Synergistic Optimization of Pore and Conductive Network of Short‐Cut Graphene Porous Fibers for Lightweight Broadband Electromagnetic Wave Absorption
Graphene possesses high carrier mobility and structural tunability, but achieving effective electromagnetic wave (EMW) absorption with single‐component graphene remains challenging due to the inherent trade‐offs among filler loading, impedance matching, and attenuation intensity. Structural engineer...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) p. e05866 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
13.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1613-6810 1613-6829 1613-6829 |
DOI | 10.1002/smll.202505866 |
Cover
Loading…
Abstract | Graphene possesses high carrier mobility and structural tunability, but achieving effective electromagnetic wave (EMW) absorption with single‐component graphene remains challenging due to the inherent trade‐offs among filler loading, impedance matching, and attenuation intensity. Structural engineering of graphene has been proved to be an effective strategy to address this challenge. In this study, a series of short‐cut graphene porous fibers (SCGPF) is fabricated through wet‐spinning and freeze‐drying, and regulating the pore size of SCGPFs to achieve precision control of electromagnetic parameters. The porous structure facilitates the formation of continuous 3D conductive networks among graphene sheets, effectively extending EMW transmission paths and improving impedance matching. Optimized pores enhance the polarization response at the pore edges, SCGPF‐30 achieves a minimum reflection loss (RL min ) of −62.31 dB at 2 wt%. The formation of a large‐scale 3D network further amplifies conduction loss at a low filler loading, SCGPF‐30‐3 reaches a maximum effective absorption bandwidth (EAB max ) of 7.61 GHz (10.39–18 GHz) at only 1 wt%. These results demonstrate that synergistic optimization of pore size and conductive network in graphene significantly enhances EMW absorption under an ultralow filler loading, offering a promising strategy for developing high‐performance graphene‐based electromagnetic protection materials. |
---|---|
AbstractList | Graphene possesses high carrier mobility and structural tunability, but achieving effective electromagnetic wave (EMW) absorption with single-component graphene remains challenging due to the inherent trade-offs among filler loading, impedance matching, and attenuation intensity. Structural engineering of graphene has been proved to be an effective strategy to address this challenge. In this study, a series of short-cut graphene porous fibers (SCGPF) is fabricated through wet-spinning and freeze-drying, and regulating the pore size of SCGPFs to achieve precision control of electromagnetic parameters. The porous structure facilitates the formation of continuous 3D conductive networks among graphene sheets, effectively extending EMW transmission paths and improving impedance matching. Optimized pores enhance the polarization response at the pore edges, SCGPF-30 achieves a minimum reflection loss (RL
) of -62.31 dB at 2 wt%. The formation of a large-scale 3D network further amplifies conduction loss at a low filler loading, SCGPF-30-3 reaches a maximum effective absorption bandwidth (EAB
) of 7.61 GHz (10.39-18 GHz) at only 1 wt%. These results demonstrate that synergistic optimization of pore size and conductive network in graphene significantly enhances EMW absorption under an ultralow filler loading, offering a promising strategy for developing high-performance graphene-based electromagnetic protection materials. Graphene possesses high carrier mobility and structural tunability, but achieving effective electromagnetic wave (EMW) absorption with single‐component graphene remains challenging due to the inherent trade‐offs among filler loading, impedance matching, and attenuation intensity. Structural engineering of graphene has been proved to be an effective strategy to address this challenge. In this study, a series of short‐cut graphene porous fibers (SCGPF) is fabricated through wet‐spinning and freeze‐drying, and regulating the pore size of SCGPFs to achieve precision control of electromagnetic parameters. The porous structure facilitates the formation of continuous 3D conductive networks among graphene sheets, effectively extending EMW transmission paths and improving impedance matching. Optimized pores enhance the polarization response at the pore edges, SCGPF‐30 achieves a minimum reflection loss (RL min ) of −62.31 dB at 2 wt%. The formation of a large‐scale 3D network further amplifies conduction loss at a low filler loading, SCGPF‐30‐3 reaches a maximum effective absorption bandwidth (EAB max ) of 7.61 GHz (10.39–18 GHz) at only 1 wt%. These results demonstrate that synergistic optimization of pore size and conductive network in graphene significantly enhances EMW absorption under an ultralow filler loading, offering a promising strategy for developing high‐performance graphene‐based electromagnetic protection materials. Graphene possesses high carrier mobility and structural tunability, but achieving effective electromagnetic wave (EMW) absorption with single-component graphene remains challenging due to the inherent trade-offs among filler loading, impedance matching, and attenuation intensity. Structural engineering of graphene has been proved to be an effective strategy to address this challenge. In this study, a series of short-cut graphene porous fibers (SCGPF) is fabricated through wet-spinning and freeze-drying, and regulating the pore size of SCGPFs to achieve precision control of electromagnetic parameters. The porous structure facilitates the formation of continuous 3D conductive networks among graphene sheets, effectively extending EMW transmission paths and improving impedance matching. Optimized pores enhance the polarization response at the pore edges, SCGPF-30 achieves a minimum reflection loss (RLmin) of -62.31 dB at 2 wt%. The formation of a large-scale 3D network further amplifies conduction loss at a low filler loading, SCGPF-30-3 reaches a maximum effective absorption bandwidth (EABmax) of 7.61 GHz (10.39-18 GHz) at only 1 wt%. These results demonstrate that synergistic optimization of pore size and conductive network in graphene significantly enhances EMW absorption under an ultralow filler loading, offering a promising strategy for developing high-performance graphene-based electromagnetic protection materials.Graphene possesses high carrier mobility and structural tunability, but achieving effective electromagnetic wave (EMW) absorption with single-component graphene remains challenging due to the inherent trade-offs among filler loading, impedance matching, and attenuation intensity. Structural engineering of graphene has been proved to be an effective strategy to address this challenge. In this study, a series of short-cut graphene porous fibers (SCGPF) is fabricated through wet-spinning and freeze-drying, and regulating the pore size of SCGPFs to achieve precision control of electromagnetic parameters. The porous structure facilitates the formation of continuous 3D conductive networks among graphene sheets, effectively extending EMW transmission paths and improving impedance matching. Optimized pores enhance the polarization response at the pore edges, SCGPF-30 achieves a minimum reflection loss (RLmin) of -62.31 dB at 2 wt%. The formation of a large-scale 3D network further amplifies conduction loss at a low filler loading, SCGPF-30-3 reaches a maximum effective absorption bandwidth (EABmax) of 7.61 GHz (10.39-18 GHz) at only 1 wt%. These results demonstrate that synergistic optimization of pore size and conductive network in graphene significantly enhances EMW absorption under an ultralow filler loading, offering a promising strategy for developing high-performance graphene-based electromagnetic protection materials. |
Author | Zhou, En Huang, Xiaoxiao Yan, Yuefeng Ma, Guansheng Chen, Tao Qin, Guangyu Gao, Boshi Zhang, Kaili Cheng, Ziyan |
Author_xml | – sequence: 1 givenname: Ziyan surname: Cheng fullname: Cheng, Ziyan organization: State Key Laboratory of Precision Welding & Joining of Materials and Structures Harbin Institute of Technology School of Materials Science and Engineering Harbin Institute of Technology MIIT Key Laboratory of Advanced Structural‐Functional Integration Materials & Green Manufacturing Technology Harbin 150001 China – sequence: 2 givenname: Yuefeng orcidid: 0009-0008-1750-8819 surname: Yan fullname: Yan, Yuefeng organization: State Key Laboratory of Precision Welding & Joining of Materials and Structures Harbin Institute of Technology School of Materials Science and Engineering Harbin Institute of Technology MIIT Key Laboratory of Advanced Structural‐Functional Integration Materials & Green Manufacturing Technology Harbin 150001 China – sequence: 3 givenname: En surname: Zhou fullname: Zhou, En organization: State Key Laboratory of Precision Welding & Joining of Materials and Structures Harbin Institute of Technology School of Materials Science and Engineering Harbin Institute of Technology MIIT Key Laboratory of Advanced Structural‐Functional Integration Materials & Green Manufacturing Technology Harbin 150001 China – sequence: 4 givenname: Boshi surname: Gao fullname: Gao, Boshi organization: State Key Laboratory of Precision Welding & Joining of Materials and Structures Harbin Institute of Technology School of Materials Science and Engineering Harbin Institute of Technology MIIT Key Laboratory of Advanced Structural‐Functional Integration Materials & Green Manufacturing Technology Harbin 150001 China – sequence: 5 givenname: Guangyu surname: Qin fullname: Qin, Guangyu organization: State Key Laboratory of Precision Welding & Joining of Materials and Structures Harbin Institute of Technology School of Materials Science and Engineering Harbin Institute of Technology MIIT Key Laboratory of Advanced Structural‐Functional Integration Materials & Green Manufacturing Technology Harbin 150001 China – sequence: 6 givenname: Kaili surname: Zhang fullname: Zhang, Kaili organization: State Key Laboratory of Precision Welding & Joining of Materials and Structures Harbin Institute of Technology School of Materials Science and Engineering Harbin Institute of Technology MIIT Key Laboratory of Advanced Structural‐Functional Integration Materials & Green Manufacturing Technology Harbin 150001 China – sequence: 7 givenname: Tao surname: Chen fullname: Chen, Tao organization: State Key Laboratory of Precision Welding & Joining of Materials and Structures Harbin Institute of Technology School of Materials Science and Engineering Harbin Institute of Technology MIIT Key Laboratory of Advanced Structural‐Functional Integration Materials & Green Manufacturing Technology Harbin 150001 China – sequence: 8 givenname: Guansheng surname: Ma fullname: Ma, Guansheng organization: State Key Laboratory of Precision Welding & Joining of Materials and Structures Harbin Institute of Technology School of Materials Science and Engineering Harbin Institute of Technology MIIT Key Laboratory of Advanced Structural‐Functional Integration Materials & Green Manufacturing Technology Harbin 150001 China – sequence: 9 givenname: Xiaoxiao orcidid: 0000-0002-2008-8949 surname: Huang fullname: Huang, Xiaoxiao organization: State Key Laboratory of Precision Welding & Joining of Materials and Structures Harbin Institute of Technology School of Materials Science and Engineering Harbin Institute of Technology MIIT Key Laboratory of Advanced Structural‐Functional Integration Materials & Green Manufacturing Technology Harbin 150001 China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40801200$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kc9u2zAMxoWhw_pnu-5Y6LhLUkqyFevYBWlXIFgHdMOOhixTiTpb8iR5RXfaI_TW99uTNEbbXEgC_PEjyO-YHPjgkZCPDOYMgJ-lvuvmHHgJZSXlG3LEJBMzWXF1sK8ZHJLjlG4BBOPF4h05LKACxgGOyOPNvce4cSk7Q6-H7Hr3V2cXPA2WfgsRqfYtXQbfjia7P0i_Yr4L8dfUvtmGmP__e1iOmV5GPWzR4zQTxkQvXIMxURsiXbvNNt_hFOnnGHTbTJKrDk2Oodcbj9Pun3onft6kEIdp_Xvy1uou4YeXfEJ-XKy-L7_M1teXV8vz9cwwucgzZQxXxpagmcQSrbSgWyhbUSlhiqIxUmMhwPBFqxbKCmuUKUqrW1kapbgQJ-TTs-4Qw-8RU657lwx2nfa4u6MWXCjGlCirHXr6go5Nj209RNfreF-_PnMHzJ8BE0NKEe0eYVBPbtWTW_XeLfEEq7uMAA |
Cites_doi | 10.1016/j.jcis.2023.07.072 10.1021/acs.nanolett.4c05494 10.1016/j.carbon.2024.119604 10.1016/j.ceramint.2024.10.007 10.1016/j.carbon.2012.07.023 10.1016/j.carbon.2021.03.057 10.1016/j.apsusc.2023.157029 10.1021/acsami.3c02794 10.1016/j.cej.2024.159118 10.1002/adma.202401733 10.7498/aps.65.174201 10.1007/s12274-024-6468-x 10.1002/adma.202206101 10.1016/j.ceramint.2023.12.299 10.1016/j.compositesb.2025.112397 10.1007/s40145-021-0520-z 10.1007/s00339-024-08062-w 10.1038/s41467-022-28906-4 10.1016/j.ceramint.2021.04.235 10.1007/s12274-023-6198-5 10.1002/smll.202410799 10.26599/JAC.2023.9220686 10.1016/j.carbon.2023.118254 10.1002/adfm.201807398 10.26599/JAC.2024.9220930 10.26599/JAC.2025.9221039 10.1016/j.ceramint.2015.01.008 10.1038/s41467-024-54770-5 10.1016/j.carbon.2024.119795 10.1016/j.compositesa.2023.107808 10.1007/s40820-023-01280-6 10.1002/adma.202205376 10.1038/s41467-024-47537-5 10.1007/s40820-024-01396-3 10.1016/j.cej.2025.161031 10.1021/acsami.0c22049 10.26599/JAC.2024.9220998 10.1007/s40820-022-00906-5 10.1002/adfm.202415921 10.26599/JAC.2024.9220990 10.26599/JAC.2024.9220890 10.1016/j.jallcom.2022.167250 10.1038/ncomms1583 10.1002/smll.202401755 10.1007/s40820-024-01437-x 10.1016/j.cej.2024.157373 10.1002/adfm.202206053 10.1038/s41467-025-58448-4 10.26599/JAC.2024.9220944 10.1007/s40820-024-01518-x 10.1016/j.cej.2024.152904 10.1002/adfm.202316338 10.1016/j.carbon.2024.119874 10.1007/s40820-022-00925-2 10.1002/adfm.202413650 10.1016/j.mattod.2023.08.003 |
ContentType | Journal Article |
Copyright | 2025 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2025 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1002/smll.202505866 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
ExternalDocumentID | 40801200 10_1002_smll_202505866 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: NSFC 52432002 – fundername: National Natural Science Foundation of China grantid: 52302087 – fundername: Heilongjiang Touyan Team Program – fundername: National Natural Science Foundation of China grantid: 52372041 – fundername: Fundamental Research Funds for the Central Universities grantid: HIT.DZJJ.2025002 – fundername: Fundamental Research Funds for the Central Universities grantid: HIT.OCEF.2021003 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHQN AAIHA AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CITATION CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- NPM 7X8 |
ID | FETCH-LOGICAL-c167t-9cc29cf50a16e5ef6f0ad05d3893c44bc6ae430c27d979f3fc9c45fad65c99233 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Wed Aug 13 23:56:51 EDT 2025 Thu Aug 14 01:42:56 EDT 2025 Thu Aug 21 00:31:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | graphene porous fiber impedance matching electromagnetic wave absorption pore structure optimization 3D conductive network |
Language | English |
License | 2025 Wiley‐VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c167t-9cc29cf50a16e5ef6f0ad05d3893c44bc6ae430c27d979f3fc9c45fad65c99233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0008-1750-8819 0000-0002-2008-8949 |
PMID | 40801200 |
PQID | 3239119358 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3239119358 pubmed_primary_40801200 crossref_primary_10_1002_smll_202505866 |
PublicationCentury | 2000 |
PublicationDate | 2025-Aug-13 |
PublicationDateYYYYMMDD | 2025-08-13 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-Aug-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2025 |
References | Liu Y. (e_1_2_8_7_1) 2023; 12 Ma G. (e_1_2_8_26_1) 2024; 500 Liu Z. L. (e_1_2_8_52_1) 2025; 233 Qian W. (e_1_2_8_23_1) 2022; 34 Qian J. (e_1_2_8_5_1) 2024; 13 Wang X. (e_1_2_8_11_1) 2025; 35 Wang X. (e_1_2_8_15_1) 2024; 36 Zhao Z. (e_1_2_8_44_1) 2022; 34 Liu Y. (e_1_2_8_8_1) 2023; 15 Wang C. (e_1_2_8_6_1) 2024; 13 Tao J. (e_1_2_8_56_1) 2025; 16 Khanahmadi S. (e_1_2_8_18_1) 2024; 50 Cao M.‐S. (e_1_2_8_4_1) 2019; 29 Shan B. (e_1_2_8_34_1) 2024; 16 Yuan M. (e_1_2_8_60_1) 2022; 32 Zhao Y.‐L. (e_1_2_8_19_1) 2024; 45 Shu R. (e_1_2_8_39_1) 2024; 190 Qin G. (e_1_2_8_50_1) 2023; 175 Yan Y. (e_1_2_8_55_1) 2024; 34 Gao Y. (e_1_2_8_42_1) 2023; 69 Wu Y. (e_1_2_8_37_1) 2022; 14 Thakur S. (e_1_2_8_47_1) 2012; 50 Ma G. (e_1_2_8_59_1) 2024; 495 Wang Z. (e_1_2_8_14_1) 2024; 13 Yu L. (e_1_2_8_12_1) 2024; 17 Jiao Z. (e_1_2_8_17_1) 2023; 650 Ma G. (e_1_2_8_21_1) 2025; 232 Zhang K. (e_1_2_8_28_1) 2024; 16 Zhang Y. (e_1_2_8_31_1) 2025; 505 Cao M. (e_1_2_8_41_1) 2022; 14 Zhang K. (e_1_2_8_22_1) 2024; 13 Xu Z. (e_1_2_8_49_1) 2011; 2 Zhang M. (e_1_2_8_30_1) 2020; 53 Aixart J. (e_1_2_8_45_1) 2021; 47 Yu M. (e_1_2_8_32_1) 2024; 50 Niu H. (e_1_2_8_58_1) 2024; 17 Liu X. (e_1_2_8_1_1) 2024; 16 Wang C. (e_1_2_8_33_1) 2011; 98 Yang X. (e_1_2_8_3_1) 2024; 25 Cai B. (e_1_2_8_43_1) 2024; 15 Yu C. (e_1_2_8_40_1) 2024; 20 Qin L. (e_1_2_8_48_1) 2016; 65 Du B. (e_1_2_8_13_1) 2025; 14 Li T. (e_1_2_8_24_1) 2021; 13 Sun J. (e_1_2_8_27_1) 2023; 623 Yan Y. (e_1_2_8_51_1) 2025; 14 Tao J. (e_1_2_8_57_1) 2024; 15 Yunasfi D. S. (e_1_2_8_10_1) 2024; 130 Li T.‐t. (e_1_2_8_25_1) 2023; 930 Qin G. (e_1_2_8_20_1) 2025; 298 Tan S. (e_1_2_8_2_1) 2025; 35 Low F. W. (e_1_2_8_46_1) 2015; 41 Hou Y. (e_1_2_8_16_1) 2022; 13 Chen Q. (e_1_2_8_38_1) 2021; 179 Zhang K. (e_1_2_8_29_1) 2025; 17 Yan Y. (e_1_2_8_53_1) 2025; 21 Qin G. (e_1_2_8_54_1) 2022; 11 Gao B. (e_1_2_8_9_1) 2025; 508 Wei M. (e_1_2_8_36_1) 2023; 213 Sun X. (e_1_2_8_35_1) 2024; 230 |
References_xml | – volume: 98 year: 2011 ident: e_1_2_8_33_1 publication-title: Appl. Phys. Lett. – volume: 650 start-page: 2014 year: 2023 ident: e_1_2_8_17_1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2023.07.072 – volume: 25 start-page: 569 year: 2024 ident: e_1_2_8_3_1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.4c05494 – volume: 230 year: 2024 ident: e_1_2_8_35_1 publication-title: Carbon doi: 10.1016/j.carbon.2024.119604 – volume: 50 year: 2024 ident: e_1_2_8_32_1 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2024.10.007 – volume: 50 start-page: 5331 year: 2012 ident: e_1_2_8_47_1 publication-title: Carbon doi: 10.1016/j.carbon.2012.07.023 – volume: 179 start-page: 180 year: 2021 ident: e_1_2_8_38_1 publication-title: Carbon doi: 10.1016/j.carbon.2021.03.057 – volume: 623 year: 2023 ident: e_1_2_8_27_1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2023.157029 – volume: 15 year: 2023 ident: e_1_2_8_8_1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c02794 – volume: 505 year: 2025 ident: e_1_2_8_31_1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.159118 – volume: 36 year: 2024 ident: e_1_2_8_15_1 publication-title: Adv Mater. doi: 10.1002/adma.202401733 – volume: 65 year: 2016 ident: e_1_2_8_48_1 publication-title: Acta Phys. Sin. doi: 10.7498/aps.65.174201 – volume: 17 start-page: 2079 year: 2024 ident: e_1_2_8_12_1 publication-title: Nano Res. doi: 10.1007/s12274-024-6468-x – volume: 34 year: 2022 ident: e_1_2_8_23_1 publication-title: Adv. Mater. doi: 10.1002/adma.202206101 – volume: 50 start-page: 9779 year: 2024 ident: e_1_2_8_18_1 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2023.12.299 – volume: 45 start-page: 259 year: 2024 ident: e_1_2_8_19_1 publication-title: Adv Ceram. – volume: 298 year: 2025 ident: e_1_2_8_20_1 publication-title: Composites, Part B doi: 10.1016/j.compositesb.2025.112397 – volume: 11 start-page: 105 year: 2022 ident: e_1_2_8_54_1 publication-title: J. Adv. Ceram. doi: 10.1007/s40145-021-0520-z – volume: 130 start-page: 12 year: 2024 ident: e_1_2_8_10_1 publication-title: Appl. Phys. A doi: 10.1007/s00339-024-08062-w – volume: 190 start-page: 106 year: 2024 ident: e_1_2_8_39_1 publication-title: J. Mater. Sci. – volume: 13 start-page: 1227 year: 2022 ident: e_1_2_8_16_1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28906-4 – volume: 47 year: 2021 ident: e_1_2_8_45_1 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2021.04.235 – volume: 17 start-page: 1676 year: 2024 ident: e_1_2_8_58_1 publication-title: Nano Res. doi: 10.1007/s12274-023-6198-5 – volume: 21 year: 2025 ident: e_1_2_8_53_1 publication-title: Small doi: 10.1002/smll.202410799 – volume: 12 start-page: 329 year: 2023 ident: e_1_2_8_7_1 publication-title: J. Adv. Ceram. doi: 10.26599/JAC.2023.9220686 – volume: 213 year: 2023 ident: e_1_2_8_36_1 publication-title: Carbon doi: 10.1016/j.carbon.2023.118254 – volume: 29 year: 2019 ident: e_1_2_8_4_1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201807398 – volume: 13 start-page: 1212 year: 2024 ident: e_1_2_8_6_1 publication-title: J. Adv. Ceram. doi: 10.26599/JAC.2024.9220930 – volume: 14 year: 2025 ident: e_1_2_8_51_1 publication-title: J. Adv. Ceram. doi: 10.26599/JAC.2025.9221039 – volume: 41 start-page: 5798 year: 2015 ident: e_1_2_8_46_1 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.01.008 – volume: 15 year: 2024 ident: e_1_2_8_57_1 publication-title: Nat. Commun. doi: 10.1038/s41467-024-54770-5 – volume: 53 start-page: 1361 year: 2020 ident: e_1_2_8_30_1 publication-title: J. Phys. D: Appl. Phys. – volume: 232 year: 2025 ident: e_1_2_8_21_1 publication-title: Carbon doi: 10.1016/j.carbon.2024.119795 – volume: 175 year: 2023 ident: e_1_2_8_50_1 publication-title: Composites, Part A doi: 10.1016/j.compositesa.2023.107808 – volume: 16 start-page: 66 year: 2024 ident: e_1_2_8_28_1 publication-title: Nano‐Micro Lett. doi: 10.1007/s40820-023-01280-6 – volume: 34 year: 2022 ident: e_1_2_8_44_1 publication-title: Adv Mater. doi: 10.1002/adma.202205376 – volume: 15 start-page: 3299 year: 2024 ident: e_1_2_8_43_1 publication-title: Nat. Commun. doi: 10.1038/s41467-024-47537-5 – volume: 16 start-page: 174 year: 2024 ident: e_1_2_8_1_1 publication-title: Nano‐Micro Lett. doi: 10.1007/s40820-024-01396-3 – volume: 508 year: 2025 ident: e_1_2_8_9_1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2025.161031 – volume: 13 year: 2021 ident: e_1_2_8_24_1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c22049 – volume: 14 year: 2025 ident: e_1_2_8_13_1 publication-title: J. Adv. Ceram. doi: 10.26599/JAC.2024.9220998 – volume: 14 start-page: 171 year: 2022 ident: e_1_2_8_37_1 publication-title: Nano‐Micro Lett. doi: 10.1007/s40820-022-00906-5 – volume: 35 year: 2025 ident: e_1_2_8_2_1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202415921 – volume: 13 start-page: 1974 year: 2024 ident: e_1_2_8_22_1 publication-title: J. Adv. Ceram. doi: 10.26599/JAC.2024.9220990 – volume: 13 start-page: 699 year: 2024 ident: e_1_2_8_14_1 publication-title: J. Adv. Ceram. doi: 10.26599/JAC.2024.9220890 – volume: 930 year: 2023 ident: e_1_2_8_25_1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.167250 – volume: 2 start-page: 571 year: 2011 ident: e_1_2_8_49_1 publication-title: Nat. Commun. doi: 10.1038/ncomms1583 – volume: 20 year: 2024 ident: e_1_2_8_40_1 publication-title: Small doi: 10.1002/smll.202401755 – volume: 16 start-page: 212 year: 2024 ident: e_1_2_8_34_1 publication-title: Nano‐Micro Lett. doi: 10.1007/s40820-024-01437-x – volume: 500 year: 2024 ident: e_1_2_8_26_1 publication-title: Chem. Eng J. doi: 10.1016/j.cej.2024.157373 – volume: 32 year: 2022 ident: e_1_2_8_60_1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202206053 – volume: 16 start-page: 3163 year: 2025 ident: e_1_2_8_56_1 publication-title: Nat. Commun. doi: 10.1038/s41467-025-58448-4 – volume: 13 start-page: 1394 year: 2024 ident: e_1_2_8_5_1 publication-title: J. Adv. Ceram. doi: 10.26599/JAC.2024.9220944 – volume: 17 start-page: 46 year: 2025 ident: e_1_2_8_29_1 publication-title: Nano‐Micro Lett. doi: 10.1007/s40820-024-01518-x – volume: 495 year: 2024 ident: e_1_2_8_59_1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.152904 – volume: 34 year: 2024 ident: e_1_2_8_55_1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202316338 – volume: 233 year: 2025 ident: e_1_2_8_52_1 publication-title: Carbon doi: 10.1016/j.carbon.2024.119874 – volume: 14 start-page: 192 year: 2022 ident: e_1_2_8_41_1 publication-title: Nano‐Micro Lett. doi: 10.1007/s40820-022-00925-2 – volume: 35 year: 2025 ident: e_1_2_8_11_1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202413650 – volume: 69 start-page: 19 year: 2023 ident: e_1_2_8_42_1 publication-title: Mater. Today doi: 10.1016/j.mattod.2023.08.003 |
SSID | ssj0031247 |
Score | 2.4773798 |
SecondaryResourceType | online_first |
Snippet | Graphene possesses high carrier mobility and structural tunability, but achieving effective electromagnetic wave (EMW) absorption with single‐component... Graphene possesses high carrier mobility and structural tunability, but achieving effective electromagnetic wave (EMW) absorption with single-component... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
StartPage | e05866 |
Title | Synergistic Optimization of Pore and Conductive Network of Short‐Cut Graphene Porous Fibers for Lightweight Broadband Electromagnetic Wave Absorption |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40801200 https://www.proquest.com/docview/3239119358 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7WClIfxGtdb4wg-LCkZpPMJHmsS7tFsIJtaetLSObSXTDJspsg65_wyf_rOTNJNq0W1JewZJJJyPftmTPnSsgbzxXoz9JOhk7CgEvuZFxnThZpHkgZsszU6f54xA9Pgw_n7Hww-NGLWqqrbFd8_2Neyf-gCucAV8yS_Qdku0nhBPwGfOEICMPxrzA-XmPmnim1PPoE__28Saq0gW2NZ2BSFljTFSOEjmzMt0lUmYHe7UzqajTFktUg8fAOjIc9wBgSU6UBNuywc_9mjKdAgjKVGU64bzvn5OllgRmQozNsYLSXrcrlokO5UXePc_R8gxJ7pubFTM2xH8dImrKMy0s0sqxsX8cprg_FumeWmMArGSn0Zb7eEPjCmmsvaqVVs-Qao3dZG5neXTdNjQX4fbmazft2DY-hodampe4qK4tB03B41DzZylflssh2aflN9NtSsqv8KzqUULG7diFAt8gNEQIXl2XX3SyBXWBiO3SL3PbC0Pr9P3f1yHxQhsK28qfrvbv6sG1yp739qpJzw87FaDAn98m9ZutB9yyPHpCBKh6Su72ClI_Izx6jaJ9RtNQUGUWBAHTDKNowCoc7RtGWUdQyilpGUWAU7TGKdoyi1xhFkVF0w6jH5PRg_2Ry6DSNOxwx5mHlxEJ4sdDMTcdcMaW5dlPpMonKsQiCTPBUBb4rvFDGYax9LWIRMJ1KzkQMOw7_CdkqykI9JRT7O4xToXyu0iCWoJxGURQwxoUKfc7kkLxtv3SysPVZEluJ20sQnqSDZ0het0AkIELRL5YWCr5C4ns-LPkYEDAkOxahbq4W0Wc3jjwn2xv6viBb1bJWL0FRrbJXhjy_AEBmmDQ |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+Optimization+of+Pore+and+Conductive+Network+of+Short-Cut+Graphene+Porous+Fibers+for+Lightweight+Broadband+Electromagnetic+Wave+Absorption&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Cheng%2C+Ziyan&rft.au=Yan%2C+Yuefeng&rft.au=Zhou%2C+En&rft.au=Gao%2C+Boshi&rft.date=2025-08-13&rft.eissn=1613-6829&rft.spage=e05866&rft_id=info:doi/10.1002%2Fsmll.202505866&rft_id=info%3Apmid%2F40801200&rft.externalDocID=40801200 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |