The e-positivity of the chromatic symmetric function for twinned paths and cycles
The operation of twinning a graph at a vertex was introduced by Foley, Hoàng, and Merkel (2019), who conjectured that twinning preserves e-positivity of the chromatic symmetric function. A counterexample to this conjecture was given by Li, Li, Wang, and Yang (2021). In this paper, we prove that e-po...
Saved in:
Published in | Discrete mathematics Vol. 348; no. 12; p. 114687 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0012-365X |
DOI | 10.1016/j.disc.2025.114687 |
Cover
Loading…
Abstract | The operation of twinning a graph at a vertex was introduced by Foley, Hoàng, and Merkel (2019), who conjectured that twinning preserves e-positivity of the chromatic symmetric function. A counterexample to this conjecture was given by Li, Li, Wang, and Yang (2021). In this paper, we prove that e-positivity is preserved by the twinning operation on cycles, by giving an e-positive generating function for the chromatic symmetric function, as well as an e-positive recurrence. We derive similar e-positive generating functions and recurrences for twins of paths. Our methods make use of the important triple deletion formulas of Orellana and Scott (2014), as well as new symmetric function identities. |
---|---|
AbstractList | The operation of twinning a graph at a vertex was introduced by Foley, Hoàng, and Merkel (2019), who conjectured that twinning preserves e-positivity of the chromatic symmetric function. A counterexample to this conjecture was given by Li, Li, Wang, and Yang (2021). In this paper, we prove that e-positivity is preserved by the twinning operation on cycles, by giving an e-positive generating function for the chromatic symmetric function, as well as an e-positive recurrence. We derive similar e-positive generating functions and recurrences for twins of paths. Our methods make use of the important triple deletion formulas of Orellana and Scott (2014), as well as new symmetric function identities. |
ArticleNumber | 114687 |
Author | Celano, Kyle Liang, Jinting Kimble, Jamie Banaian, Esther Colmenarejo, Laura Chang-Lee, Megan Sundaram, Sheila Goff, Owen Lentfer, John Kimpel, Lauren |
Author_xml | – sequence: 1 givenname: Esther surname: Banaian fullname: Banaian, Esther email: estherb@ucr.edu organization: Department of Mathematics, University of California, Riverside, CA, United States of America – sequence: 2 givenname: Kyle surname: Celano fullname: Celano, Kyle email: celanok@wfu.edu organization: Department of Mathematics, Wake Forest University, NC, United States of America – sequence: 3 givenname: Megan surname: Chang-Lee fullname: Chang-Lee, Megan email: megan_chang-lee@brown.edu organization: Department of Mathematics, Brown University, Providence, RI, United States of America – sequence: 4 givenname: Laura surname: Colmenarejo fullname: Colmenarejo, Laura email: lcolmen@ncsu.edu organization: Department of Mathematics, North Carolina State University, Raleigh, NC, United States of America – sequence: 5 givenname: Owen surname: Goff fullname: Goff, Owen email: owencgoff@gmail.com organization: Department of Mathematics, University of Wisconsin, Madison, WI, United States of America – sequence: 6 givenname: Jamie surname: Kimble fullname: Kimble, Jamie email: jamkimble@gmail.com organization: Department of Mathematics, Michigan State University, East Lansing, MI, United States of America – sequence: 7 givenname: Lauren surname: Kimpel fullname: Kimpel, Lauren email: lkimpel@udel.edu organization: Department of Mathematics, University of Delaware, Newark, DE, United States of America – sequence: 8 givenname: John surname: Lentfer fullname: Lentfer, John email: jlentfer@berkeley.edu organization: Department of Mathematics, University of California, Berkeley, CA, United States of America – sequence: 9 givenname: Jinting surname: Liang fullname: Liang, Jinting email: liangj@math.ubc.ca organization: Department of Mathematics, University of British Columbia, Vancouver, BC, Canada – sequence: 10 givenname: Sheila orcidid: 0000-0002-1583-4740 surname: Sundaram fullname: Sundaram, Sheila email: shsund@umn.edu organization: School of Mathematics, University of Minnesota, Minneapolis, MN, United States of America |
BookMark | eNp9kMtKAzEUhrOoYFt9AVd5gRlzMpnMDLiR4qVQEKGCuzAmJzSlk5QkVubtnVLXrs4Fvp-fb0FmPngk5A5YCQzk_b40LumSM16XAEK2zYzMGQNeVLL-vCaLlPZsumXVzsn7docUi2NILruTyyMNlubpp3cxDH12mqZxGDDHabPfXmcXPLUh0vzjvEdDj33eJdp7Q_WoD5huyJXtDwlv_-aSfDw_bVevxebtZb163BQaZJsLwWoOwrYMGjANE7KWorUWq45LbbCruKiErTtoQfcATDDTflnTaCGqDhpRLQm_5OoYUopo1TG6oY-jAqbOItRenUWoswh1ETFBDxcIp2Ynh1El7dBrNC6izsoE9x_-C9dcalg |
Cites_doi | 10.1007/s00373-019-02034-1 10.4171/jems/974 10.1016/0097-3165(93)90048-D 10.11650/tjm/210703 10.1016/j.disc.2013.12.006 10.1137/17M1144805 10.1007/s00373-020-02230-4 10.1007/s10801-022-01175-6 10.1006/aima.1995.1020 10.1023/A:1011258714032 10.1016/0012-365X(92)90378-S 10.1007/BF01170773 10.1016/j.aim.2015.12.018 10.1137/18M1216201 10.1007/s00373-018-1928-2 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.disc.2025.114687 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
ExternalDocumentID | 10_1016_j_disc_2025_114687 S0012365X2500295X |
GroupedDBID | --K --M -DZ -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 41~ 457 4G. 5GY 5VS 6OB 6TJ 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AATTM AAXKI AAXUO AAYWO ABAOU ABEFU ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADIYS ADMUD ADNMO ADVLN ADXHL AEBSH AEIPS AEKER AENEX AEUPX AEXQZ AFFNX AFJKZ AFPUW AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AI. AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM M26 M41 MHUIS MO0 MVM N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 UPT VH1 WH7 WUQ XJT XOL XPP ZCG ZMT ZY4 ~G- AAYXX CITATION |
ID | FETCH-LOGICAL-c168t-405214f80171d70465648ffe3926cde932434f59181ca11040d8bfd7c44391743 |
IEDL.DBID | .~1 |
ISSN | 0012-365X |
IngestDate | Wed Aug 27 16:29:04 EDT 2025 Sat Aug 30 17:17:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Elementary symmetric function Chromatic symmetric function Graph twinning e-positivity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c168t-405214f80171d70465648ffe3926cde932434f59181ca11040d8bfd7c44391743 |
ORCID | 0000-0002-1583-4740 |
ParticipantIDs | crossref_primary_10_1016_j_disc_2025_114687 elsevier_sciencedirect_doi_10_1016_j_disc_2025_114687 |
PublicationCentury | 2000 |
PublicationDate | December 2025 2025-12-00 |
PublicationDateYYYYMMDD | 2025-12-01 |
PublicationDate_xml | – month: 12 year: 2025 text: December 2025 |
PublicationDecade | 2020 |
PublicationTitle | Discrete mathematics |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Cho, Huh (br0030) 2019; 33 Li, Li, Wang, Yang (br0120) 2021; 25 Wang (br0140) 2024 Dahlberg (br0040) 2020; 82B Foley, Hoàng, Merkel (br0080) 2019; 26 Dahlberg, van Willigenburg (br0070) 2018; 32 Macdonald (br0160) 1998 Orellana, Scott (br0170) 2014; 320 Tom (br0240) 2023 Wang, Zhou (br0150) 2024 Carlitz, Scoville, Vaughan (br0020) 1976; 19 Stanley (br0210) 1999 Foley, Kazdan, Kröll, Martínez Alberga, Melnyk, Tenenbaum (br0090) 2021; 37 Aliniaeifard, Wang, van Willigenburg (br0010) 2021 Stanley (br0200) 1995; 111 Dahlberg, Foley, van Willigenburg (br0050) 2020; 22 Hamel, Hoàng, Tuero (br0110) 2019; 35 Dahlberg, She, van Willigenburg (br0060) 2020; 27 Stembridge (br0230) 1992; 99 Shareshian, Wachs (br0180) 2012; vol. 14 Wang, Wang (br0270) 2023; 57 Tsujie (br0260) 2018; 34 Wolfe (br0280) 1998; 10 Foster Tom, Aarush Vailaya, The chromatic symmetric function of graphs glued at a single vertex, 2025. Li, Yang (br0130) 2021; 28 Stanley, Stembridge (br0220) 1993; 62 Shareshian, Wachs (br0190) 2016; 295 Gebhard, Sagan (br0100) 2001; 13 Stanley (10.1016/j.disc.2025.114687_br0220) 1993; 62 Orellana (10.1016/j.disc.2025.114687_br0170) 2014; 320 Stanley (10.1016/j.disc.2025.114687_br0210) 1999 Foley (10.1016/j.disc.2025.114687_br0090) 2021; 37 Cho (10.1016/j.disc.2025.114687_br0030) 2019; 33 Li (10.1016/j.disc.2025.114687_br0130) 2021; 28 Aliniaeifard (10.1016/j.disc.2025.114687_br0010) Wolfe (10.1016/j.disc.2025.114687_br0280) 1998; 10 Dahlberg (10.1016/j.disc.2025.114687_br0070) 2018; 32 Carlitz (10.1016/j.disc.2025.114687_br0020) 1976; 19 Stanley (10.1016/j.disc.2025.114687_br0200) 1995; 111 Shareshian (10.1016/j.disc.2025.114687_br0190) 2016; 295 Dahlberg (10.1016/j.disc.2025.114687_br0040) 2020; 82B Shareshian (10.1016/j.disc.2025.114687_br0180) 2012; vol. 14 Li (10.1016/j.disc.2025.114687_br0120) 2021; 25 10.1016/j.disc.2025.114687_br0250 Gebhard (10.1016/j.disc.2025.114687_br0100) 2001; 13 Tsujie (10.1016/j.disc.2025.114687_br0260) 2018; 34 Dahlberg (10.1016/j.disc.2025.114687_br0060) 2020; 27 Stembridge (10.1016/j.disc.2025.114687_br0230) 1992; 99 Foley (10.1016/j.disc.2025.114687_br0080) 2019; 26 Wang (10.1016/j.disc.2025.114687_br0140) Macdonald (10.1016/j.disc.2025.114687_br0160) 1998 Wang (10.1016/j.disc.2025.114687_br0150) Dahlberg (10.1016/j.disc.2025.114687_br0050) 2020; 22 Wang (10.1016/j.disc.2025.114687_br0270) 2023; 57 Hamel (10.1016/j.disc.2025.114687_br0110) 2019; 35 Tom (10.1016/j.disc.2025.114687_br0240) |
References_xml | – volume: 34 start-page: 1037 year: 2018 end-page: 1048 ident: br0260 article-title: The chromatic symmetric functions of trivially perfect graphs and cographs publication-title: Graphs Comb. – volume: 37 start-page: 87 year: 2021 end-page: 110 ident: br0090 article-title: Spiders and their kin: an investigation of Stanley's chromatic symmetric function for spiders and related graphs publication-title: Graphs Comb. – volume: 13 start-page: 227 year: 2001 end-page: 255 ident: br0100 article-title: A chromatic symmetric function in noncommuting variables publication-title: J. Algebr. Comb. – reference: Foster Tom, Aarush Vailaya, The chromatic symmetric function of graphs glued at a single vertex, 2025. – volume: 22 start-page: 2673 year: 2020 end-page: 2696 ident: br0050 article-title: Resolving Stanley's publication-title: J. Eur. Math. Soc. – volume: 19 start-page: 211 year: 1976 end-page: 243 ident: br0020 article-title: Enumeration of pairs of sequences by rises, falls and levels publication-title: Manuscr. Math. – volume: 111 start-page: 166 year: 1995 end-page: 194 ident: br0200 article-title: A symmetric function generalization of the chromatic polynomial of a graph publication-title: Adv. Math. – volume: 295 start-page: 497 year: 2016 end-page: 551 ident: br0190 article-title: Chromatic quasisymmetric functions publication-title: Adv. Math. – volume: 62 start-page: 261 year: 1993 end-page: 279 ident: br0220 article-title: On immanants of Jacobi-Trudi matrices and permutations with restricted position publication-title: J. Comb. Theory, Ser. A – volume: 33 start-page: 2286 year: 2019 end-page: 2315 ident: br0030 article-title: On e-positivity and e-unimodality of chromatic quasisymmetric functions publication-title: SIAM J. Discrete Math. – year: 2023 ident: br0240 article-title: A signed – year: 1999 ident: br0210 article-title: Enumerative Combinatorics, vol. 2 – year: 2024 ident: br0140 article-title: All cycle-chords are – volume: 57 start-page: 495 year: 2023 end-page: 514 ident: br0270 article-title: The publication-title: J. Algebr. Comb. – year: 2021 ident: br0010 article-title: The chromatic symmetric function of a graph centred at a vertex – volume: 28 year: 2021 ident: br0130 article-title: On the publication-title: Electron. J. Comb. – volume: 320 start-page: 1 year: 2014 end-page: 14 ident: br0170 article-title: Graphs with equal chromatic symmetric functions publication-title: Discrete Math. – volume: 10 start-page: 643 year: 1998 end-page: 657 ident: br0280 article-title: Symmetric chromatic functions publication-title: Pi Mu Epsilon J. – volume: vol. 14 start-page: 433 year: 2012 end-page: 460 ident: br0180 article-title: Chromatic quasisymmetric functions and Hessenberg varieties publication-title: Configuration Spaces – year: 2024 ident: br0150 article-title: Composition method for chromatic symmetric functions: neat noncommutative analogs – volume: 26 year: 2019 ident: br0080 article-title: Classes of graphs with publication-title: Electron. J. Comb. – volume: 35 start-page: 815 year: 2019 end-page: 825 ident: br0110 article-title: Chromatic symmetric functions and publication-title: Graphs Comb. – year: 1998 ident: br0160 article-title: Symmetric Functions and Hall Polynomials – volume: 27 year: 2020 ident: br0060 article-title: Schur and publication-title: Electron. J. Comb. – volume: 32 start-page: 1029 year: 2018 end-page: 1039 ident: br0070 article-title: Lollipop and lariat symmetric functions publication-title: SIAM J. Discrete Math. – volume: 99 start-page: 307 year: 1992 end-page: 320 ident: br0230 article-title: Eulerian numbers, tableaux, and the Betti numbers of a toric variety publication-title: Discrete Math. – volume: 82B year: 2020 ident: br0040 article-title: A new formula for Stanley's chromatic symmetric function for unit interval graphs and publication-title: Sémin. Lothar. Comb. – volume: 25 start-page: 1089 year: 2021 end-page: 1111 ident: br0120 article-title: The twinning operation on graphs does not always preserve publication-title: Taiwan. J. Math. – ident: 10.1016/j.disc.2025.114687_br0250 – ident: 10.1016/j.disc.2025.114687_br0150 – volume: 35 start-page: 815 issue: 4 year: 2019 ident: 10.1016/j.disc.2025.114687_br0110 article-title: Chromatic symmetric functions and H-free graphs publication-title: Graphs Comb. doi: 10.1007/s00373-019-02034-1 – ident: 10.1016/j.disc.2025.114687_br0140 – volume: 22 start-page: 2673 issue: 8 year: 2020 ident: 10.1016/j.disc.2025.114687_br0050 article-title: Resolving Stanley's e-positivity of claw-contractible-free graphs publication-title: J. Eur. Math. Soc. doi: 10.4171/jems/974 – volume: 28 issue: 2 year: 2021 ident: 10.1016/j.disc.2025.114687_br0130 article-title: On the e-positivity of (claw,2K2)-free graphs publication-title: Electron. J. Comb. – year: 1998 ident: 10.1016/j.disc.2025.114687_br0160 – volume: 62 start-page: 261 issue: 2 year: 1993 ident: 10.1016/j.disc.2025.114687_br0220 article-title: On immanants of Jacobi-Trudi matrices and permutations with restricted position publication-title: J. Comb. Theory, Ser. A doi: 10.1016/0097-3165(93)90048-D – ident: 10.1016/j.disc.2025.114687_br0240 – volume: 82B year: 2020 ident: 10.1016/j.disc.2025.114687_br0040 article-title: A new formula for Stanley's chromatic symmetric function for unit interval graphs and e-positivity for triangular ladder graphs publication-title: Sémin. Lothar. Comb. – volume: 25 start-page: 1089 issue: 6 year: 2021 ident: 10.1016/j.disc.2025.114687_br0120 article-title: The twinning operation on graphs does not always preserve e-positivity publication-title: Taiwan. J. Math. doi: 10.11650/tjm/210703 – volume: 320 start-page: 1 year: 2014 ident: 10.1016/j.disc.2025.114687_br0170 article-title: Graphs with equal chromatic symmetric functions publication-title: Discrete Math. doi: 10.1016/j.disc.2013.12.006 – ident: 10.1016/j.disc.2025.114687_br0010 – volume: 32 start-page: 1029 issue: 2 year: 2018 ident: 10.1016/j.disc.2025.114687_br0070 article-title: Lollipop and lariat symmetric functions publication-title: SIAM J. Discrete Math. doi: 10.1137/17M1144805 – volume: 37 start-page: 87 issue: 1 year: 2021 ident: 10.1016/j.disc.2025.114687_br0090 article-title: Spiders and their kin: an investigation of Stanley's chromatic symmetric function for spiders and related graphs publication-title: Graphs Comb. doi: 10.1007/s00373-020-02230-4 – year: 1999 ident: 10.1016/j.disc.2025.114687_br0210 – volume: 57 start-page: 495 issue: 2 year: 2023 ident: 10.1016/j.disc.2025.114687_br0270 article-title: The e-positivity of two classes of cycle-chord graphs publication-title: J. Algebr. Comb. doi: 10.1007/s10801-022-01175-6 – volume: 111 start-page: 166 issue: 1 year: 1995 ident: 10.1016/j.disc.2025.114687_br0200 article-title: A symmetric function generalization of the chromatic polynomial of a graph publication-title: Adv. Math. doi: 10.1006/aima.1995.1020 – volume: 13 start-page: 227 issue: 3 year: 2001 ident: 10.1016/j.disc.2025.114687_br0100 article-title: A chromatic symmetric function in noncommuting variables publication-title: J. Algebr. Comb. doi: 10.1023/A:1011258714032 – volume: 27 issue: 1 year: 2020 ident: 10.1016/j.disc.2025.114687_br0060 article-title: Schur and e-positivity of trees and cut vertices publication-title: Electron. J. Comb. – volume: 99 start-page: 307 issue: 1–3 year: 1992 ident: 10.1016/j.disc.2025.114687_br0230 article-title: Eulerian numbers, tableaux, and the Betti numbers of a toric variety publication-title: Discrete Math. doi: 10.1016/0012-365X(92)90378-S – volume: 19 start-page: 211 issue: 3 year: 1976 ident: 10.1016/j.disc.2025.114687_br0020 article-title: Enumeration of pairs of sequences by rises, falls and levels publication-title: Manuscr. Math. doi: 10.1007/BF01170773 – volume: 295 start-page: 497 year: 2016 ident: 10.1016/j.disc.2025.114687_br0190 article-title: Chromatic quasisymmetric functions publication-title: Adv. Math. doi: 10.1016/j.aim.2015.12.018 – volume: 33 start-page: 2286 year: 2019 ident: 10.1016/j.disc.2025.114687_br0030 article-title: On e-positivity and e-unimodality of chromatic quasisymmetric functions publication-title: SIAM J. Discrete Math. doi: 10.1137/18M1216201 – volume: 34 start-page: 1037 issue: 5 year: 2018 ident: 10.1016/j.disc.2025.114687_br0260 article-title: The chromatic symmetric functions of trivially perfect graphs and cographs publication-title: Graphs Comb. doi: 10.1007/s00373-018-1928-2 – volume: 10 start-page: 643 issue: 8 year: 1998 ident: 10.1016/j.disc.2025.114687_br0280 article-title: Symmetric chromatic functions publication-title: Pi Mu Epsilon J. – volume: 26 issue: 3 year: 2019 ident: 10.1016/j.disc.2025.114687_br0080 article-title: Classes of graphs with e-positive chromatic symmetric function publication-title: Electron. J. Comb. – volume: vol. 14 start-page: 433 year: 2012 ident: 10.1016/j.disc.2025.114687_br0180 article-title: Chromatic quasisymmetric functions and Hessenberg varieties |
SSID | ssj0001638 |
Score | 2.419868 |
Snippet | The operation of twinning a graph at a vertex was introduced by Foley, Hoàng, and Merkel (2019), who conjectured that twinning preserves e-positivity of the... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 114687 |
SubjectTerms | Chromatic symmetric function e-positivity Elementary symmetric function Graph twinning |
Title | The e-positivity of the chromatic symmetric function for twinned paths and cycles |
URI | https://dx.doi.org/10.1016/j.disc.2025.114687 |
Volume | 348 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvehBfGJ9lD14k9g2mU3TYymW-mhRsdBbSHY3WKFpaSPSi7_dmWziA8SDp5BkF8JMmPmG_eYbgHNt0HO1T7WJi56D0rhObHTseBJZnEVR_cbdyMORPxjjzUROKtAre2GYVlnEfhvT82hdPGkU1mwsplPu8WXlECq2JB8tyQl3sGOb9fMv379oHow3bDR2HV5dNM5Yjhd3vlKN6MpcMpdpdb8lp28Jp78D2wVSFF37MbtQMekebA0_ZVZX-_BAThbGscQrHgIh5omg90I9L-f5IrFaz2Y8NEsJzmDsBUEwVWRvPHNLCx5IvBJRqoVaMz_uAMb9q6fewClmJDiq5QcZlX-UfzEJWPZGt5usfoZBkhiCPb7ShtAZepjIDiVyFVGqx6YO4kS3FXLLLcGHQ6im89QcgcBWFBlFAKITtFB7OsaOF5HJkjho8-leDS5K44QLK4URlhyxl5BNGbIpQ2vKGsjSfuEPh4YUq__Yd_zPfSewyXeWaXIK1Wz5as4IL2RxPf8h6rDR7T3e3fP1-nYw-gBxDL9q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na8JAEB2sHtoeSj_Rfu6htxLUZDfGo0gl1g8oKHhbkt0NtWAUTSn--864ibRQeug1m4Xwdpl5Q968AXjUhnuu9rE2cbnncGFcJzY6djzByZxFYf1G3cijsR9O-ctMzErQLXphSFaZx34b03fROn9Sz9Gsr-Zz6vEl5xAstgT9WhKzA6iQOxVe9kqnPwjH-4BMlMMGZNehDXnvjJV5UfMrlomu2LnmkrLut_z0Lef0TuEkJ4usY7_nDEomPYfj0d5pdXMBr3jOzDhWe0VzINgyYbjO1Nt6uXuJbbaLBc3NUoySGB0EQ6bKsk8au6UZzSTesCjVTG1JIncJ097zpBs6-ZgERzX9IMMKEFMwTwJyvtGtBhmg8SBJDDIfX2mDBI17PBFtzOUqwmzPGzqIE91SnLpukUFcQTldpqYKjDejyCjkEO2gybWnY972IoQsiYMW_eCrwVMBjlxZNwxZyMTeJUEpCUppoayBKPCTP85UYrj-Y9_1P_c9wGE4GQ3lsD8e3MARrVjhyS2Us_WHuUP6kMX3-fX4Ahu_wIY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+e-positivity+of+the+chromatic+symmetric+function+for+twinned+paths+and+cycles&rft.jtitle=Discrete+mathematics&rft.au=Banaian%2C+Esther&rft.au=Celano%2C+Kyle&rft.au=Chang-Lee%2C+Megan&rft.au=Colmenarejo%2C+Laura&rft.date=2025-12-01&rft.issn=0012-365X&rft.volume=348&rft.issue=12&rft.spage=114687&rft_id=info:doi/10.1016%2Fj.disc.2025.114687&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_disc_2025_114687 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-365X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-365X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-365X&client=summon |