Negative binomial mixed effects location-scale models for intensive longitudinal count-type physical activity data provided by wearable devices

In recent years, the use of wearable devices, for example, accelerometers, have become increasingly prevalent. Wearable devices enable more accurate real-time tracking of a subject’s physical activity (PA) level, such as steps, number of activity bouts, or time in moderate-to-vigorous intensity PA (...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 81; no. 3
Main Authors Ma, Qianheng, Dunton, Genevieve F, Hedeker, Donald
Format Journal Article
LanguageEnglish
Published England 03.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, the use of wearable devices, for example, accelerometers, have become increasingly prevalent. Wearable devices enable more accurate real-time tracking of a subject’s physical activity (PA) level, such as steps, number of activity bouts, or time in moderate-to-vigorous intensity PA (MVPA), which are important general health markers and can often be represented as counts. These intensive within-subject count data provided by wearable devices, for example, minutes in MVPA summarized per hour across days and even months, allow the possibility for modeling not only the mean PA level, but also the dispersion level for each subject. Especially in the context of daily PA, subjects’ dispersion levels are potentially informative in reflecting their exercise patterns: some subjects might exhibit consistent PA across time and can be considered “less dispersed” subjects; while others might have a large amount of PA at a particular time point, while being sedentary for most of the day, and can be considered “more dispersed” subjects. Thus, we propose a negative binomial mixed effects location-scale model to model these intensive longitudinal PA counts and to account for the heterogeneity in both the mean and dispersion level across subjects. Further, to handle the issue of inflated numbers of zeros in the PA data, we also propose a hurdle/zero-inflated version which additionally includes the modeling of the probability of having $>$0 PA levels.
AbstractList In recent years, the use of wearable devices, for example, accelerometers, have become increasingly prevalent. Wearable devices enable more accurate real-time tracking of a subject’s physical activity (PA) level, such as steps, number of activity bouts, or time in moderate-to-vigorous intensity PA (MVPA), which are important general health markers and can often be represented as counts. These intensive within-subject count data provided by wearable devices, for example, minutes in MVPA summarized per hour across days and even months, allow the possibility for modeling not only the mean PA level, but also the dispersion level for each subject. Especially in the context of daily PA, subjects’ dispersion levels are potentially informative in reflecting their exercise patterns: some subjects might exhibit consistent PA across time and can be considered “less dispersed” subjects; while others might have a large amount of PA at a particular time point, while being sedentary for most of the day, and can be considered “more dispersed” subjects. Thus, we propose a negative binomial mixed effects location-scale model to model these intensive longitudinal PA counts and to account for the heterogeneity in both the mean and dispersion level across subjects. Further, to handle the issue of inflated numbers of zeros in the PA data, we also propose a hurdle/zero-inflated version which additionally includes the modeling of the probability of having $>$0 PA levels.
In recent years, the use of wearable devices, for example, accelerometers, have become increasingly prevalent. Wearable devices enable more accurate real-time tracking of a subject's physical activity (PA) level, such as steps, number of activity bouts, or time in moderate-to-vigorous intensity PA (MVPA), which are important general health markers and can often be represented as counts. These intensive within-subject count data provided by wearable devices, for example, minutes in MVPA summarized per hour across days and even months, allow the possibility for modeling not only the mean PA level, but also the dispersion level for each subject. Especially in the context of daily PA, subjects' dispersion levels are potentially informative in reflecting their exercise patterns: some subjects might exhibit consistent PA across time and can be considered "less dispersed" subjects; while others might have a large amount of PA at a particular time point, while being sedentary for most of the day, and can be considered "more dispersed" subjects. Thus, we propose a negative binomial mixed effects location-scale model to model these intensive longitudinal PA counts and to account for the heterogeneity in both the mean and dispersion level across subjects. Further, to handle the issue of inflated numbers of zeros in the PA data, we also propose a hurdle/zero-inflated version which additionally includes the modeling of the probability of having $>$0 PA levels.In recent years, the use of wearable devices, for example, accelerometers, have become increasingly prevalent. Wearable devices enable more accurate real-time tracking of a subject's physical activity (PA) level, such as steps, number of activity bouts, or time in moderate-to-vigorous intensity PA (MVPA), which are important general health markers and can often be represented as counts. These intensive within-subject count data provided by wearable devices, for example, minutes in MVPA summarized per hour across days and even months, allow the possibility for modeling not only the mean PA level, but also the dispersion level for each subject. Especially in the context of daily PA, subjects' dispersion levels are potentially informative in reflecting their exercise patterns: some subjects might exhibit consistent PA across time and can be considered "less dispersed" subjects; while others might have a large amount of PA at a particular time point, while being sedentary for most of the day, and can be considered "more dispersed" subjects. Thus, we propose a negative binomial mixed effects location-scale model to model these intensive longitudinal PA counts and to account for the heterogeneity in both the mean and dispersion level across subjects. Further, to handle the issue of inflated numbers of zeros in the PA data, we also propose a hurdle/zero-inflated version which additionally includes the modeling of the probability of having $>$0 PA levels.
Author Ma, Qianheng
Dunton, Genevieve F
Hedeker, Donald
Author_xml – sequence: 1
  givenname: Qianheng
  orcidid: 0000-0002-5845-5644
  surname: Ma
  fullname: Ma, Qianheng
– sequence: 2
  givenname: Genevieve F
  surname: Dunton
  fullname: Dunton, Genevieve F
– sequence: 3
  givenname: Donald
  surname: Hedeker
  fullname: Hedeker, Donald
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40742447$$D View this record in MEDLINE/PubMed
BookMark eNo9kU9P3DAQxa2Kqiy0V47IRy6BceL88bFC0CIhemml3iJnPKZGib2NnYV8in7lGu3CaTSa33szmnfCjnzwxNiZgEsBqroaXJgSXi1P2oJSH9hG1FIUIEs4YhsAaIpKit_H7CTGp9yqGspP7FhCK0sp2w3790CPOrkd8cH5MDk98sm9kOFkLWGKfAyY58EXEfVIfAqGxshtmLnziXx8lY7BP7q0GOezHMPiU5HWLfHtnzW6LOMa8wqXVm500nw7h50zecew8mfSsx6ysaGdQ4qf2Uerx0hfDvWU_bq9-Xn9vbj_8e3u-ut9gaJpU1GrjrDBEoE6rFoYNJqSlCVLQsmmJVERKtuZDCiFSlFZQ6OwU2DbLk9P2cXeNx_zd6GY-slFpHHUnsIS-6qsaqigk2VGzw_oMkxk-u3sJj2v_dsTM3C5B3AOMc5k3xEB_WtK_T6l_pBS9R8qfovQ
Cites_doi 10.1016/j.cct.2015.05.007
10.1249/01.mss.0000185658.28284.ba
10.1249/MSS.0b013e3181e1fba9
10.1111/dme.14393
10.1002/sim.7534
10.1038/s41598-018-26174-1
10.7326/M17-1495
10.1016/j.healthplace.2021.102662
10.1017/CBO9780511973420
10.1001/jama.2014.17841
10.18637/jss.v070.i05
10.1002/sim.8748
10.3390/s21248220
10.1002/sim.9679
10.2196/mhealth.8233
10.4310/SII.2009.v2.n4.a1
10.1111/j.1541-0420.2007.00924.x
10.1080/02640414.2020.1824341
10.1016/j.canep.2023.102491
10.1097/00005768-199805000-00021
10.1111/bjhp.12500
10.3758/s13428-019-01322-1
10.2196/mhealth.6562
10.1007/s10742-020-00220-w
10.1016/j.psychsport.2018.01.011
10.2196/37743
10.1007/s40279-017-0716-0
10.1191/1471082X05st084oa
10.15436/2378-6841.16.1123
10.1016/j.ypmed.2010.09.012
10.1186/s12859-016-1441-7
10.1249/mss.0b013e31815a51b3
10.1038/s41598-020-73883-7
10.1186/s12966-020-00951-6
10.2307/2533552
10.1002/sim.7627
10.1002/sim.9903
10.1186/1742-5573-3-3
10.1080/21642850.2021.1920416
10.1155/2022/4653923
10.1037/hea0000292
10.1001/jama.298.19.2296
10.1093/ajcn/nqaa232
10.1249/MSS.0000000000000968
10.1177/1536867X0200200101
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press on behalf of The International Biometric Society. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site-for further information please contact journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press on behalf of The International Biometric Society. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site-for further information please contact journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/biomtc/ujaf099
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
ExternalDocumentID 40742447
10_1093_biomtc_ujaf099
Genre Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01MH123443
– fundername: NCI NIH HHS
  grantid: R01CA240713
GroupedDBID ---
-~X
.3N
.DC
.GA
05W
0R~
10A
1OC
23N
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AANLZ
AAONW
AAUAY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABGNP
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABXVV
ABYWD
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACPOU
ACPRK
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNBA
ADOZA
ADVOB
ADXAS
ADZMN
AEGXH
AEIGN
AEIMD
AENEX
AEOTA
AEUYR
AFBPY
AFEBI
AFGKR
AFVYC
AFWVQ
AFZJQ
AGORE
AGTJU
AHGBF
AHMBA
AIAGR
AIURR
AJBYB
AJNCP
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BCRHZ
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DXH
EAP
EBS
ESX
F00
F01
F04
F5P
FD6
G-S
G.N
GODZA
GS5
H.T
H.X
H13
HZI
HZ~
IX1
J0M
JAC
K48
KOP
LATKE
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OJZSN
OWPYF
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROX
RX1
RXW
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
X6Y
XBAML
XG1
XSW
ZZTAW
~02
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c167t-598ec6c2c0e8c370bacd2e9fefe19467e13ec9f8dc0e99c99e25069c890f78e13
ISSN 0006-341X
1541-0420
IngestDate Thu Jul 31 18:31:30 EDT 2025
Mon Aug 04 01:30:57 EDT 2025
Thu Aug 07 06:20:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords actigraphy
intensive longitudinal data
dispersion modeling
mobile health
zero-inflation
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2025. Published by Oxford University Press on behalf of The International Biometric Society. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site-for further information please contact journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c167t-598ec6c2c0e8c370bacd2e9fefe19467e13ec9f8dc0e99c99e25069c890f78e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5845-5644
PMID 40742447
PQID 3235030842
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3235030842
pubmed_primary_40742447
crossref_primary_10_1093_biomtc_ujaf099
PublicationCentury 2000
PublicationDate 2025-Jul-03
PublicationDateYYYYMMDD 2025-07-03
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-Jul-03
  day: 03
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2025
References De La Torre (2025073110114548000_bib10) 2024; 88
Freedson (2025073110114548000_bib14) 1998; 30
Maher (2025073110114548000_bib27) 2019; 41
Aadland (2025073110114548000_bib1) 2018; 37
Lin (2025073110114548000_bib24) 2018; 37
Clark (2025073110114548000_bib8) 2021; 21
Hilbe (2025073110114548000_bib21) 2011
Migueles (2025073110114548000_bib29) 2017; 47
Yang (2025073110114548000_bib43) 2020; 17
Kristensen (2025073110114548000_bib22) 2016; 70
Dzubur (2025073110114548000_bib12) 2018; 52
Gorny (2025073110114548000_bib17) 2017; 5
Mickute (2025073110114548000_bib28) 2021; 38
Zink (2025073110114548000_bib46) 2022; 6
Yirga (2025073110114548000_bib44) 2020; 10
Baldwin (2025073110114548000_bib3) 2016; 35
Belcher (2025073110114548000_bib4) 2010; 42
Willetts (2025073110114548000_bib40) 2018; 8
Case (2025073110114548000_bib6) 2015; 313
Min (2025073110114548000_bib30) 2005; 5
Hedeker (2025073110114548000_bib19) 2009; 2
Sabry (2025073110114548000_bib34) 2016; 4
Aadland (2025073110114548000_bib2) 2021; 39
Goldsmith (2025073110114548000_bib16) 2016; 48
Siddique (2025073110114548000_bib36) 2023; 42
Gill (2025073110114548000_bib15) 2022; 42
Hedeker (2025073110114548000_bib20) 2008; 64
Williams (2025073110114548000_bib41) 2019; 51
Coughlin (2025073110114548000_bib9) 2016; 2
Freedson (2025073110114548000_bib13) 2005; 37
Lin (2025073110114548000_bib25) 1997; 53
Sabry (2025073110114548000_bib35) 2022; 2022
Green (2025073110114548000_bib18) 2021; 9
Rabe-Hesketh (2025073110114548000_bib33) 2002; 2
Troiano (2025073110114548000_bib38) 2008; 40
Slymen (2025073110114548000_bib37) 2006; 3
Ma (2025073110114548000_bib26) 2020; 139
Lee (2025073110114548000_bib23) 2010; 51
Xue (2025073110114548000_bib42) 2020; 39
Dunton (2025073110114548000_bib11) 2015; 43
Bravata (2025073110114548000_bib5) 2007; 298
Veitch (2025073110114548000_bib39) 2021; 71
Chen (2025073110114548000_bib7) 2020; 112
Naughton (2025073110114548000_bib31) 2021; 26
Patel (2025073110114548000_bib32) 2017; 167
Zhang (2025073110114548000_bib45) 2017; 8
References_xml – volume: 43
  start-page: 142
  year: 2015
  ident: 2025073110114548000_bib11
  article-title: Investigating within-day and longitudinal effects of maternal stress on children’s physical activity, dietary intake, and body composition: Protocol for the MATCH study
  publication-title: Contemporary Clinical Trials
  doi: 10.1016/j.cct.2015.05.007
– volume: 37
  start-page: S523
  year: 2005
  ident: 2025073110114548000_bib13
  article-title: Calibration of accelerometer output for children
  publication-title: Medicine and Science in Sports and Exercise
  doi: 10.1249/01.mss.0000185658.28284.ba
– volume: 42
  start-page: 2211
  year: 2010
  ident: 2025073110114548000_bib4
  article-title: Physical activity in US youth: effect of race/ethnicity, age, gender, and weight status
  publication-title: Medicine and Science in Sports and Exercise
  doi: 10.1249/MSS.0b013e3181e1fba9
– volume: 38
  start-page: e14393
  year: 2021
  ident: 2025073110114548000_bib28
  article-title: Device-measured physical activity and its association with physical function in adults with type 2 diabetes mellitus
  publication-title: Diabetic Medicine
  doi: 10.1111/dme.14393
– volume: 37
  start-page: 611
  year: 2018
  ident: 2025073110114548000_bib1
  article-title: Three-part joint modeling methods for complex functional data mixed with zero-and-one–inflated proportions and zero-inflated continuous outcomes with skewness
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.7534
– volume: 8
  start-page: 7961
  year: 2018
  ident: 2025073110114548000_bib40
  article-title: Statistical machine learning of sleep and physical activity phenotypes from sensor data in 96,220 UK Biobank participants
  publication-title: Scientific Report
  doi: 10.1038/s41598-018-26174-1
– volume: 167
  start-page: 755
  year: 2017
  ident: 2025073110114548000_bib32
  article-title: Using wearable devices and smartphones to track physical activity: Initial activation, sustained use, and step counts across sociodemographic characteristics in a national sample
  publication-title: Annals of Internal Medicine
  doi: 10.7326/M17-1495
– volume: 71
  start-page: 102662
  year: 2021
  ident: 2025073110114548000_bib39
  article-title: Understanding the impact of the installation of outdoor fitness equipment and a multi-sports court on park visitation and park-based physical activity: A natural experiment
  publication-title: Health Place
  doi: 10.1016/j.healthplace.2021.102662
– volume: 51
  start-page: 1968
  year: 2019
  ident: 2025073110114548000_bib41
  article-title: A Bayesian nonlinear mixed-effects location scale model for learning
  publication-title: Journal of Sports Sciences
– volume-title: Negative Binomial Regression, Chapter 9.2 Synthetic Negative Binomial
  year: 2011
  ident: 2025073110114548000_bib21
  doi: 10.1017/CBO9780511973420
– volume: 313
  start-page: 625
  year: 2015
  ident: 2025073110114548000_bib6
  article-title: Accuracy of smartphone applications and wearable devices for tracking physical activity data
  publication-title: Journal of American Medicine Association
  doi: 10.1001/jama.2014.17841
– volume: 70
  start-page: 1
  year: 2016
  ident: 2025073110114548000_bib22
  article-title: TMB: Automatic differentiation and laplace approximation
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v070.i05
– volume: 39
  start-page: 4687
  year: 2020
  ident: 2025073110114548000_bib42
  article-title: Modeling daily and weekly moderate and vigorous physical activity using zero-inflated mixture Poisson distribution
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.8748
– volume: 21
  start-page: 8220
  year: 2021
  ident: 2025073110114548000_bib8
  article-title: Clustering accelerometer activity patterns from the UK Biobank cohort
  publication-title: Sensors
  doi: 10.3390/s21248220
– volume: 42
  start-page: 1430
  year: 2022
  ident: 2025073110114548000_bib15
  article-title: Fast estimation of mixed-effects location-scale regression models
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.9679
– volume: 5
  start-page: e157
  year: 2017
  ident: 2025073110114548000_bib17
  article-title: Fitbit charge HR wireless heart rate monitor: Validation study conducted under free-living conditions
  publication-title: JMIR Mhealth Uhealth
  doi: 10.2196/mhealth.8233
– volume: 2
  start-page: 391
  year: 2009
  ident: 2025073110114548000_bib19
  article-title: A mixed ordinal location scale model for analysis of Ecological Momentary Assessment (EMA) data
  publication-title: Statistics and Its Interface
  doi: 10.4310/SII.2009.v2.n4.a1
– volume: 64
  start-page: 627
  year: 2008
  ident: 2025073110114548000_bib20
  article-title: An application of a mixed-effects location scale model for analysis of Ecological Momentary Assessment (EMA) data
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00924.x
– volume: 39
  start-page: 430
  year: 2021
  ident: 2025073110114548000_bib2
  article-title: Interpretation of associations between the accelerometry physical activity spectrum and cardiometabolic health and locomotor skills in two cohorts of children using raw, normalized, log-transformed, or compositional data
  publication-title: Journal of Sports Sciences
  doi: 10.1080/02640414.2020.1824341
– volume: 88
  start-page: 102491
  year: 2024
  ident: 2025073110114548000_bib10
  article-title: The frequency of using wearable activity trackers is associated with minutes of moderate to vigorous physical activity among cancer survivors: Analysis of HINTS data
  publication-title: Cancer Epidemiology
  doi: 10.1016/j.canep.2023.102491
– volume: 30
  start-page: 777
  year: 1998
  ident: 2025073110114548000_bib14
  article-title: Calibration of the computer science and applications, Inc. accelerometer
  publication-title: Medicine and Science in Sports and Exercise
  doi: 10.1097/00005768-199805000-00021
– volume: 26
  start-page: 624
  year: 2021
  ident: 2025073110114548000_bib31
  article-title: Health behaviour change during the UK COVID-19 lockdown: Findings from the first wave of the C-19 health behaviour and well-being daily tracker study
  publication-title: British Journal of Health Psychology
  doi: 10.1111/bjhp.12500
– volume: 52
  start-page: 1403
  year: 2018
  ident: 2025073110114548000_bib12
  article-title: MixWILD: A program for examining the effects of variance and slope of time-varying variables in intensive longitudinal data
  publication-title: Behavior Research Methods
  doi: 10.3758/s13428-019-01322-1
– volume: 4
  start-page: e125
  year: 2016
  ident: 2025073110114548000_bib34
  article-title: Sleep quality prediction from wearable data using deep learning
  publication-title: JMIR mHealth and uHealth
  doi: 10.2196/mhealth.6562
– volume: 139
  start-page: 247
  year: 2020
  ident: 2025073110114548000_bib26
  article-title: A three-level mixed model to account for the correlation at both the between-day and the within-day level for ecological momentary assessments
  publication-title: Health Services Outcomes Research Method
  doi: 10.1007/s10742-020-00220-w
– volume: 41
  start-page: 153
  year: 2019
  ident: 2025073110114548000_bib27
  article-title: Do fluctuations in positive affective and physical feeling states predict physical activity and sedentary time?
  publication-title: Psychology of Sport and Exercise
  doi: 10.1016/j.psychsport.2018.01.011
– volume: 6
  start-page: e37743
  year: 2022
  ident: 2025073110114548000_bib46
  article-title: Time-varying associations between device-based and ecological momentary assessment-reported sedentary behaviors and the concurrent affective states among adolescents: Proof-of-concept study
  publication-title: JMIR Formative Research
  doi: 10.2196/37743
– volume: 47
  start-page: 1821
  year: 2017
  ident: 2025073110114548000_bib29
  article-title: Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations
  publication-title: Sports Medicine
  doi: 10.1007/s40279-017-0716-0
– volume: 5
  start-page: 1
  year: 2005
  ident: 2025073110114548000_bib30
  article-title: Random effect models for repeated measures of zero-inflated count data
  publication-title: Statistical Modelling
  doi: 10.1191/1471082X05st084oa
– volume: 2
  start-page: 2378
  year: 2016
  ident: 2025073110114548000_bib9
  article-title: Use of consumer wearable devices to promote physical activity: a review of health intervention studies
  publication-title: Journal of Environment and Health Science
  doi: 10.15436/2378-6841.16.1123
– volume: 51
  start-page: 476
  year: 2010
  ident: 2025073110114548000_bib23
  article-title: How to analyze longitudinal multilevel physical activity data with many zeros?
  publication-title: Preventive Medicine
  doi: 10.1016/j.ypmed.2010.09.012
– volume: 8
  start-page: 4
  year: 2017
  ident: 2025073110114548000_bib45
  article-title: Negative binomial mixed models for analyzing microbiome count data
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1441-7
– volume: 40
  start-page: 181
  year: 2008
  ident: 2025073110114548000_bib38
  article-title: Physical activity in the United States measured by accelerometer
  publication-title: Medicine and Science in Sports and Exercise
  doi: 10.1249/mss.0b013e31815a51b3
– volume: 10
  start-page: 16742
  year: 2020
  ident: 2025073110114548000_bib44
  article-title: Negative binomial mixed models for analyzing longitudinal CD4 count data
  publication-title: Scientific Report
  doi: 10.1038/s41598-020-73883-7
– volume: 17
  start-page: 1
  year: 2020
  ident: 2025073110114548000_bib43
  article-title: Mother-child dyadic influences of affect on everyday movement behaviors: evidence from an ecological momentary assessment study
  publication-title: International Journal of Behavioral Nutrition and Physical Activity
  doi: 10.1186/s12966-020-00951-6
– volume: 53
  start-page: 910
  year: 1997
  ident: 2025073110114548000_bib25
  article-title: Linear Mixed Models with Heterogeneous within-Cluster Variances
  publication-title: Biometrics
  doi: 10.2307/2533552
– volume: 37
  start-page: 2108
  year: 2018
  ident: 2025073110114548000_bib24
  article-title: A 3-level Bayesian mixed effects location scale model with an application to ecological momentary assessment data
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.7627
– volume: 42
  start-page: 5100
  year: 2023
  ident: 2025073110114548000_bib36
  article-title: Joint modeling the frequency and duration of accelerometer-measured physical activity from a lifestyle intervention trial
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.9903
– volume: 3
  start-page: 1
  year: 2006
  ident: 2025073110114548000_bib37
  article-title: A demonstration of modeling count data with an application to physical activity
  publication-title: Epidemiologic Perspectives and Innovations
  doi: 10.1186/1742-5573-3-3
– volume: 9
  start-page: 436
  year: 2021
  ident: 2025073110114548000_bib18
  article-title: Too many zeros and/or highly skewed? A tutorial on modelling health behaviour as count data with Poisson and negative binomial regression
  publication-title: Health Psychology and Behavioral Medicine
  doi: 10.1080/21642850.2021.1920416
– volume: 2022
  start-page: 1
  year: 2022
  ident: 2025073110114548000_bib35
  article-title: Machine learning for healthcare wearable devices: The big picture
  publication-title: Journal of Healthcare Engineering
  doi: 10.1155/2022/4653923
– volume: 35
  start-page: 552
  year: 2016
  ident: 2025073110114548000_bib3
  article-title: Statistical models for multilevel skewed physical activity data in health research and behavioral medicine
  publication-title: Health Psychology
  doi: 10.1037/hea0000292
– volume: 298
  start-page: 2296
  year: 2007
  ident: 2025073110114548000_bib5
  article-title: Using pedometers to increase physical activity and improve health: a systematic review
  publication-title: Journal of American Medicine Association
  doi: 10.1001/jama.298.19.2296
– volume: 112
  start-page: 1318
  year: 2020
  ident: 2025073110114548000_bib7
  article-title: Accelerometer-assessed physical activity and incident diabetes in a population covering the adult life span: the Hispanic Community Health Study/Study of Latinos
  publication-title: American Journal of Clinical Nutrition
  doi: 10.1093/ajcn/nqaa232
– volume: 48
  start-page: 1723
  year: 2016
  ident: 2025073110114548000_bib16
  article-title: New insights into activity patterns in children, found using functional data analyses
  publication-title: Medicine and Science in Sports and Exercise
  doi: 10.1249/MSS.0000000000000968
– volume: 2
  start-page: 1
  year: 2002
  ident: 2025073110114548000_bib33
  article-title: Reliable estimation of generalized linear mixed models using adaptive quadrature
  publication-title: The Stata Journal
  doi: 10.1177/1536867X0200200101
SSID ssj0009502
Score 2.452148
Snippet In recent years, the use of wearable devices, for example, accelerometers, have become increasingly prevalent. Wearable devices enable more accurate real-time...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Accelerometry - statistics & numerical data
Computer Simulation
Exercise
Humans
Longitudinal Studies
Models, Statistical
Wearable Electronic Devices - statistics & numerical data
Title Negative binomial mixed effects location-scale models for intensive longitudinal count-type physical activity data provided by wearable devices
URI https://www.ncbi.nlm.nih.gov/pubmed/40742447
https://www.proquest.com/docview/3235030842
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIqT2gEp4NFDQIiFxQEtt78bxHhFQRUipBGql3Cx7PaYgmlQkFpRT_0H_MjP7cG0UpMLFiZzs2vJ8nsfuzDeMvYjRKTA2q7GARCjQSpRaxqLWaJCKzJSFTfmfHaXTE_VhPp4PBpedrKVmXb42vzbWlfyPVPEcypWqZP9Bsu2keAK_o3zxiBLG441kfASfHW83hrfLM1r7PvvyEz3IkKRBhoquLlYoCXBdbyz_gmWJcJnr35bUsaipbHcs2zlC2GXZ8yBAqnywDSYomfSVr9yzbusPfEtC5RXpm94GMZX1E_t_67PPrJv6EeF4Ct5cOgfaJ_ATATYaabylNtl4ChX4rA-3ht1do0jGNp9V9vRuKtBezp3V8apWxQJVRtTVxa59i8ec3KjiHf0VkRNQD_jD5mtRR67HUp9N-w8r1-Yeul13mbsZcj_-FrudYKBBPTDefUo6tM2R45v399_SfsoDN_7Aj--7NX-JVazPcrzL7vpgg79xyLnHBrAYsjuu_ejFkO3MWs7e1ZBtU9zhaLvvs6sALR6gxS20uIcW70OLO2hxhBZvocW70OLX0OIBWjxAixO0eIAWLy94gBb30HrATg7fH7-dCt-7Q5g4nazFWGdgUpOYCDIjJ1FZmCoBXUMNsUbjDLEEo-uswj9ojdoC0BdPtcl0VE8y_PUh21osF7DHOGDEm8ZFreu4VnGmsgo_DToMMkrSQmYj9jI8-vzcUbTkm4U8Ys-DZHLUorQ1Vixg2axymcgxMTepZMQeOZG1cylaPlJq8vjG13nCtq_fgn22tf7ewFP0XdflMwuv3xTPp0U
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Negative+binomial+mixed+effects+location-scale+models+for+intensive+longitudinal+count-type+physical+activity+data+provided+by+wearable+devices&rft.jtitle=Biometrics&rft.au=Ma%2C+Qianheng&rft.au=Dunton%2C+Genevieve+F&rft.au=Hedeker%2C+Donald&rft.date=2025-07-03&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=81&rft.issue=3&rft_id=info:doi/10.1093%2Fbiomtc%2Fujaf099&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_biomtc_ujaf099
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon