Schur and e-positivity of trees and cut vertices
  publication-title: Electron. J. Comb.
– volume: 99
  start-page: 307
  issue: 1–3
  year: 1992
  ident: 10.1016/j.disc.2025.114687_br0230
  article-title: Eulerian numbers, tableaux, and the Betti numbers of a toric variety
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(92)90378-S
– volume: 19
  start-page: 211
  issue: 3
  year: 1976
  ident: 10.1016/j.disc.2025.114687_br0020
  article-title: Enumeration of pairs of sequences by rises, falls and levels
  publication-title: Manuscr. Math.
  doi: 10.1007/BF01170773
– volume: 295
  start-page: 497
  year: 2016
  ident: 10.1016/j.disc.2025.114687_br0190
  article-title: Chromatic quasisymmetric functions
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2015.12.018
– volume: 33
  start-page: 2286
  year: 2019
  ident: 10.1016/j.disc.2025.114687_br0030
  article-title: On e-positivity and e-unimodality of chromatic quasisymmetric functions
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/18M1216201
– volume: 34
  start-page: 1037
  issue: 5
  year: 2018
  ident: 10.1016/j.disc.2025.114687_br0260
  article-title: The chromatic symmetric functions of trivially perfect graphs and cographs
  publication-title: Graphs Comb.
  doi: 10.1007/s00373-018-1928-2
– volume: 10
  start-page: 643
  issue: 8
  year: 1998
  ident: 10.1016/j.disc.2025.114687_br0280
  article-title: Symmetric chromatic functions
  publication-title: Pi Mu Epsilon J.
– volume: 26
  issue: 3
  year: 2019
  ident: 10.1016/j.disc.2025.114687_br0080
  article-title: Classes of graphs with e-positive chromatic symmetric function
  publication-title: Electron. J. Comb.
– volume: vol. 14
  start-page: 433
  year: 2012
  ident: 10.1016/j.disc.2025.114687_br0180
  article-title: Chromatic quasisymmetric functions and Hessenberg varieties
SSID ssj0001638
Score 2.419868
Snippet The operation of twinning a graph at a vertex was introduced by Foley, Hoàng, and Merkel (2019), who conjectured that twinning preserves e-positivity of the...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 114687
SubjectTerms Chromatic symmetric function
e-positivity
Elementary symmetric function
Graph twinning
Title The e-positivity of the chromatic symmetric function for twinned paths and cycles
URI https://dx.doi.org/10.1016/j.disc.2025.114687
Volume 348
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvehBfGJ9lD14k9g2mU3TYymW-mhRsdBbSHY3WKFpaSPSi7_dmWziA8SDp5BkF8JMmPmG_eYbgHNt0HO1T7WJi56D0rhObHTseBJZnEVR_cbdyMORPxjjzUROKtAre2GYVlnEfhvT82hdPGkU1mwsplPu8WXlECq2JB8tyQl3sGOb9fMv379oHow3bDR2HV5dNM5Yjhd3vlKN6MpcMpdpdb8lp28Jp78D2wVSFF37MbtQMekebA0_ZVZX-_BAThbGscQrHgIh5omg90I9L-f5IrFaz2Y8NEsJzmDsBUEwVWRvPHNLCx5IvBJRqoVaMz_uAMb9q6fewClmJDiq5QcZlX-UfzEJWPZGt5usfoZBkhiCPb7ShtAZepjIDiVyFVGqx6YO4kS3FXLLLcGHQ6im89QcgcBWFBlFAKITtFB7OsaOF5HJkjho8-leDS5K44QLK4URlhyxl5BNGbIpQ2vKGsjSfuEPh4YUq__Yd_zPfSewyXeWaXIK1Wz5as4IL2RxPf8h6rDR7T3e3fP1-nYw-gBxDL9q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na8JAEB2sHtoeSj_Rfu6htxLUZDfGo0gl1g8oKHhbkt0NtWAUTSn--864ibRQeug1m4Xwdpl5Q968AXjUhnuu9rE2cbnncGFcJzY6djzByZxFYf1G3cijsR9O-ctMzErQLXphSFaZx34b03fROn9Sz9Gsr-Zz6vEl5xAstgT9WhKzA6iQOxVe9kqnPwjH-4BMlMMGZNehDXnvjJV5UfMrlomu2LnmkrLut_z0Lef0TuEkJ4usY7_nDEomPYfj0d5pdXMBr3jOzDhWe0VzINgyYbjO1Nt6uXuJbbaLBc3NUoySGB0EQ6bKsk8au6UZzSTesCjVTG1JIncJ097zpBs6-ZgERzX9IMMKEFMwTwJyvtGtBhmg8SBJDDIfX2mDBI17PBFtzOUqwmzPGzqIE91SnLpukUFcQTldpqYKjDejyCjkEO2gybWnY972IoQsiYMW_eCrwVMBjlxZNwxZyMTeJUEpCUppoayBKPCTP85UYrj-Y9_1P_c9wGE4GQ3lsD8e3MARrVjhyS2Us_WHuUP6kMX3-fX4Ahu_wIY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+e-positivity+of+the+chromatic+symmetric+function+for+twinned+paths+and+cycles&rft.jtitle=Discrete+mathematics&rft.au=Banaian%2C+Esther&rft.au=Celano%2C+Kyle&rft.au=Chang-Lee%2C+Megan&rft.au=Colmenarejo%2C+Laura&rft.date=2025-12-01&rft.issn=0012-365X&rft.volume=348&rft.issue=12&rft.spage=114687&rft_id=info:doi/10.1016%2Fj.disc.2025.114687&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_disc_2025_114687
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-365X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-365X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-365X&client=summon