Synergistic Optimization of Pore and Conductive Network of Short‐Cut Graphene Porous Fibers for Lightweight Broadband Electromagnetic Wave Absorption

Graphene possesses high carrier mobility and structural tunability, but achieving effective electromagnetic wave (EMW) absorption with single‐component graphene remains challenging due to the inherent trade‐offs among filler loading, impedance matching, and attenuation intensity. Structural engineer...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) p. e05866
Main Authors Cheng, Ziyan, Yan, Yuefeng, Zhou, En, Gao, Boshi, Qin, Guangyu, Zhang, Kaili, Chen, Tao, Ma, Guansheng, Huang, Xiaoxiao
Format Journal Article
LanguageEnglish
Published Germany 13.08.2025
Subjects
Online AccessGet full text
ISSN1613-6810
1613-6829
1613-6829
DOI10.1002/smll.202505866

Cover

Loading…
Abstract Graphene possesses high carrier mobility and structural tunability, but achieving effective electromagnetic wave (EMW) absorption with single‐component graphene remains challenging due to the inherent trade‐offs among filler loading, impedance matching, and attenuation intensity. Structural engineering of graphene has been proved to be an effective strategy to address this challenge. In this study, a series of short‐cut graphene porous fibers (SCGPF) is fabricated through wet‐spinning and freeze‐drying, and regulating the pore size of SCGPFs to achieve precision control of electromagnetic parameters. The porous structure facilitates the formation of continuous 3D conductive networks among graphene sheets, effectively extending EMW transmission paths and improving impedance matching. Optimized pores enhance the polarization response at the pore edges, SCGPF‐30 achieves a minimum reflection loss (RL min ) of −62.31 dB at 2 wt%. The formation of a large‐scale 3D network further amplifies conduction loss at a low filler loading, SCGPF‐30‐3 reaches a maximum effective absorption bandwidth (EAB max ) of 7.61 GHz (10.39–18 GHz) at only 1 wt%. These results demonstrate that synergistic optimization of pore size and conductive network in graphene significantly enhances EMW absorption under an ultralow filler loading, offering a promising strategy for developing high‐performance graphene‐based electromagnetic protection materials.
AbstractList Graphene possesses high carrier mobility and structural tunability, but achieving effective electromagnetic wave (EMW) absorption with single-component graphene remains challenging due to the inherent trade-offs among filler loading, impedance matching, and attenuation intensity. Structural engineering of graphene has been proved to be an effective strategy to address this challenge. In this study, a series of short-cut graphene porous fibers (SCGPF) is fabricated through wet-spinning and freeze-drying, and regulating the pore size of SCGPFs to achieve precision control of electromagnetic parameters. The porous structure facilitates the formation of continuous 3D conductive networks among graphene sheets, effectively extending EMW transmission paths and improving impedance matching. Optimized pores enhance the polarization response at the pore edges, SCGPF-30 achieves a minimum reflection loss (RL ) of -62.31 dB at 2 wt%. The formation of a large-scale 3D network further amplifies conduction loss at a low filler loading, SCGPF-30-3 reaches a maximum effective absorption bandwidth (EAB ) of 7.61 GHz (10.39-18 GHz) at only 1 wt%. These results demonstrate that synergistic optimization of pore size and conductive network in graphene significantly enhances EMW absorption under an ultralow filler loading, offering a promising strategy for developing high-performance graphene-based electromagnetic protection materials.
Graphene possesses high carrier mobility and structural tunability, but achieving effective electromagnetic wave (EMW) absorption with single‐component graphene remains challenging due to the inherent trade‐offs among filler loading, impedance matching, and attenuation intensity. Structural engineering of graphene has been proved to be an effective strategy to address this challenge. In this study, a series of short‐cut graphene porous fibers (SCGPF) is fabricated through wet‐spinning and freeze‐drying, and regulating the pore size of SCGPFs to achieve precision control of electromagnetic parameters. The porous structure facilitates the formation of continuous 3D conductive networks among graphene sheets, effectively extending EMW transmission paths and improving impedance matching. Optimized pores enhance the polarization response at the pore edges, SCGPF‐30 achieves a minimum reflection loss (RL min ) of −62.31 dB at 2 wt%. The formation of a large‐scale 3D network further amplifies conduction loss at a low filler loading, SCGPF‐30‐3 reaches a maximum effective absorption bandwidth (EAB max ) of 7.61 GHz (10.39–18 GHz) at only 1 wt%. These results demonstrate that synergistic optimization of pore size and conductive network in graphene significantly enhances EMW absorption under an ultralow filler loading, offering a promising strategy for developing high‐performance graphene‐based electromagnetic protection materials.
Graphene possesses high carrier mobility and structural tunability, but achieving effective electromagnetic wave (EMW) absorption with single-component graphene remains challenging due to the inherent trade-offs among filler loading, impedance matching, and attenuation intensity. Structural engineering of graphene has been proved to be an effective strategy to address this challenge. In this study, a series of short-cut graphene porous fibers (SCGPF) is fabricated through wet-spinning and freeze-drying, and regulating the pore size of SCGPFs to achieve precision control of electromagnetic parameters. The porous structure facilitates the formation of continuous 3D conductive networks among graphene sheets, effectively extending EMW transmission paths and improving impedance matching. Optimized pores enhance the polarization response at the pore edges, SCGPF-30 achieves a minimum reflection loss (RLmin) of -62.31 dB at 2 wt%. The formation of a large-scale 3D network further amplifies conduction loss at a low filler loading, SCGPF-30-3 reaches a maximum effective absorption bandwidth (EABmax) of 7.61 GHz (10.39-18 GHz) at only 1 wt%. These results demonstrate that synergistic optimization of pore size and conductive network in graphene significantly enhances EMW absorption under an ultralow filler loading, offering a promising strategy for developing high-performance graphene-based electromagnetic protection materials.Graphene possesses high carrier mobility and structural tunability, but achieving effective electromagnetic wave (EMW) absorption with single-component graphene remains challenging due to the inherent trade-offs among filler loading, impedance matching, and attenuation intensity. Structural engineering of graphene has been proved to be an effective strategy to address this challenge. In this study, a series of short-cut graphene porous fibers (SCGPF) is fabricated through wet-spinning and freeze-drying, and regulating the pore size of SCGPFs to achieve precision control of electromagnetic parameters. The porous structure facilitates the formation of continuous 3D conductive networks among graphene sheets, effectively extending EMW transmission paths and improving impedance matching. Optimized pores enhance the polarization response at the pore edges, SCGPF-30 achieves a minimum reflection loss (RLmin) of -62.31 dB at 2 wt%. The formation of a large-scale 3D network further amplifies conduction loss at a low filler loading, SCGPF-30-3 reaches a maximum effective absorption bandwidth (EABmax) of 7.61 GHz (10.39-18 GHz) at only 1 wt%. These results demonstrate that synergistic optimization of pore size and conductive network in graphene significantly enhances EMW absorption under an ultralow filler loading, offering a promising strategy for developing high-performance graphene-based electromagnetic protection materials.
Author Zhou, En
Huang, Xiaoxiao
Yan, Yuefeng
Ma, Guansheng
Chen, Tao
Qin, Guangyu
Gao, Boshi
Zhang, Kaili
Cheng, Ziyan
Author_xml – sequence: 1
  givenname: Ziyan
  surname: Cheng
  fullname: Cheng, Ziyan
  organization: State Key Laboratory of Precision Welding & Joining of Materials and Structures Harbin Institute of Technology School of Materials Science and Engineering Harbin Institute of Technology MIIT Key Laboratory of Advanced Structural‐Functional Integration Materials & Green Manufacturing Technology Harbin 150001 China
– sequence: 2
  givenname: Yuefeng
  orcidid: 0009-0008-1750-8819
  surname: Yan
  fullname: Yan, Yuefeng
  organization: State Key Laboratory of Precision Welding & Joining of Materials and Structures Harbin Institute of Technology School of Materials Science and Engineering Harbin Institute of Technology MIIT Key Laboratory of Advanced Structural‐Functional Integration Materials & Green Manufacturing Technology Harbin 150001 China
– sequence: 3
  givenname: En
  surname: Zhou
  fullname: Zhou, En
  organization: State Key Laboratory of Precision Welding & Joining of Materials and Structures Harbin Institute of Technology School of Materials Science and Engineering Harbin Institute of Technology MIIT Key Laboratory of Advanced Structural‐Functional Integration Materials & Green Manufacturing Technology Harbin 150001 China
– sequence: 4
  givenname: Boshi
  surname: Gao
  fullname: Gao, Boshi
  organization: State Key Laboratory of Precision Welding & Joining of Materials and Structures Harbin Institute of Technology School of Materials Science and Engineering Harbin Institute of Technology MIIT Key Laboratory of Advanced Structural‐Functional Integration Materials & Green Manufacturing Technology Harbin 150001 China
– sequence: 5
  givenname: Guangyu
  surname: Qin
  fullname: Qin, Guangyu
  organization: State Key Laboratory of Precision Welding & Joining of Materials and Structures Harbin Institute of Technology School of Materials Science and Engineering Harbin Institute of Technology MIIT Key Laboratory of Advanced Structural‐Functional Integration Materials & Green Manufacturing Technology Harbin 150001 China
– sequence: 6
  givenname: Kaili
  surname: Zhang
  fullname: Zhang, Kaili
  organization: State Key Laboratory of Precision Welding & Joining of Materials and Structures Harbin Institute of Technology School of Materials Science and Engineering Harbin Institute of Technology MIIT Key Laboratory of Advanced Structural‐Functional Integration Materials & Green Manufacturing Technology Harbin 150001 China
– sequence: 7
  givenname: Tao
  surname: Chen
  fullname: Chen, Tao
  organization: State Key Laboratory of Precision Welding & Joining of Materials and Structures Harbin Institute of Technology School of Materials Science and Engineering Harbin Institute of Technology MIIT Key Laboratory of Advanced Structural‐Functional Integration Materials & Green Manufacturing Technology Harbin 150001 China
– sequence: 8
  givenname: Guansheng
  surname: Ma
  fullname: Ma, Guansheng
  organization: State Key Laboratory of Precision Welding & Joining of Materials and Structures Harbin Institute of Technology School of Materials Science and Engineering Harbin Institute of Technology MIIT Key Laboratory of Advanced Structural‐Functional Integration Materials & Green Manufacturing Technology Harbin 150001 China
– sequence: 9
  givenname: Xiaoxiao
  orcidid: 0000-0002-2008-8949
  surname: Huang
  fullname: Huang, Xiaoxiao
  organization: State Key Laboratory of Precision Welding & Joining of Materials and Structures Harbin Institute of Technology School of Materials Science and Engineering Harbin Institute of Technology MIIT Key Laboratory of Advanced Structural‐Functional Integration Materials & Green Manufacturing Technology Harbin 150001 China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40801200$$D View this record in MEDLINE/PubMed
BookMark eNo9kc9u2zAMxoWhw_pnu-5Y6LhLUkqyFevYBWlXIFgHdMOOhixTiTpb8iR5RXfaI_TW99uTNEbbXEgC_PEjyO-YHPjgkZCPDOYMgJ-lvuvmHHgJZSXlG3LEJBMzWXF1sK8ZHJLjlG4BBOPF4h05LKACxgGOyOPNvce4cSk7Q6-H7Hr3V2cXPA2WfgsRqfYtXQbfjia7P0i_Yr4L8dfUvtmGmP__e1iOmV5GPWzR4zQTxkQvXIMxURsiXbvNNt_hFOnnGHTbTJKrDk2Oodcbj9Pun3onft6kEIdp_Xvy1uou4YeXfEJ-XKy-L7_M1teXV8vz9cwwucgzZQxXxpagmcQSrbSgWyhbUSlhiqIxUmMhwPBFqxbKCmuUKUqrW1kapbgQJ-TTs-4Qw-8RU657lwx2nfa4u6MWXCjGlCirHXr6go5Nj209RNfreF-_PnMHzJ8BE0NKEe0eYVBPbtWTW_XeLfEEq7uMAA
Cites_doi 10.1016/j.jcis.2023.07.072
10.1021/acs.nanolett.4c05494
10.1016/j.carbon.2024.119604
10.1016/j.ceramint.2024.10.007
10.1016/j.carbon.2012.07.023
10.1016/j.carbon.2021.03.057
10.1016/j.apsusc.2023.157029
10.1021/acsami.3c02794
10.1016/j.cej.2024.159118
10.1002/adma.202401733
10.7498/aps.65.174201
10.1007/s12274-024-6468-x
10.1002/adma.202206101
10.1016/j.ceramint.2023.12.299
10.1016/j.compositesb.2025.112397
10.1007/s40145-021-0520-z
10.1007/s00339-024-08062-w
10.1038/s41467-022-28906-4
10.1016/j.ceramint.2021.04.235
10.1007/s12274-023-6198-5
10.1002/smll.202410799
10.26599/JAC.2023.9220686
10.1016/j.carbon.2023.118254
10.1002/adfm.201807398
10.26599/JAC.2024.9220930
10.26599/JAC.2025.9221039
10.1016/j.ceramint.2015.01.008
10.1038/s41467-024-54770-5
10.1016/j.carbon.2024.119795
10.1016/j.compositesa.2023.107808
10.1007/s40820-023-01280-6
10.1002/adma.202205376
10.1038/s41467-024-47537-5
10.1007/s40820-024-01396-3
10.1016/j.cej.2025.161031
10.1021/acsami.0c22049
10.26599/JAC.2024.9220998
10.1007/s40820-022-00906-5
10.1002/adfm.202415921
10.26599/JAC.2024.9220990
10.26599/JAC.2024.9220890
10.1016/j.jallcom.2022.167250
10.1038/ncomms1583
10.1002/smll.202401755
10.1007/s40820-024-01437-x
10.1016/j.cej.2024.157373
10.1002/adfm.202206053
10.1038/s41467-025-58448-4
10.26599/JAC.2024.9220944
10.1007/s40820-024-01518-x
10.1016/j.cej.2024.152904
10.1002/adfm.202316338
10.1016/j.carbon.2024.119874
10.1007/s40820-022-00925-2
10.1002/adfm.202413650
10.1016/j.mattod.2023.08.003
ContentType Journal Article
Copyright 2025 Wiley‐VCH GmbH.
Copyright_xml – notice: 2025 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1002/smll.202505866
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
ExternalDocumentID 40801200
10_1002_smll_202505866
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: NSFC 52432002
– fundername: National Natural Science Foundation of China
  grantid: 52302087
– fundername: Heilongjiang Touyan Team Program
– fundername: National Natural Science Foundation of China
  grantid: 52372041
– fundername: Fundamental Research Funds for the Central Universities
  grantid: HIT.DZJJ.2025002
– fundername: Fundamental Research Funds for the Central Universities
  grantid: HIT.OCEF.2021003
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CITATION
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
NPM
7X8
ID FETCH-LOGICAL-c167t-9cc29cf50a16e5ef6f0ad05d3893c44bc6ae430c27d979f3fc9c45fad65c99233
ISSN 1613-6810
1613-6829
IngestDate Wed Aug 13 23:56:51 EDT 2025
Thu Aug 14 01:42:56 EDT 2025
Thu Aug 21 00:31:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords graphene porous fiber
impedance matching
electromagnetic wave absorption
pore structure optimization
3D conductive network
Language English
License 2025 Wiley‐VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c167t-9cc29cf50a16e5ef6f0ad05d3893c44bc6ae430c27d979f3fc9c45fad65c99233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0008-1750-8819
0000-0002-2008-8949
PMID 40801200
PQID 3239119358
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3239119358
pubmed_primary_40801200
crossref_primary_10_1002_smll_202505866
PublicationCentury 2000
PublicationDate 2025-Aug-13
PublicationDateYYYYMMDD 2025-08-13
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-Aug-13
  day: 13
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2025
References Liu Y. (e_1_2_8_7_1) 2023; 12
Ma G. (e_1_2_8_26_1) 2024; 500
Liu Z. L. (e_1_2_8_52_1) 2025; 233
Qian W. (e_1_2_8_23_1) 2022; 34
Qian J. (e_1_2_8_5_1) 2024; 13
Wang X. (e_1_2_8_11_1) 2025; 35
Wang X. (e_1_2_8_15_1) 2024; 36
Zhao Z. (e_1_2_8_44_1) 2022; 34
Liu Y. (e_1_2_8_8_1) 2023; 15
Wang C. (e_1_2_8_6_1) 2024; 13
Tao J. (e_1_2_8_56_1) 2025; 16
Khanahmadi S. (e_1_2_8_18_1) 2024; 50
Cao M.‐S. (e_1_2_8_4_1) 2019; 29
Shan B. (e_1_2_8_34_1) 2024; 16
Yuan M. (e_1_2_8_60_1) 2022; 32
Zhao Y.‐L. (e_1_2_8_19_1) 2024; 45
Shu R. (e_1_2_8_39_1) 2024; 190
Qin G. (e_1_2_8_50_1) 2023; 175
Yan Y. (e_1_2_8_55_1) 2024; 34
Gao Y. (e_1_2_8_42_1) 2023; 69
Wu Y. (e_1_2_8_37_1) 2022; 14
Thakur S. (e_1_2_8_47_1) 2012; 50
Ma G. (e_1_2_8_59_1) 2024; 495
Wang Z. (e_1_2_8_14_1) 2024; 13
Yu L. (e_1_2_8_12_1) 2024; 17
Jiao Z. (e_1_2_8_17_1) 2023; 650
Ma G. (e_1_2_8_21_1) 2025; 232
Zhang K. (e_1_2_8_28_1) 2024; 16
Zhang Y. (e_1_2_8_31_1) 2025; 505
Cao M. (e_1_2_8_41_1) 2022; 14
Zhang K. (e_1_2_8_22_1) 2024; 13
Xu Z. (e_1_2_8_49_1) 2011; 2
Zhang M. (e_1_2_8_30_1) 2020; 53
Aixart J. (e_1_2_8_45_1) 2021; 47
Yu M. (e_1_2_8_32_1) 2024; 50
Niu H. (e_1_2_8_58_1) 2024; 17
Liu X. (e_1_2_8_1_1) 2024; 16
Wang C. (e_1_2_8_33_1) 2011; 98
Yang X. (e_1_2_8_3_1) 2024; 25
Cai B. (e_1_2_8_43_1) 2024; 15
Yu C. (e_1_2_8_40_1) 2024; 20
Qin L. (e_1_2_8_48_1) 2016; 65
Du B. (e_1_2_8_13_1) 2025; 14
Li T. (e_1_2_8_24_1) 2021; 13
Sun J. (e_1_2_8_27_1) 2023; 623
Yan Y. (e_1_2_8_51_1) 2025; 14
Tao J. (e_1_2_8_57_1) 2024; 15
Yunasfi D. S. (e_1_2_8_10_1) 2024; 130
Li T.‐t. (e_1_2_8_25_1) 2023; 930
Qin G. (e_1_2_8_20_1) 2025; 298
Tan S. (e_1_2_8_2_1) 2025; 35
Low F. W. (e_1_2_8_46_1) 2015; 41
Hou Y. (e_1_2_8_16_1) 2022; 13
Chen Q. (e_1_2_8_38_1) 2021; 179
Zhang K. (e_1_2_8_29_1) 2025; 17
Yan Y. (e_1_2_8_53_1) 2025; 21
Qin G. (e_1_2_8_54_1) 2022; 11
Gao B. (e_1_2_8_9_1) 2025; 508
Wei M. (e_1_2_8_36_1) 2023; 213
Sun X. (e_1_2_8_35_1) 2024; 230
References_xml – volume: 98
  year: 2011
  ident: e_1_2_8_33_1
  publication-title: Appl. Phys. Lett.
– volume: 650
  start-page: 2014
  year: 2023
  ident: e_1_2_8_17_1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2023.07.072
– volume: 25
  start-page: 569
  year: 2024
  ident: e_1_2_8_3_1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.4c05494
– volume: 230
  year: 2024
  ident: e_1_2_8_35_1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2024.119604
– volume: 50
  year: 2024
  ident: e_1_2_8_32_1
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2024.10.007
– volume: 50
  start-page: 5331
  year: 2012
  ident: e_1_2_8_47_1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.07.023
– volume: 179
  start-page: 180
  year: 2021
  ident: e_1_2_8_38_1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.03.057
– volume: 623
  year: 2023
  ident: e_1_2_8_27_1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2023.157029
– volume: 15
  year: 2023
  ident: e_1_2_8_8_1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c02794
– volume: 505
  year: 2025
  ident: e_1_2_8_31_1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.159118
– volume: 36
  year: 2024
  ident: e_1_2_8_15_1
  publication-title: Adv Mater.
  doi: 10.1002/adma.202401733
– volume: 65
  year: 2016
  ident: e_1_2_8_48_1
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.65.174201
– volume: 17
  start-page: 2079
  year: 2024
  ident: e_1_2_8_12_1
  publication-title: Nano Res.
  doi: 10.1007/s12274-024-6468-x
– volume: 34
  year: 2022
  ident: e_1_2_8_23_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202206101
– volume: 50
  start-page: 9779
  year: 2024
  ident: e_1_2_8_18_1
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2023.12.299
– volume: 45
  start-page: 259
  year: 2024
  ident: e_1_2_8_19_1
  publication-title: Adv Ceram.
– volume: 298
  year: 2025
  ident: e_1_2_8_20_1
  publication-title: Composites, Part B
  doi: 10.1016/j.compositesb.2025.112397
– volume: 11
  start-page: 105
  year: 2022
  ident: e_1_2_8_54_1
  publication-title: J. Adv. Ceram.
  doi: 10.1007/s40145-021-0520-z
– volume: 130
  start-page: 12
  year: 2024
  ident: e_1_2_8_10_1
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-024-08062-w
– volume: 190
  start-page: 106
  year: 2024
  ident: e_1_2_8_39_1
  publication-title: J. Mater. Sci.
– volume: 13
  start-page: 1227
  year: 2022
  ident: e_1_2_8_16_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28906-4
– volume: 47
  year: 2021
  ident: e_1_2_8_45_1
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2021.04.235
– volume: 17
  start-page: 1676
  year: 2024
  ident: e_1_2_8_58_1
  publication-title: Nano Res.
  doi: 10.1007/s12274-023-6198-5
– volume: 21
  year: 2025
  ident: e_1_2_8_53_1
  publication-title: Small
  doi: 10.1002/smll.202410799
– volume: 12
  start-page: 329
  year: 2023
  ident: e_1_2_8_7_1
  publication-title: J. Adv. Ceram.
  doi: 10.26599/JAC.2023.9220686
– volume: 213
  year: 2023
  ident: e_1_2_8_36_1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2023.118254
– volume: 29
  year: 2019
  ident: e_1_2_8_4_1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201807398
– volume: 13
  start-page: 1212
  year: 2024
  ident: e_1_2_8_6_1
  publication-title: J. Adv. Ceram.
  doi: 10.26599/JAC.2024.9220930
– volume: 14
  year: 2025
  ident: e_1_2_8_51_1
  publication-title: J. Adv. Ceram.
  doi: 10.26599/JAC.2025.9221039
– volume: 41
  start-page: 5798
  year: 2015
  ident: e_1_2_8_46_1
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2015.01.008
– volume: 15
  year: 2024
  ident: e_1_2_8_57_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-54770-5
– volume: 53
  start-page: 1361
  year: 2020
  ident: e_1_2_8_30_1
  publication-title: J. Phys. D: Appl. Phys.
– volume: 232
  year: 2025
  ident: e_1_2_8_21_1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2024.119795
– volume: 175
  year: 2023
  ident: e_1_2_8_50_1
  publication-title: Composites, Part A
  doi: 10.1016/j.compositesa.2023.107808
– volume: 16
  start-page: 66
  year: 2024
  ident: e_1_2_8_28_1
  publication-title: Nano‐Micro Lett.
  doi: 10.1007/s40820-023-01280-6
– volume: 34
  year: 2022
  ident: e_1_2_8_44_1
  publication-title: Adv Mater.
  doi: 10.1002/adma.202205376
– volume: 15
  start-page: 3299
  year: 2024
  ident: e_1_2_8_43_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-47537-5
– volume: 16
  start-page: 174
  year: 2024
  ident: e_1_2_8_1_1
  publication-title: Nano‐Micro Lett.
  doi: 10.1007/s40820-024-01396-3
– volume: 508
  year: 2025
  ident: e_1_2_8_9_1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2025.161031
– volume: 13
  year: 2021
  ident: e_1_2_8_24_1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c22049
– volume: 14
  year: 2025
  ident: e_1_2_8_13_1
  publication-title: J. Adv. Ceram.
  doi: 10.26599/JAC.2024.9220998
– volume: 14
  start-page: 171
  year: 2022
  ident: e_1_2_8_37_1
  publication-title: Nano‐Micro Lett.
  doi: 10.1007/s40820-022-00906-5
– volume: 35
  year: 2025
  ident: e_1_2_8_2_1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202415921
– volume: 13
  start-page: 1974
  year: 2024
  ident: e_1_2_8_22_1
  publication-title: J. Adv. Ceram.
  doi: 10.26599/JAC.2024.9220990
– volume: 13
  start-page: 699
  year: 2024
  ident: e_1_2_8_14_1
  publication-title: J. Adv. Ceram.
  doi: 10.26599/JAC.2024.9220890
– volume: 930
  year: 2023
  ident: e_1_2_8_25_1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.167250
– volume: 2
  start-page: 571
  year: 2011
  ident: e_1_2_8_49_1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1583
– volume: 20
  year: 2024
  ident: e_1_2_8_40_1
  publication-title: Small
  doi: 10.1002/smll.202401755
– volume: 16
  start-page: 212
  year: 2024
  ident: e_1_2_8_34_1
  publication-title: Nano‐Micro Lett.
  doi: 10.1007/s40820-024-01437-x
– volume: 500
  year: 2024
  ident: e_1_2_8_26_1
  publication-title: Chem. Eng J.
  doi: 10.1016/j.cej.2024.157373
– volume: 32
  year: 2022
  ident: e_1_2_8_60_1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202206053
– volume: 16
  start-page: 3163
  year: 2025
  ident: e_1_2_8_56_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-025-58448-4
– volume: 13
  start-page: 1394
  year: 2024
  ident: e_1_2_8_5_1
  publication-title: J. Adv. Ceram.
  doi: 10.26599/JAC.2024.9220944
– volume: 17
  start-page: 46
  year: 2025
  ident: e_1_2_8_29_1
  publication-title: Nano‐Micro Lett.
  doi: 10.1007/s40820-024-01518-x
– volume: 495
  year: 2024
  ident: e_1_2_8_59_1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.152904
– volume: 34
  year: 2024
  ident: e_1_2_8_55_1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202316338
– volume: 233
  year: 2025
  ident: e_1_2_8_52_1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2024.119874
– volume: 14
  start-page: 192
  year: 2022
  ident: e_1_2_8_41_1
  publication-title: Nano‐Micro Lett.
  doi: 10.1007/s40820-022-00925-2
– volume: 35
  year: 2025
  ident: e_1_2_8_11_1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202413650
– volume: 69
  start-page: 19
  year: 2023
  ident: e_1_2_8_42_1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2023.08.003
SSID ssj0031247
Score 2.4773798
SecondaryResourceType online_first
Snippet Graphene possesses high carrier mobility and structural tunability, but achieving effective electromagnetic wave (EMW) absorption with single‐component...
Graphene possesses high carrier mobility and structural tunability, but achieving effective electromagnetic wave (EMW) absorption with single-component...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage e05866
Title Synergistic Optimization of Pore and Conductive Network of Short‐Cut Graphene Porous Fibers for Lightweight Broadband Electromagnetic Wave Absorption
URI https://www.ncbi.nlm.nih.gov/pubmed/40801200
https://www.proquest.com/docview/3239119358
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7WClIfxGtdb4wg-LCkZpPMJHmsS7tFsIJtaetLSObSXTDJspsg65_wyf_rOTNJNq0W1JewZJJJyPftmTPnSsgbzxXoz9JOhk7CgEvuZFxnThZpHkgZsszU6f54xA9Pgw_n7Hww-NGLWqqrbFd8_2Neyf-gCucAV8yS_Qdku0nhBPwGfOEICMPxrzA-XmPmnim1PPoE__28Saq0gW2NZ2BSFljTFSOEjmzMt0lUmYHe7UzqajTFktUg8fAOjIc9wBgSU6UBNuywc_9mjKdAgjKVGU64bzvn5OllgRmQozNsYLSXrcrlokO5UXePc_R8gxJ7pubFTM2xH8dImrKMy0s0sqxsX8cprg_FumeWmMArGSn0Zb7eEPjCmmsvaqVVs-Qao3dZG5neXTdNjQX4fbmazft2DY-hodampe4qK4tB03B41DzZylflssh2aflN9NtSsqv8KzqUULG7diFAt8gNEQIXl2XX3SyBXWBiO3SL3PbC0Pr9P3f1yHxQhsK28qfrvbv6sG1yp739qpJzw87FaDAn98m9ZutB9yyPHpCBKh6Su72ClI_Izx6jaJ9RtNQUGUWBAHTDKNowCoc7RtGWUdQyilpGUWAU7TGKdoyi1xhFkVF0w6jH5PRg_2Ry6DSNOxwx5mHlxEJ4sdDMTcdcMaW5dlPpMonKsQiCTPBUBb4rvFDGYax9LWIRMJ1KzkQMOw7_CdkqykI9JRT7O4xToXyu0iCWoJxGURQwxoUKfc7kkLxtv3SysPVZEluJ20sQnqSDZ0het0AkIELRL5YWCr5C4ns-LPkYEDAkOxahbq4W0Wc3jjwn2xv6viBb1bJWL0FRrbJXhjy_AEBmmDQ
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+Optimization+of+Pore+and+Conductive+Network+of+Short-Cut+Graphene+Porous+Fibers+for+Lightweight+Broadband+Electromagnetic+Wave+Absorption&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Cheng%2C+Ziyan&rft.au=Yan%2C+Yuefeng&rft.au=Zhou%2C+En&rft.au=Gao%2C+Boshi&rft.date=2025-08-13&rft.eissn=1613-6829&rft.spage=e05866&rft_id=info:doi/10.1002%2Fsmll.202505866&rft_id=info%3Apmid%2F40801200&rft.externalDocID=40801200
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon