On AdS2 holography from redux, renormalization group flows and c-functions

A bstract Extremal black branes upon compactification in the near horizon throat region are known to give rise to AdS 2 dilaton-gravity-matter theories. Away from the throat region, the background has nontrivial profile. We interpret this as holographic renormalization group flow in the 2-dim dilato...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2019; no. 2
Main Authors Kolekar, Kedar S., Narayan, K.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 07.02.2019
Subjects
Online AccessGet full text
ISSN1029-8479
1029-8479
DOI10.1007/JHEP02(2019)039

Cover

Abstract A bstract Extremal black branes upon compactification in the near horizon throat region are known to give rise to AdS 2 dilaton-gravity-matter theories. Away from the throat region, the background has nontrivial profile. We interpret this as holographic renormalization group flow in the 2-dim dilaton-gravity-matter theories arising from dimensional reduction of the higher dimensional theories here. The null energy conditions allow us to formulate a holographic c-function in terms of the 2-dim dilaton for which we argue a c-theorem subject to appropriate boundary conditions which amount to restrictions on the ultraviolet theories containing these extremal branes. At the infrared AdS 2 fixed point, the c-function becomes the extremal black brane entropy. We discuss the behaviour of this inherited c-function in various explicit examples, in particular compactified nonconformal branes, and compare it with other discussions of holographic c-functions. We also adapt the holographic renormalization group formulated in terms of radial Hamiltonian flow to 2-dim dilaton-gravity-scalar theories, which while not Wilsonian, gives qualitative insight into the flow equations and β-functions.
AbstractList Extremal black branes upon compactification in the near horizon throat region are known to give rise to AdS 2 dilaton-gravity-matter theories. Away from the throat region, the background has nontrivial profile. We interpret this as holographic renormalization group flow in the 2-dim dilaton-gravity-matter theories arising from dimensional reduction of the higher dimensional theories here. The null energy conditions allow us to formulate a holographic c-function in terms of the 2-dim dilaton for which we argue a c-theorem subject to appropriate boundary conditions which amount to restrictions on the ultraviolet theories containing these extremal branes. At the infrared AdS 2 fixed point, the c-function becomes the extremal black brane entropy. We discuss the behaviour of this inherited c-function in various explicit examples, in particular compactified nonconformal branes, and compare it with other discussions of holographic c-functions. We also adapt the holographic renormalization group formulated in terms of radial Hamiltonian flow to 2-dim dilaton-gravity-scalar theories, which while not Wilsonian, gives qualitative insight into the flow equations and β-functions.
A bstract Extremal black branes upon compactification in the near horizon throat region are known to give rise to AdS 2 dilaton-gravity-matter theories. Away from the throat region, the background has nontrivial profile. We interpret this as holographic renormalization group flow in the 2-dim dilaton-gravity-matter theories arising from dimensional reduction of the higher dimensional theories here. The null energy conditions allow us to formulate a holographic c-function in terms of the 2-dim dilaton for which we argue a c-theorem subject to appropriate boundary conditions which amount to restrictions on the ultraviolet theories containing these extremal branes. At the infrared AdS 2 fixed point, the c-function becomes the extremal black brane entropy. We discuss the behaviour of this inherited c-function in various explicit examples, in particular compactified nonconformal branes, and compare it with other discussions of holographic c-functions. We also adapt the holographic renormalization group formulated in terms of radial Hamiltonian flow to 2-dim dilaton-gravity-scalar theories, which while not Wilsonian, gives qualitative insight into the flow equations and β-functions.
ArticleNumber 39
Author Kolekar, Kedar S.
Narayan, K.
Author_xml – sequence: 1
  givenname: Kedar S.
  orcidid: 0000-0001-9485-2922
  surname: Kolekar
  fullname: Kolekar, Kedar S.
  email: kedar@cmi.ac.in
  organization: Chennai Mathematical Institute
– sequence: 2
  givenname: K.
  surname: Narayan
  fullname: Narayan, K.
  organization: Chennai Mathematical Institute
BookMark eNp9kEFLAzEQRoNUsK2eveao4NpJNrtpjqVUaylUUM8hm03aLdukJF1s_fVurQcR9PQNzLxh5vVQx3lnELomcE8A-GA2nTwDvaFAxC2k4gx1CVCRDBkXnR_1BerFuAYgGRHQRbOFw6PyheKVr_0yqO3qgG3wGxxM2ezv2nA-bFRdfahd5R1eBt9ssa39e8TKlVgntnH62IqX6NyqOpqr7-yjt4fJ63iazBePT-PRPNEkH4rEcsFyqzJdcJ4XRAhGiLbCplCkmg5zw1OTa21LXuRWs6zQggjWNg1jhhY07aPstFcHH2MwVupq93XdLqiqlgTkUYg8CZFHIbIV0nKDX9w2VBsVDv8QcCJiO-mWJsi1b4Jrn_sT-QRFYXQt
CitedBy_id crossref_primary_10_1007_JHEP02_2021_045
crossref_primary_10_1103_PhysRevD_104_026007
crossref_primary_10_1007_JHEP11_2019_047
crossref_primary_10_1103_PhysRevD_103_046006
crossref_primary_10_1007_JHEP04_2021_200
crossref_primary_10_1007_JHEP08_2020_062
crossref_primary_10_1007_JHEP04_2020_199
crossref_primary_10_1103_PhysRevD_101_046007
crossref_primary_10_1007_JHEP07_2020_043
crossref_primary_10_1007_JHEP10_2021_204
crossref_primary_10_1007_JHEP07_2024_125
Cites_doi 10.1007/JHEP06(2012)041
10.1103/RevModPhys.90.035007
10.1088/1126-6708/1998/07/023
10.1103/PhysRevD.94.106002
10.1140/epjc/s10052-018-6267-1
10.1103/PhysRevLett.117.111601
10.1103/PhysRevD.72.124021
10.1103/PhysRevD.97.103527
10.1007/JHEP04(2016)001
10.1007/JHEP05(2018)183
10.1007/JHEP10(2018)042
10.4310/ATMP.1999.v3.n2.a7
10.1093/ptep/ptw124
10.1016/j.physletb.2013.07.061
10.1088/1751-8113/40/25/S57
10.1088/1126-6708/2000/05/011
10.4310/ATMP.1998.v2.n6.a6
10.1103/PhysRevD.82.046006
10.1088/1126-6708/2008/04/096
10.1103/PhysRevLett.83.3605
10.1103/PhysRevLett.70.3339
10.1016/S0370-2693(98)01270-2
10.1088/1361-6382/aab143
10.1088/1126-6708/2008/09/094
10.1007/JHEP09(2011)017
10.1088/1126-6708/2000/05/034
10.1103/PhysRevD.85.125016
10.1002/1521-3978(200105)49:4/6<339::AID-PROP339>3.0.CO;2-A
10.1088/0264-9381/19/22/306
10.1088/1126-6708/1998/12/022
10.1103/PhysRevD.98.046012
10.1088/1126-6708/2006/08/045
10.1007/JHEP01(2013)189
10.1007/JHEP10(2016)052
10.1103/PhysRevD.58.046004
10.1103/PhysRevD.89.065041
10.22323/1.323.0001
10.1016/S0370-2693(99)01212-5
10.1007/JHEP07(2016)139
10.1088/1126-6708/2006/02/053
10.1088/1126-6708/1999/02/011
10.1103/PhysRevD.62.126011
10.1103/PhysRevLett.96.181602
10.1007/JHEP12(2015)179
10.1016/0550-3213(85)90448-1
10.1016/0370-2693(83)90012-6
10.1088/1126-6708/2000/08/003
10.1007/JHEP01(2011)125
10.1007/s002200100381
10.1016/S0550-3213(98)00752-4
10.1103/PhysRevD.59.065011
10.1088/1126-6708/1999/07/004
10.1007/JHEP04(2012)122
10.1007/JHEP01(2017)120
10.1007/JHEP11(2015)014
10.1007/JHEP09(2017)017
10.1103/PhysRevD.76.126007
10.1103/PhysRevD.90.026003
10.1142/S0217751X09045893
10.1007/JHEP11(2012)137
10.1007/JHEP09(2018)048
10.1007/JHEP06(2011)031
ContentType Journal Article
Copyright The Author(s) 2019
Copyright_xml – notice: The Author(s) 2019
DBID C6C
AAYXX
CITATION
DOI 10.1007/JHEP02(2019)039
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
ExternalDocumentID 10_1007_JHEP02_2019_039
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
EJD
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
AAYZH
ABFSG
ABTEG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ID FETCH-LOGICAL-c1689-f7946fa5cb776b199411cf9f30b3c286e73e6ccfd7b6fc45bc91940b3e44e2b23
IEDL.DBID C6C
ISSN 1029-8479
IngestDate Tue Jul 01 03:54:11 EDT 2025
Thu Apr 24 23:02:28 EDT 2025
Fri Feb 21 02:33:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Gauge-gravity correspondence
2D Gravity
Holography and condensed matter physics (AdS/CMT)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1689-f7946fa5cb776b199411cf9f30b3c286e73e6ccfd7b6fc45bc91940b3e44e2b23
ORCID 0000-0001-9485-2922
OpenAccessLink https://doi.org/10.1007/JHEP02(2019)039
ParticipantIDs crossref_citationtrail_10_1007_JHEP02_2019_039
crossref_primary_10_1007_JHEP02_2019_039
springer_journals_10_1007_JHEP02_2019_039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190207
PublicationDateYYYYMMDD 2019-02-07
PublicationDate_xml – month: 2
  year: 2019
  text: 20190207
  day: 7
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References FaulknerTLiuHRangamaniMIntegrating out geometry: holographic Wilsonian RG and the membrane paradigmJHEP2011080512011JHEP...08..051F28760641298.81173[arXiv:1010.4036] [INSPIRE]
RyuSTakayanagiTAspects of holographic entanglement entropyJHEP2006080452006JHEP...08..045R224992510.1088/1126-6708/2006/08/0451228.83110[hep-th/0605073] [INSPIRE]
A. Almheiri and J. Polchinski, Models of AdS2backreaction and holography, JHEP11 (2015) 014 [arXiv:1402.6334] [INSPIRE].
A. Sen, Quantum entropy function from AdS2/CFT1correspondence, Int. J. Mod. Phys.A 24 (2009) 4225 [arXiv:0809.3304] [INSPIRE].
A. Kitaev, A simple model of quantum holography (part 1), talk at the KITP, http://online.kitp.ucsb.edu/online/entangled15/kitaev/, University of California, Santa Barbara, CA, U.S.A. 7 April 2015.
S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE].
J.T. Liu and Z. Zhao, Holographic Lifshitz flows and the null energy condition, arXiv:1206.1047 [INSPIRE].
E.T. Akhmedov, A remark on the AdS/CFT correspondence and the renormalization group flow, Phys. Lett.B 442 (1998) 152 [hep-th/9806217] [INSPIRE].
A.W. Peet and J. Polchinski, UV/IR relations in AdS dynamics, Phys. Rev.D 59 (1999) 065011 [hep-th/9809022] [INSPIRE].
J.P. Gauntlett and O. Varela, Consistent Kaluza-Klein reductions for general supersymmetric AdS solutions, Phys. Rev.D 76 (2007) 126007 [arXiv:0707.2315] [INSPIRE].
A.B. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field theory, JETP Lett.43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz.43 (1986) 565] [INSPIRE].
FreedmanDZGubserSSPilchKWarnerNPRenormalization group flows from holography supersymmetry and a c theoremAdv. Theor. Math. Phys.19993363173679610.4310/ATMP.1999.v3.n2.a70976.83067[hep-th/9904017] [INSPIRE]
TaylorMGeneralized conformal structure, dilaton gravity and SYKJHEP2018010102018JHEP...01..010T1384.83044[arXiv:1706.07812] [INSPIRE]
A. Castro and W. Song, Comments on AdS2gravity, arXiv:1411.1948 [INSPIRE].
E.P. Verlinde and H.L. Verlinde, RG flow, gravity and the cosmological constant, JHEP05 (2000)034 [hep-th/9912018] [INSPIRE].
N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large N limit of theories with sixteen supercharges, Phys. Rev.D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].
H. Casini and M. Huerta, A c-theorem for the entanglement entropy, J. Phys.A 40 (2007) 7031 [cond-mat/0610375] [INSPIRE].
de BoerJVerlindeEPVerlindeHLOn the holographic renormalization groupJHEP200008003179283610.1088/1126-6708/2000/08/0030989.81538[hep-th/9912012] [INSPIRE]
de BoerJThe holographic renormalization groupFortsch. Phys.2001493392001ForPh..49..339D186100010.1002/1521-3978(200105)49:4/6<339::AID-PROP339>3.0.CO;2-A1004.83049[hep-th/0101026] [INSPIRE]
AlmheiriAKangBConformal symmetry breaking and thermodynamics of near-extremal black holesJHEP2016100522016JHEP...10..052A357752110.1007/JHEP10(2016)0521390.83167[arXiv:1606.04108] [INSPIRE]
Y.-Z. Li, S.-L. Li and H. Lü, Exact embeddings of JT gravity in strings and M-theory, Eur. Phys. J.C 78 (2018) 791 [arXiv:1804.09742] [INSPIRE].
HeemskerkIPolchinskiJHolographic and Wilsonian renormalization groupsJHEP2011060312011JHEP...06..031H287084910.1007/JHEP06(2011)0311298.81181[arXiv:1010.1264] [INSPIRE]
A. Castro, F. Larsen and I. Papadimitriou, 5D rotating black holes and the nAdS2/nCFT1correspondence, JHEP10 (2018) 042 [arXiv:1807.06988] [INSPIRE].
J. Tarrio and S. Vandoren, Black holes and black branes in Lifshitz spacetimes, JHEP09 (2011) 017 [arXiv:1105.6335] [INSPIRE].
M. Cvetič and I. Papadimitriou, AdS2holographic dictionary, JHEP12 (2016) 008 [Erratum ibid.01 (2017) 120] [arXiv:1608.07018] [INSPIRE].
S. Cremonini and X. Dong, Constraints on renormalization group flows from holographic entanglement entropy, Phys. Rev.D 89 (2014) 065041 [arXiv:1311.3307] [INSPIRE].
BalasubramanianVKrausPSpace-time and the holographic renormalization groupPhys. Rev. Lett.19998336051999PhRvL..83.3605B173361610.1103/PhysRevLett.83.36050958.81046[hep-th/9903190] [INSPIRE]
M. Cadoni, M. Ciulu and M. Tuveri, Symmetries, holography and quantum phase transition in two-dimensional dilaton AdS gravity, Phys. Rev.D 97 (2018) 103527 [arXiv:1711.02459] [INSPIRE].
de HaroSSolodukhinSNSkenderisKHolographic reconstruction of space-time and renormalization in the AdS/CFT correspondenceCommun. Math. Phys.20012175952001CMaPh.217..595D10.1007/s0022001003810984.83043[hep-th/0002230] [INSPIRE]
BoussoRA covariant entropy conjectureJHEP1999070041999JHEP...07..004B171240010.1088/1126-6708/1999/07/0040951.83011[hep-th/9905177] [INSPIRE]
V. Sahakian, Holography, a covariant c function and the geometry of the renormalization group, Phys. Rev.D 62 (2000) 126011 [hep-th/9910099] [INSPIRE].
J.T. Liu and W. Zhong, A holographic c-theorem for Schrödinger spacetimes, JHEP12 (2015)179 [arXiv:1510.06975] [INSPIRE].
MyersRCSinhaAHolographic c-theorems in arbitrary dimensionsJHEP2011011252011JHEP...01..125M279224910.1007/JHEP01(2011)1251214.83036[arXiv:1011.5819] [INSPIRE]
U. Moitra, S.P. Trivedi and V. Vishal, Near-extremal near-horizons, arXiv:1808.08239 [INSPIRE].
J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev.D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
T. Nishioka, Entanglement entropy: holography and renormalization group, Rev. Mod. Phys.90 (2018) 035007 [arXiv:1801.10352] [INSPIRE].
NayakPShuklaASoniRMTrivediSPVishalVOn the dynamics of near-extremal black holesJHEP2018090482018JHEP...09..048N387125110.1007/JHEP09(2018)0481398.83069[arXiv:1802.09547] [INSPIRE]
K. Goldstein, N. Iizuka, R.P. Jena and S.P. Trivedi, Non-supersymmetric attractors, Phys. Rev.D 72 (2005) 124021 [hep-th/0507096] [INSPIRE].
G. Sárosi, AdS2holography and the SYK model, PoS(Modave2017)001 (2018) [arXiv:1711.08482] [INSPIRE].
H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys. Rev.D 85 (2012) 125016 [arXiv:1202.5650] [INSPIRE].
SahakianVComments on D-branes and the renormalization groupJHEP2000050112000JHEP...05..011S176872910.1088/1126-6708/2000/05/0110990.81615[hep-th/0002126] [INSPIRE]
A. Kitaev, A simple model of quantum holography (part 2), talk at the KITP, http://online.kitp.ucsb.edu/online/entangled15/kitaev2/, University of California, Santa Barbara, CA, U.S.A. 27 May 2015.
K. Narayan, Non-conformal brane plane waves and entanglement entropy, Phys. Lett.B 726 (2013) 370 [arXiv:1304.6697] [INSPIRE].
L. Susskind and E. Witten, The holographic bound in anti-de Sitter space, hep-th/9805114 [INSPIRE].
KanitscheiderISkenderisKTaylorMPrecision holography for non-conformal branesJHEP2008090942008JHEP...09..094K244769610.1088/1126-6708/2008/09/0941245.81187[arXiv:0807.3324] [INSPIRE]
BuenoPChemissanyWMeessenPOrtínTShahbaziCSLifshitz-like solutions with hyperscaling violation in ungauged supergravityJHEP2013011892013JHEP...01..189B304547010.1007/JHEP01(2013)1891342.83450[arXiv:1209.4047] [INSPIRE]
HenningsonMSkenderisKThe holographic Weyl anomalyJHEP1998070231998JHEP...07..023H164498810.1088/1126-6708/1998/07/0230958.81083[hep-th/9806087] [INSPIRE]
D. Anninos and D.M. Hofman, Infrared realization of dS2in AdS2, Class. Quant. Grav.35 (2018) 085003 [arXiv:1703.04622] [INSPIRE].
SkenderisKLecture notes on holographic renormalizationClass. Quant. Grav.2002195849196266110.1088/0264-9381/19/22/3061044.83009[hep-th/0209067] [INSPIRE]
C. Teitelboim, Gravitation and Hamiltonian structure in two space-time dimensions, Phys. Lett.B 126 (1983) 41 [INSPIRE].
K. Jensen, Chaos in AdS2holography, Phys. Rev. Lett.117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].
J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS2backreaction and holography, JHEP07 (2016) 139 [arXiv:1606.03438] [INSPIRE].
MyersRCSinghAComments on holographic entanglement entropy and RG flowsJHEP2012041222012JHEP...04..122M296758910.1007/JHEP04(2012)1221348.81337[arXiv:1202.2068] [INSPIRE]
V. Rosenhaus, An introduction to the SYK model, arXiv:1807.03334 [INSPIRE].
A. Gaikwad, L.K. Joshi, G. Mandal and S.R. Wadia, Holographic dual to charged SYK from 3D gravity and Chern-Simons, arXiv:1802.07746 [INSPIRE].
GoldsteinKJenaRPMandalGTrivediSPA C-function for non-supersymmetric attractorsJHEP2006020532006JHEP...02..053G221945210.1088/1126-6708/2006/02/053[hep-th/0512138] [INSPIRE]
DasSRJevickiASuzukiKThree dimensional view of the SYK/AdS dualityJHEP2017090172017JHEP...09..017D371416710.1007/JHEP09(2017)0171382.83075[arXiv:1704.07208] [INSPIRE]
J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly anti-de-Sitter space, PTEP2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
DistlerJZamoraFNonsupersymmetric conformal field theories from stable anti-de Sitter spacesAdv. Theor. Math. Phys.19992140510.4310/ATMP.1998.v2.n6.a61059.81597[hep-th/9810206] [INSPIRE]
BarbonJLFFuertesCAHolographic entanglement entropy probes (non)localityJHEP2008040962008JHEP...04..096B242520710.1088/1126-6708/2008/04/0961246.81204[arXiv:0803.1928] [INSPIRE]
R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev.D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].
E. Alvarez and C. Gomez, Geometric holography, the renormalization group and the c theorem, Nucl. Phys.B 541 (1999) 441 [hep-th/9807226] [INSPIRE].
J. Polchinski and V. Rosenhaus, The spectrum in the Sachdev-Ye-Kitaev model, JHEP04 (2016) 001 [arXiv:1601.06768] [INSPIRE].
S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett.70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on perturbations of N = 4 super Yang-Mills from AdS dynamics, JHEP12 (1998) 022 [hep-th/9810126] [INSPIRE].
D. Mukherjee and K. Narayan, AdS plane waves, entanglement and mutual information, Phys. Rev.D 90 (2014) 026003 [arXiv:1405.3553] [INSPIRE].
K. Skenderis and P.K. Townsend, Gravitational stability and renormalization group flow, Phys. Lett.B 468 (1999) 46 [hep-th/9909070] [INSPIR
T Faulkner (9922_CR33) 2011; 08
9922_CR30
9922_CR74
9922_CR34
RC Myers (9922_CR65) 2012; 04
9922_CR37
9922_CR36
9922_CR35
P Bueno (9922_CR50) 2013; 01
J Distler (9922_CR19) 1999; 2
J de Boer (9922_CR26) 2001; 49
JLF Barbon (9922_CR57) 2008; 04
S de Haro (9922_CR71) 2001; 217
V Balasubramanian (9922_CR20) 1999; 83
K Goldstein (9922_CR31) 2006; 02
M Henningson (9922_CR70) 1998; 07
9922_CR40
I Kanitscheider (9922_CR73) 2008; 09
A Almheiri (9922_CR5) 2016; 10
A Kitaev (9922_CR13) 2018; 05
9922_CR45
9922_CR44
9922_CR43
9922_CR42
S Ryu (9922_CR67) 2006; 96
9922_CR49
9922_CR48
DZ Freedman (9922_CR28) 1999; 3
9922_CR47
9922_CR46
S Ryu (9922_CR68) 2006; 08
V Sahakian (9922_CR69) 2000; 05
J de Boer (9922_CR24) 2000; 08
9922_CR52
9922_CR51
9922_CR12
9922_CR56
9922_CR11
9922_CR10
I Heemskerk (9922_CR32) 2011; 06
9922_CR54
9922_CR53
9922_CR16
9922_CR15
9922_CR59
9922_CR14
9922_CR58
9922_CR18
9922_CR17
9922_CR3
9922_CR2
9922_CR4
R Bousso (9922_CR29) 1999; 07
9922_CR1
9922_CR63
9922_CR62
9922_CR61
9922_CR60
9922_CR7
9922_CR23
9922_CR6
9922_CR22
9922_CR66
9922_CR9
9922_CR21
9922_CR8
9922_CR27
M Taylor (9922_CR39) 2018; 01
RC Myers (9922_CR64) 2011; 01
9922_CR25
K Skenderis (9922_CR72) 2002; 19
SR Das (9922_CR38) 2017; 09
P Nayak (9922_CR41) 2018; 09
X Dong (9922_CR55) 2012; 06
References_xml – reference: FreedmanDZGubserSSPilchKWarnerNPRenormalization group flows from holography supersymmetry and a c theoremAdv. Theor. Math. Phys.19993363173679610.4310/ATMP.1999.v3.n2.a70976.83067[hep-th/9904017] [INSPIRE]
– reference: D. Anninos and D.M. Hofman, Infrared realization of dS2in AdS2, Class. Quant. Grav.35 (2018) 085003 [arXiv:1703.04622] [INSPIRE].
– reference: S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett.70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
– reference: J. Polchinski and V. Rosenhaus, The spectrum in the Sachdev-Ye-Kitaev model, JHEP04 (2016) 001 [arXiv:1601.06768] [INSPIRE].
– reference: J.T. Liu and Z. Zhao, Holographic Lifshitz flows and the null energy condition, arXiv:1206.1047 [INSPIRE].
– reference: J. Tarrio and S. Vandoren, Black holes and black branes in Lifshitz spacetimes, JHEP09 (2011) 017 [arXiv:1105.6335] [INSPIRE].
– reference: de HaroSSolodukhinSNSkenderisKHolographic reconstruction of space-time and renormalization in the AdS/CFT correspondenceCommun. Math. Phys.20012175952001CMaPh.217..595D10.1007/s0022001003810984.83043[hep-th/0002230] [INSPIRE]
– reference: E. Alvarez and C. Gomez, Geometric holography, the renormalization group and the c theorem, Nucl. Phys.B 541 (1999) 441 [hep-th/9807226] [INSPIRE].
– reference: BoussoRA covariant entropy conjectureJHEP1999070041999JHEP...07..004B171240010.1088/1126-6708/1999/07/0040951.83011[hep-th/9905177] [INSPIRE]
– reference: M. Cvetič and I. Papadimitriou, AdS2holographic dictionary, JHEP12 (2016) 008 [Erratum ibid.01 (2017) 120] [arXiv:1608.07018] [INSPIRE].
– reference: HeemskerkIPolchinskiJHolographic and Wilsonian renormalization groupsJHEP2011060312011JHEP...06..031H287084910.1007/JHEP06(2011)0311298.81181[arXiv:1010.1264] [INSPIRE]
– reference: A. Castro, F. Larsen and I. Papadimitriou, 5D rotating black holes and the nAdS2/nCFT1correspondence, JHEP10 (2018) 042 [arXiv:1807.06988] [INSPIRE].
– reference: H. Casini and M. Huerta, A c-theorem for the entanglement entropy, J. Phys.A 40 (2007) 7031 [cond-mat/0610375] [INSPIRE].
– reference: de BoerJVerlindeEPVerlindeHLOn the holographic renormalization groupJHEP200008003179283610.1088/1126-6708/2000/08/0030989.81538[hep-th/9912012] [INSPIRE]
– reference: S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE].
– reference: BalasubramanianVKrausPSpace-time and the holographic renormalization groupPhys. Rev. Lett.19998336051999PhRvL..83.3605B173361610.1103/PhysRevLett.83.36050958.81046[hep-th/9903190] [INSPIRE]
– reference: U. Moitra, S.P. Trivedi and V. Vishal, Near-extremal near-horizons, arXiv:1808.08239 [INSPIRE].
– reference: MyersRCSinghAComments on holographic entanglement entropy and RG flowsJHEP2012041222012JHEP...04..122M296758910.1007/JHEP04(2012)1221348.81337[arXiv:1202.2068] [INSPIRE]
– reference: S. Cremonini and X. Dong, Constraints on renormalization group flows from holographic entanglement entropy, Phys. Rev.D 89 (2014) 065041 [arXiv:1311.3307] [INSPIRE].
– reference: K. Goldstein, N. Iizuka, R.P. Jena and S.P. Trivedi, Non-supersymmetric attractors, Phys. Rev.D 72 (2005) 124021 [hep-th/0507096] [INSPIRE].
– reference: KitaevASuhSJThe soft mode in the Sachdev-Ye-Kitaev model and its gravity dualJHEP2018051832018JHEP...05..183K381500410.1007/JHEP05(2018)1831391.83080[arXiv:1711.08467] [INSPIRE]
– reference: K. Skenderis and P.K. Townsend, Gravitational stability and renormalization group flow, Phys. Lett.B 468 (1999) 46 [hep-th/9909070] [INSPIRE].
– reference: DongXHarrisonSKachruSTorrobaGWangHAspects of holography for theories with hyperscaling violationJHEP2012060412012JHEP...06..041D10.1007/JHEP06(2012)041[arXiv:1201.1905] [INSPIRE]
– reference: R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev.D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].
– reference: K. Jensen, Chaos in AdS2holography, Phys. Rev. Lett.117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].
– reference: M. Cadoni, M. Ciulu and M. Tuveri, Symmetries, holography and quantum phase transition in two-dimensional dilaton AdS gravity, Phys. Rev.D 97 (2018) 103527 [arXiv:1711.02459] [INSPIRE].
– reference: SahakianVComments on D-branes and the renormalization groupJHEP2000050112000JHEP...05..011S176872910.1088/1126-6708/2000/05/0110990.81615[hep-th/0002126] [INSPIRE]
– reference: DistlerJZamoraFNonsupersymmetric conformal field theories from stable anti-de Sitter spacesAdv. Theor. Math. Phys.19992140510.4310/ATMP.1998.v2.n6.a61059.81597[hep-th/9810206] [INSPIRE]
– reference: K. Narayan, Non-conformal brane plane waves and entanglement entropy, Phys. Lett.B 726 (2013) 370 [arXiv:1304.6697] [INSPIRE].
– reference: AlmheiriAKangBConformal symmetry breaking and thermodynamics of near-extremal black holesJHEP2016100522016JHEP...10..052A357752110.1007/JHEP10(2016)0521390.83167[arXiv:1606.04108] [INSPIRE]
– reference: RyuSTakayanagiTAspects of holographic entanglement entropyJHEP2006080452006JHEP...08..045R224992510.1088/1126-6708/2006/08/0451228.83110[hep-th/0605073] [INSPIRE]
– reference: MyersRCSinhaAHolographic c-theorems in arbitrary dimensionsJHEP2011011252011JHEP...01..125M279224910.1007/JHEP01(2011)1251214.83036[arXiv:1011.5819] [INSPIRE]
– reference: N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large N limit of theories with sixteen supercharges, Phys. Rev.D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].
– reference: E.P. Verlinde and H.L. Verlinde, RG flow, gravity and the cosmological constant, JHEP05 (2000)034 [hep-th/9912018] [INSPIRE].
– reference: A. Almheiri and J. Polchinski, Models of AdS2backreaction and holography, JHEP11 (2015) 014 [arXiv:1402.6334] [INSPIRE].
– reference: V. Rosenhaus, An introduction to the SYK model, arXiv:1807.03334 [INSPIRE].
– reference: A.W. Peet and J. Polchinski, UV/IR relations in AdS dynamics, Phys. Rev.D 59 (1999) 065011 [hep-th/9809022] [INSPIRE].
– reference: DasSRJevickiASuzukiKThree dimensional view of the SYK/AdS dualityJHEP2017090172017JHEP...09..017D371416710.1007/JHEP09(2017)0171382.83075[arXiv:1704.07208] [INSPIRE]
– reference: G. Sárosi, AdS2holography and the SYK model, PoS(Modave2017)001 (2018) [arXiv:1711.08482] [INSPIRE].
– reference: L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on perturbations of N = 4 super Yang-Mills from AdS dynamics, JHEP12 (1998) 022 [hep-th/9810126] [INSPIRE].
– reference: K.S. Kolekar and K. Narayan, AdS2dilaton gravity from reductions of some nonrelativistic theories, Phys. Rev.D 98 (2018) 046012 [arXiv:1803.06827] [INSPIRE].
– reference: KanitscheiderISkenderisKTaylorMPrecision holography for non-conformal branesJHEP2008090942008JHEP...09..094K244769610.1088/1126-6708/2008/09/0941245.81187[arXiv:0807.3324] [INSPIRE]
– reference: GoldsteinKJenaRPMandalGTrivediSPA C-function for non-supersymmetric attractorsJHEP2006020532006JHEP...02..053G221945210.1088/1126-6708/2006/02/053[hep-th/0512138] [INSPIRE]
– reference: A.B. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field theory, JETP Lett.43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz.43 (1986) 565] [INSPIRE].
– reference: M. Alishahiha, E. O Colgain and H. Yavartanoo, Charged black branes with hyperscaling violating factor, JHEP11 (2012) 137 [arXiv:1209.3946] [INSPIRE].
– reference: A. Sen, Quantum entropy function from AdS2/CFT1correspondence, Int. J. Mod. Phys.A 24 (2009) 4225 [arXiv:0809.3304] [INSPIRE].
– reference: A. Kitaev, A simple model of quantum holography (part 2), talk at the KITP, http://online.kitp.ucsb.edu/online/entangled15/kitaev2/, University of California, Santa Barbara, CA, U.S.A. 27 May 2015.
– reference: L. Susskind and E. Witten, The holographic bound in anti-de Sitter space, hep-th/9805114 [INSPIRE].
– reference: V. Sahakian, Holography, a covariant c function and the geometry of the renormalization group, Phys. Rev.D 62 (2000) 126011 [hep-th/9910099] [INSPIRE].
– reference: J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS2backreaction and holography, JHEP07 (2016) 139 [arXiv:1606.03438] [INSPIRE].
– reference: J.P. Gauntlett and O. Varela, Consistent Kaluza-Klein reductions for general supersymmetric AdS solutions, Phys. Rev.D 76 (2007) 126007 [arXiv:0707.2315] [INSPIRE].
– reference: J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev.D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
– reference: T. Nishioka, Entanglement entropy: holography and renormalization group, Rev. Mod. Phys.90 (2018) 035007 [arXiv:1801.10352] [INSPIRE].
– reference: RyuSTakayanagiTHolographic derivation of entanglement entropy from AdS/CFTPhys. Rev. Lett.2006961816022006PhRvL..96r1602R222105010.1103/PhysRevLett.96.1816021228.83110[hep-th/0603001] [INSPIRE]
– reference: FaulknerTLiuHRangamaniMIntegrating out geometry: holographic Wilsonian RG and the membrane paradigmJHEP2011080512011JHEP...08..051F28760641298.81173[arXiv:1010.4036] [INSPIRE]
– reference: R. Jackiw, Lower dimensional gravity, Nucl. Phys.B 252 (1985) 343 [INSPIRE].
– reference: BarbonJLFFuertesCAHolographic entanglement entropy probes (non)localityJHEP2008040962008JHEP...04..096B242520710.1088/1126-6708/2008/04/0961246.81204[arXiv:0803.1928] [INSPIRE]
– reference: NayakPShuklaASoniRMTrivediSPVishalVOn the dynamics of near-extremal black holesJHEP2018090482018JHEP...09..048N387125110.1007/JHEP09(2018)0481398.83069[arXiv:1802.09547] [INSPIRE]
– reference: A. Gaikwad, L.K. Joshi, G. Mandal and S.R. Wadia, Holographic dual to charged SYK from 3D gravity and Chern-Simons, arXiv:1802.07746 [INSPIRE].
– reference: A. Castro and W. Song, Comments on AdS2gravity, arXiv:1411.1948 [INSPIRE].
– reference: J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP02 (1999)011 [hep-th/9812073] [INSPIRE].
– reference: A. Kitaev, A simple model of quantum holography (part 1), talk at the KITP, http://online.kitp.ucsb.edu/online/entangled15/kitaev/, University of California, Santa Barbara, CA, U.S.A. 7 April 2015.
– reference: E.T. Akhmedov, A remark on the AdS/CFT correspondence and the renormalization group flow, Phys. Lett.B 442 (1998) 152 [hep-th/9806217] [INSPIRE].
– reference: J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly anti-de-Sitter space, PTEP2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
– reference: Y.-Z. Li, S.-L. Li and H. Lü, Exact embeddings of JT gravity in strings and M-theory, Eur. Phys. J.C 78 (2018) 791 [arXiv:1804.09742] [INSPIRE].
– reference: BuenoPChemissanyWMeessenPOrtínTShahbaziCSLifshitz-like solutions with hyperscaling violation in ungauged supergravityJHEP2013011892013JHEP...01..189B304547010.1007/JHEP01(2013)1891342.83450[arXiv:1209.4047] [INSPIRE]
– reference: D. Mukherjee and K. Narayan, AdS plane waves, entanglement and mutual information, Phys. Rev.D 90 (2014) 026003 [arXiv:1405.3553] [INSPIRE].
– reference: de BoerJThe holographic renormalization groupFortsch. Phys.2001493392001ForPh..49..339D186100010.1002/1521-3978(200105)49:4/6<339::AID-PROP339>3.0.CO;2-A1004.83049[hep-th/0101026] [INSPIRE]
– reference: C. Teitelboim, Gravitation and Hamiltonian structure in two space-time dimensions, Phys. Lett.B 126 (1983) 41 [INSPIRE].
– reference: TaylorMGeneralized conformal structure, dilaton gravity and SYKJHEP2018010102018JHEP...01..010T1384.83044[arXiv:1706.07812] [INSPIRE]
– reference: J.T. Liu and W. Zhong, A holographic c-theorem for Schrödinger spacetimes, JHEP12 (2015)179 [arXiv:1510.06975] [INSPIRE].
– reference: SkenderisKLecture notes on holographic renormalizationClass. Quant. Grav.2002195849196266110.1088/0264-9381/19/22/3061044.83009[hep-th/0209067] [INSPIRE]
– reference: H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys. Rev.D 85 (2012) 125016 [arXiv:1202.5650] [INSPIRE].
– reference: HenningsonMSkenderisKThe holographic Weyl anomalyJHEP1998070231998JHEP...07..023H164498810.1088/1126-6708/1998/07/0230958.81083[hep-th/9806087] [INSPIRE]
– volume: 06
  start-page: 041
  year: 2012
  ident: 9922_CR55
  publication-title: JHEP
  doi: 10.1007/JHEP06(2012)041
– ident: 9922_CR34
  doi: 10.1103/RevModPhys.90.035007
– volume: 07
  start-page: 023
  year: 1998
  ident: 9922_CR70
  publication-title: JHEP
  doi: 10.1088/1126-6708/1998/07/023
– ident: 9922_CR12
  doi: 10.1103/PhysRevD.94.106002
– ident: 9922_CR44
  doi: 10.1140/epjc/s10052-018-6267-1
– ident: 9922_CR22
– ident: 9922_CR3
  doi: 10.1103/PhysRevLett.117.111601
– ident: 9922_CR46
  doi: 10.1103/PhysRevD.72.124021
– ident: 9922_CR43
  doi: 10.1103/PhysRevD.97.103527
– ident: 9922_CR11
  doi: 10.1007/JHEP04(2016)001
– volume: 05
  start-page: 183
  year: 2018
  ident: 9922_CR13
  publication-title: JHEP
  doi: 10.1007/JHEP05(2018)183
– ident: 9922_CR45
  doi: 10.1007/JHEP10(2018)042
– volume: 3
  start-page: 363
  year: 1999
  ident: 9922_CR28
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1999.v3.n2.a7
– ident: 9922_CR2
  doi: 10.1093/ptep/ptw124
– ident: 9922_CR58
  doi: 10.1016/j.physletb.2013.07.061
– ident: 9922_CR61
  doi: 10.1088/1751-8113/40/25/S57
– ident: 9922_CR36
– volume: 05
  start-page: 011
  year: 2000
  ident: 9922_CR69
  publication-title: JHEP
  doi: 10.1088/1126-6708/2000/05/011
– volume: 2
  start-page: 1405
  year: 1999
  ident: 9922_CR19
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1998.v2.n6.a6
– ident: 9922_CR63
  doi: 10.1103/PhysRevD.82.046006
– volume: 04
  start-page: 096
  year: 2008
  ident: 9922_CR57
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/04/096
– volume: 83
  start-page: 3605
  year: 1999
  ident: 9922_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.3605
– ident: 9922_CR8
  doi: 10.1103/PhysRevLett.70.3339
– ident: 9922_CR16
  doi: 10.1016/S0370-2693(98)01270-2
– ident: 9922_CR42
– ident: 9922_CR74
  doi: 10.1088/1361-6382/aab143
– ident: 9922_CR10
– volume: 09
  start-page: 094
  year: 2008
  ident: 9922_CR73
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/09/094
– ident: 9922_CR48
  doi: 10.1007/JHEP09(2011)017
– ident: 9922_CR25
  doi: 10.1088/1126-6708/2000/05/034
– ident: 9922_CR62
  doi: 10.1103/PhysRevD.85.125016
– volume: 49
  start-page: 339
  year: 2001
  ident: 9922_CR26
  publication-title: Fortsch. Phys.
  doi: 10.1002/1521-3978(200105)49:4/6<339::AID-PROP339>3.0.CO;2-A
– volume: 19
  start-page: 5849
  year: 2002
  ident: 9922_CR72
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/19/22/306
– ident: 9922_CR18
  doi: 10.1088/1126-6708/1998/12/022
– ident: 9922_CR35
  doi: 10.1103/PhysRevD.98.046012
– volume: 08
  start-page: 045
  year: 2006
  ident: 9922_CR68
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/08/045
– volume: 01
  start-page: 189
  year: 2013
  ident: 9922_CR50
  publication-title: JHEP
  doi: 10.1007/JHEP01(2013)189
– ident: 9922_CR9
– volume: 10
  start-page: 052
  year: 2016
  ident: 9922_CR5
  publication-title: JHEP
  doi: 10.1007/JHEP10(2016)052
– ident: 9922_CR56
  doi: 10.1103/PhysRevD.58.046004
– ident: 9922_CR66
  doi: 10.1103/PhysRevD.89.065041
– ident: 9922_CR47
– ident: 9922_CR14
  doi: 10.22323/1.323.0001
– volume: 08
  start-page: 051
  year: 2011
  ident: 9922_CR33
  publication-title: JHEP
– ident: 9922_CR21
  doi: 10.1016/S0370-2693(99)01212-5
– ident: 9922_CR4
  doi: 10.1007/JHEP07(2016)139
– volume: 02
  start-page: 053
  year: 2006
  ident: 9922_CR31
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/02/053
– ident: 9922_CR6
  doi: 10.1088/1126-6708/1999/02/011
– ident: 9922_CR30
  doi: 10.1103/PhysRevD.62.126011
– volume: 96
  start-page: 181602
  year: 2006
  ident: 9922_CR67
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.181602
– ident: 9922_CR54
  doi: 10.1007/JHEP12(2015)179
– ident: 9922_CR53
– ident: 9922_CR15
– ident: 9922_CR51
  doi: 10.1016/0550-3213(85)90448-1
– ident: 9922_CR52
  doi: 10.1016/0370-2693(83)90012-6
– volume: 08
  start-page: 003
  year: 2000
  ident: 9922_CR24
  publication-title: JHEP
  doi: 10.1088/1126-6708/2000/08/003
– volume: 01
  start-page: 125
  year: 2011
  ident: 9922_CR64
  publication-title: JHEP
  doi: 10.1007/JHEP01(2011)125
– volume: 217
  start-page: 595
  year: 2001
  ident: 9922_CR71
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s002200100381
– volume: 01
  start-page: 010
  year: 2018
  ident: 9922_CR39
  publication-title: JHEP
– ident: 9922_CR17
  doi: 10.1016/S0550-3213(98)00752-4
– ident: 9922_CR23
  doi: 10.1103/PhysRevD.59.065011
– volume: 07
  start-page: 004
  year: 1999
  ident: 9922_CR29
  publication-title: JHEP
  doi: 10.1088/1126-6708/1999/07/004
– ident: 9922_CR40
– volume: 04
  start-page: 122
  year: 2012
  ident: 9922_CR65
  publication-title: JHEP
  doi: 10.1007/JHEP04(2012)122
– ident: 9922_CR27
– ident: 9922_CR37
  doi: 10.1007/JHEP01(2017)120
– ident: 9922_CR1
  doi: 10.1007/JHEP11(2015)014
– volume: 09
  start-page: 017
  year: 2017
  ident: 9922_CR38
  publication-title: JHEP
  doi: 10.1007/JHEP09(2017)017
– ident: 9922_CR60
  doi: 10.1103/PhysRevD.76.126007
– ident: 9922_CR59
  doi: 10.1103/PhysRevD.90.026003
– ident: 9922_CR7
  doi: 10.1142/S0217751X09045893
– ident: 9922_CR49
  doi: 10.1007/JHEP11(2012)137
– volume: 09
  start-page: 048
  year: 2018
  ident: 9922_CR41
  publication-title: JHEP
  doi: 10.1007/JHEP09(2018)048
– volume: 06
  start-page: 031
  year: 2011
  ident: 9922_CR32
  publication-title: JHEP
  doi: 10.1007/JHEP06(2011)031
SSID ssj0015190
Score 2.271434
Snippet A bstract Extremal black branes upon compactification in the near horizon throat region are known to give rise to AdS 2 dilaton-gravity-matter theories. Away...
Extremal black branes upon compactification in the near horizon throat region are known to give rise to AdS 2 dilaton-gravity-matter theories. Away from the...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Classical and Quantum Gravitation
Elementary Particles
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
Title On AdS2 holography from redux, renormalization group flows and c-functions
URI https://link.springer.com/article/10.1007/JHEP02(2019)039
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFB5sRfAirliXMgcPLTiaWTLLsZTWUnABLfQWMkvwUFJpK_rznZmmhSo9eJkE8uby5YX3hTff9wC48SmitKIcCSotYgXGKJisI6kLmuSJdDbOOnx84oMRG47TcWWSFLQwv_r398NB7yUhLV-mVDuhqgZ2U0x57Mry7rpd4GlIsvLt-btps-Rs9jtjGekfgoOK_8HO8oUdgR1XHoO9eA7TzE_A8LmEHftK4PvaTBoGBQic-ZLwfesvZSCZk0o9CaMoAxaT6dcc5qWFBoVCFXPpFIz6vbfuAFXjDpDBXCpUBK_3Ik-NFoLr4NmLsSmUx0xTQyR3gjpuTGFFEOiwVBuFFfMPHWOOaELPQL2clu4cQJEnPHfKkwObMGukJlYLTyZ4blOZY9MAdytEMlN5gYeRFJNs5WK8hDALEGYewgZorTd8LG0wtoe2VxBn1fcw3xZ78Y_YS7AfbuOJaXEF6ovZp7v2hGChm6Am-w9-7RLWjInRjL_Wfh2Rzg-edLEX
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qRfQiPrE-9-ChBVeyeexmj0VaYm2rYAu9hewjeCiptBX9-e5uk0KRHjwFktnLl9nMF2a-bwHuTYpwwQOKWRArHOaEYGuyjmORB17mxVq5sw4HQ5qMw94kmtSAVFoYN-1etSTdl7oSu_WSzpvnN03B4i0v4DuwGxLzC2T7s1bgUDYODCHxKgefv4s2i89m59MVlO4RHJZMELVXr-4Yaro4gT03kSkXp9B7LVBbvfvoY20rjawWBM1Ncfh5MJfC0s1pqaNETp6B8unse4GyQiGJbclyWXUG425n9JTg8uADLAmNOc6t63ueRVIwRoV17yVE5tygJwLpx1SzQFMpc8WsVCeMhOSEh-ahDkPtCz84h3oxK_QFIJZ5NNPc0ATlhUrGwleCGVpBMxXFGZENeKwQSWXpCm4Pp5imlZ_xCsLUQpgaCBvQXC_4XBlibA9tVRCn5c5YbIu9_EfsHewno0E_7T8PX67gwN52c9TsGurL-Ze-MTRhKW5dYvwCQAu0Yw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60ongRn1ife_DQgms3yWY3eyy1pVatBS30FrIvPJS0NBX9-e7mUSjSg6dAMnv5Msv3wcx8A8CdTREueEARCyKFiPE85EzWUSRMgBMcaZXvOnwd0v6YDCbhpOzNyapu96okWcw0OJemdNmaK1NV9VuDfneE_YYlL97EAd8GO8TxnqvV0s6qiGDFCa7cfP4eWiei9SpoTi69Q3BQqkLYLn7jEdjS6THYzbszZXYCBm8pbKt3H36uLKahmwuBC0sUP_f2kTrpOS1nKmE-qgHNdPadwSRVUCJHX3mGnYJxr_vR6aNyCQKSHo04Ms4B3iShFIxR4Zx8PU8abpEUgfQjqlmgqZRGMTe2Q0IhuceJ_agJ0b7wgzNQS2epPgeQJZgmmlvJoDBRMhK-EsxKDJqoMEo8WQcPFSKxLB3C3aKKaVx5GxcQxg7C2EJYB43VgXlhjrE5tFlBHJe3JNsUe_GP2FuwN3rsxS9Pw-dLsO_e5i3V7ArUlosvfW0Vw1Lc5HnxCwtouL0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+AdS2+holography+from+redux%2C+renormalization+group+flows+and+c-functions&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Kolekar%2C+Kedar+S.&rft.au=Narayan%2C+K.&rft.date=2019-02-07&rft.issn=1029-8479&rft.eissn=1029-8479&rft.volume=2019&rft.issue=2&rft_id=info:doi/10.1007%2FJHEP02%282019%29039&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_JHEP02_2019_039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon