A Stackelberg approach to transportation infrastructure planning: Integrating User Decision-making
The design of transportation networks is an intriguing and complex subject, primarily driven by the high costs and existing deficiencies in transit systems. Effective network design necessitates the consideration of multiple factors, including the rapid growth of urban centers, the demand for new ro...
Saved in:
Published in | Computers & operations research Vol. 184; p. 107211 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0305-0548 |
DOI | 10.1016/j.cor.2025.107211 |
Cover
Abstract | The design of transportation networks is an intriguing and complex subject, primarily driven by the high costs and existing deficiencies in transit systems. Effective network design necessitates the consideration of multiple factors, including the rapid growth of urban centers, the demand for new routes, and the evolving preferences of citizens. A poorly designed network can result in significant drawbacks, such as delays, congestion, and escalated air pollution levels. Consequently, addressing this challenge requires the implementation of targeted modifications in the transport infrastructure, such as constructing new streets, expanding existing roads, enhancing capacity, and improving coverage. The paper introduces a Stackelberg model that addresses the planning of transport infrastructure, focusing on incorporate the user decisions. The model functions on two levels: the upper level captures the decision-making process of users, influenced by factors like time savings and transport system accessibility. Conversely, the lower level relates to the planner’s responsibility in designing and configuring the transport network to align with user demands and preferences while minimizing costs. Four types of transport networks were evaluated based on criteria such as used capacity, network growth, system cost, and unmet user needs. The evaluation revealed that mesh networks perform better due to their ability to distribute user flow across multiple lines, reducing dependency on a few edges. Additionally, the versatility of the procedure is demonstrated through its implementation in the Lausanne metro network.
[Display omitted]
•The Stackelberg model represents the trade-off between users and service providers.•Optimizes transport networks using real-world data from OpenStreetMap with Gurobi.•Uses centrality measures to assess the performance of transport infrastructure. |
---|---|
AbstractList | The design of transportation networks is an intriguing and complex subject, primarily driven by the high costs and existing deficiencies in transit systems. Effective network design necessitates the consideration of multiple factors, including the rapid growth of urban centers, the demand for new routes, and the evolving preferences of citizens. A poorly designed network can result in significant drawbacks, such as delays, congestion, and escalated air pollution levels. Consequently, addressing this challenge requires the implementation of targeted modifications in the transport infrastructure, such as constructing new streets, expanding existing roads, enhancing capacity, and improving coverage. The paper introduces a Stackelberg model that addresses the planning of transport infrastructure, focusing on incorporate the user decisions. The model functions on two levels: the upper level captures the decision-making process of users, influenced by factors like time savings and transport system accessibility. Conversely, the lower level relates to the planner’s responsibility in designing and configuring the transport network to align with user demands and preferences while minimizing costs. Four types of transport networks were evaluated based on criteria such as used capacity, network growth, system cost, and unmet user needs. The evaluation revealed that mesh networks perform better due to their ability to distribute user flow across multiple lines, reducing dependency on a few edges. Additionally, the versatility of the procedure is demonstrated through its implementation in the Lausanne metro network.
[Display omitted]
•The Stackelberg model represents the trade-off between users and service providers.•Optimizes transport networks using real-world data from OpenStreetMap with Gurobi.•Uses centrality measures to assess the performance of transport infrastructure. |
ArticleNumber | 107211 |
Author | González, Andres D. Torres-Delgado, Jose-Fidel Cepeda-Valero, Oscar-Mauricio |
Author_xml | – sequence: 1 givenname: Oscar-Mauricio orcidid: 0000-0003-1161-4924 surname: Cepeda-Valero fullname: Cepeda-Valero, Oscar-Mauricio email: omcepedav@unal.edu.co organization: Central University, Cra 5 No. 21-38, Bogota, 110311, Colombia – sequence: 2 givenname: Jose-Fidel surname: Torres-Delgado fullname: Torres-Delgado, Jose-Fidel organization: University of the Andes, Cra 1 No. 18A - 12, Bogota, 111711, Colombia – sequence: 3 givenname: Andres D. surname: González fullname: González, Andres D. organization: The University of Oklahoma, 660 Parrington Ova, Norman, 73019, OK, USA |
BookMark | eNp9kMtOQyEQQFnUxLb6Ae74gVuB-9ZVU19NmrjQrgmFodIH3AzUxL-Xpq5lM2FmzmTmTMjIBw-E3HE244w397uZDjgTTNT53wrOR2TMSlYXrK66azKJccfyy5Ux2czpR1J6D4cN4JaqYcCg9BdNgSZUPg4Bk0oueOq8RRUTnnQ6IdDhoLx3fvtAlz7BFnOT39J1BKRPoF3MSHFU-5y8IVdWHSLc_sUpWb88fy7eitX763IxXxWaN00qeqbbynBd2bKve2UFN6LtWi5qtemMKRUoq0rTGuhZxXlt8zVtZ4Xoy6YVnSinhF_magwxIlg5oDsq_JGcybMYuZNZjDyLkRcxmXm8MJAX-3aAMmoHXoNxCDpJE9w_9C_yCnDI |
Cites_doi | 10.1016/j.trc.2010.09.003 10.1016/j.trb.2014.01.008 10.1016/j.cor.2008.09.014 10.1016/j.aml.2011.06.008 10.1016/j.ejor.2013.01.001 10.3141/1857-01 10.1016/j.trb.2019.05.011 10.1016/j.jtrangeo.2017.06.002 10.1155/2019/4230981 10.1016/j.cor.2013.03.016 10.1007/s10479-014-1700-9 10.1109/TITS.2021.3086808 10.1109/ACCESS.2020.2966008 10.1109/TITS.2015.2480885 10.1016/j.trb.2009.08.004 10.1016/j.seps.2008.02.012 10.1155/2020/8846955 10.1016/j.tre.2022.102918 10.1016/j.compenvurbsys.2017.05.004 10.1061/(ASCE)0733-947X(2006)132:1(40) 10.1016/S0377-2217(86)80007-8 10.1016/j.cor.2016.08.009 10.1016/S0191-2615(99)00024-7 10.1016/j.physa.2014.09.015 10.1103/PhysRevLett.109.128703 10.1016/j.physa.2010.04.008 10.1109/TEVC.2017.2712906 10.1155/2021/6209592 10.1016/j.physa.2022.127123 10.1016/j.trpro.2017.05.087 10.1016/j.tre.2022.102937 10.1007/s10479-019-03430-9 10.1016/j.cie.2019.02.025 10.1155/2018/7510279 10.1080/13658816.2019.1566551 10.1016/j.jpubtr.2024.100100 10.1080/01441647.2013.848955 10.1016/j.jtrangeo.2015.05.006 10.1109/ACCESS.2023.3308048 |
ContentType | Journal Article |
Copyright | 2025 |
Copyright_xml | – notice: 2025 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cor.2025.107211 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Business |
ExternalDocumentID | 10_1016_j_cor_2025_107211 S0305054825002394 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 186 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AAEDT AAEDW AAFJI AAIKJ AAKOC AALRI AAOAW AAQXK AARIN AATTM AAXKI AAXUO AAYFN AAYWO ABAOU ABBOA ABDPE ABEFU ABFNM ABFRF ABJNI ABMAC ABMMH ABUCO ABWVN ABXDB ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADGUI ADJOM ADMUD ADNMO AEBSH AEFWE AEHXG AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOMHK AOUOD APLSM APXCP ARUGR ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HVGLF HZ~ H~9 IHE J1W KOM LY1 M41 MHUIS MO0 MS~ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- ROL RPZ RXW SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSO SSV SSW SSZ T5K TAE TN5 U5U UPT VH1 WUQ XPP ZMT ~02 ~G- AAYXX AFXIZ AGRNS BNPGV CITATION RIG |
ID | FETCH-LOGICAL-c166t-90c74d1c4f3959af21d2787125ab8dd3aeafa3d7de904115f05478f2293672823 |
IEDL.DBID | AIKHN |
ISSN | 0305-0548 |
IngestDate | Wed Aug 06 19:32:42 EDT 2025 Sat Aug 30 17:14:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Metro networks Urban transport network design Stackelberg model Centrality measures |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c166t-90c74d1c4f3959af21d2787125ab8dd3aeafa3d7de904115f05478f2293672823 |
ORCID | 0000-0003-1161-4924 |
ParticipantIDs | crossref_primary_10_1016_j_cor_2025_107211 elsevier_sciencedirect_doi_10_1016_j_cor_2025_107211 |
PublicationCentury | 2000 |
PublicationDate | December 2025 2025-12-00 |
PublicationDateYYYYMMDD | 2025-12-01 |
PublicationDate_xml | – month: 12 year: 2025 text: December 2025 |
PublicationDecade | 2020 |
PublicationTitle | Computers & operations research |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Cipriani, Gori, Petrelli (b11) 2012; 20 Viswanath, Peeta (b40) 2003; 1857 Boeing (b4) 2017; 65 Z̈ochowska, Soczóka (b49) 2018; 98 Yang, Bell, Meng (b45) 2000; 34 Bilal, Giglio (b3) 2023; 20 Mauttone, Urquhart (b30) 2009; 36 Chen, Wu, Yin, Xu (b9) 2021; 2021 Cats (b5) 2017; 62 Gutiérrez-Jarpa, Laporte, Marianov, Moccia (b19) 2017; 78 Kopsidas, Kepaptsoglou (b23) 2022; 596 Wang, Liu, Fan, Ding, Long (b41) 2022; 167 Kaveh, Tavakkoli-Moghaddam, Triki, Rahimi, Jamili (b22) 2021; 296 Lin, Ban (b26) 2013; 33 Sun, Guan (b38) 2016; 94 Chang, Xu, Hu, Fu, xia Feng, He (b6) 2014; 416 Sinha, Malo, Deb (b36) 2017; 22 Ding, Yin, Dai, Jiao, Li, Li, Wu (b14) 2019; 2019 Fan, Machemehl (b16) 2006; 132 Jia, Ma, Hu (b21) 2019; 11 Fernández, de Cea Ch., Malbran (b18) 2008; 42 Tsiotas, Polyzos (b39) 2017; 24 Wang, Zhang (b43) 2017; 249 Jha, Jha, Tiwari (b20) 2019; 130 Murawski, Church (b33) 2009; 43 Zhang, Miller-Hooks, Denny (b47) 2015; 46 Current, ReVelle, Cohon (b12) 1986; 27 Morris, Barthelemy (b32) 2012; 109 Liu, Yu, Yang, Tan (b28) 2020; 2020 Xiao, Zhong, Sun (b44) 2024; 16 Ahmad, Al-Fagih (b1) 2023; 11 Wang, Ye, Wang (b42) 2020; 8 Sridhara, Kim, Bohacek (b37) 2005 Owais, Osman, Moussa (b34) 2016; 17 Derrible, Kennedy (b13) 2010; 389 Liang, Wu, Gao, Sun, Yang, Lo (b25) 2019; 126 Chow, Sayarshad (b10) 2014; 62 Chen, Chen (b7) 2013; 25 Laporte, Mesa, Perea (b24) 2010; 44 Miandoabchi, Daneshzand, Szeto, Zanjirani Farahani (b31) 2013; 40 Yue, Guan, Pan, Chen, Lv, Yao (b46) 2019; 33 Lin, Tang (b27) 2022; 23 Chen, Kasikitwiwat (b8) 2011; 45 Du, Zhou, Chen, Tan (b15) 2022; 168 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (b35) 2011; 12 Mahmoudi, Saidi, Wirasinghe (b29) 2024; 26 Farahani, Miandoabchi, Szeto, Rashidi (b17) 2013; 229 Zhu, Chen, Wang, Ma (b48) 2018; 2018 Aini, Salehipour (b2) 2012; 25 Z̈ochowska (10.1016/j.cor.2025.107211_b49) 2018; 98 Cipriani (10.1016/j.cor.2025.107211_b11) 2012; 20 Gutiérrez-Jarpa (10.1016/j.cor.2025.107211_b19) 2017; 78 Sinha (10.1016/j.cor.2025.107211_b36) 2017; 22 Current (10.1016/j.cor.2025.107211_b12) 1986; 27 Zhu (10.1016/j.cor.2025.107211_b48) 2018; 2018 Ahmad (10.1016/j.cor.2025.107211_b1) 2023; 11 Mauttone (10.1016/j.cor.2025.107211_b30) 2009; 36 Pedregosa (10.1016/j.cor.2025.107211_b35) 2011; 12 Aini (10.1016/j.cor.2025.107211_b2) 2012; 25 Chen (10.1016/j.cor.2025.107211_b7) 2013; 25 Viswanath (10.1016/j.cor.2025.107211_b40) 2003; 1857 Mahmoudi (10.1016/j.cor.2025.107211_b29) 2024; 26 Yang (10.1016/j.cor.2025.107211_b45) 2000; 34 Sridhara (10.1016/j.cor.2025.107211_b37) 2005 Chow (10.1016/j.cor.2025.107211_b10) 2014; 62 Jha (10.1016/j.cor.2025.107211_b20) 2019; 130 Morris (10.1016/j.cor.2025.107211_b32) 2012; 109 Boeing (10.1016/j.cor.2025.107211_b4) 2017; 65 Yue (10.1016/j.cor.2025.107211_b46) 2019; 33 Kaveh (10.1016/j.cor.2025.107211_b22) 2021; 296 Lin (10.1016/j.cor.2025.107211_b27) 2022; 23 Zhang (10.1016/j.cor.2025.107211_b47) 2015; 46 Wang (10.1016/j.cor.2025.107211_b43) 2017; 249 Farahani (10.1016/j.cor.2025.107211_b17) 2013; 229 Liu (10.1016/j.cor.2025.107211_b28) 2020; 2020 Liang (10.1016/j.cor.2025.107211_b25) 2019; 126 Fan (10.1016/j.cor.2025.107211_b16) 2006; 132 Ding (10.1016/j.cor.2025.107211_b14) 2019; 2019 Bilal (10.1016/j.cor.2025.107211_b3) 2023; 20 Fernández (10.1016/j.cor.2025.107211_b18) 2008; 42 Chang (10.1016/j.cor.2025.107211_b6) 2014; 416 Derrible (10.1016/j.cor.2025.107211_b13) 2010; 389 Sun (10.1016/j.cor.2025.107211_b38) 2016; 94 Du (10.1016/j.cor.2025.107211_b15) 2022; 168 Wang (10.1016/j.cor.2025.107211_b41) 2022; 167 Chen (10.1016/j.cor.2025.107211_b9) 2021; 2021 Kopsidas (10.1016/j.cor.2025.107211_b23) 2022; 596 Wang (10.1016/j.cor.2025.107211_b42) 2020; 8 Owais (10.1016/j.cor.2025.107211_b34) 2016; 17 Murawski (10.1016/j.cor.2025.107211_b33) 2009; 43 Lin (10.1016/j.cor.2025.107211_b26) 2013; 33 Chen (10.1016/j.cor.2025.107211_b8) 2011; 45 Jia (10.1016/j.cor.2025.107211_b21) 2019; 11 Xiao (10.1016/j.cor.2025.107211_b44) 2024; 16 Cats (10.1016/j.cor.2025.107211_b5) 2017; 62 Miandoabchi (10.1016/j.cor.2025.107211_b31) 2013; 40 Laporte (10.1016/j.cor.2025.107211_b24) 2010; 44 Tsiotas (10.1016/j.cor.2025.107211_b39) 2017; 24 |
References_xml | – volume: 45 start-page: 105 year: 2011 end-page: 117 ident: b8 article-title: Modeling capacity flexibility of transportation networks publication-title: Transp. Res. Part A: Policy Pr. – volume: 132 start-page: 40 year: 2006 end-page: 51 ident: b16 article-title: Optimal transit route network design problem with variable transit demand: Genetic algorithm approach publication-title: J. Transp. Eng. – volume: 42 start-page: 951 year: 2008 end-page: 972 ident: b18 article-title: Demand responsive urban public transport system design: Methodology and application publication-title: Transp. Res. Part A: Policy Pr. – volume: 1857 start-page: 1 year: 2003 end-page: 10 ident: b40 article-title: Multicommodity maximal covering network design problem for planning critical routes for earthquake response publication-title: Transp. Res. Rec. – volume: 20 start-page: 3 year: 2012 end-page: 14 ident: b11 article-title: Transit network design: A procedure and an application to a large urban area publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 249 start-page: 97 year: 2017 end-page: 117 ident: b43 article-title: Game theoretical transportation network design among multiple regions publication-title: Ann. Oper. Res. – volume: 46 start-page: 35 year: 2015 end-page: 45 ident: b47 article-title: Assessing the role of network topology in transportation network resilience publication-title: J. Transp. Geogr. – volume: 33 start-page: 658 year: 2013 end-page: 685 ident: b26 article-title: Complex network topology of transportation systems publication-title: Transp. Rev. – volume: 26 year: 2024 ident: b29 article-title: A critical review of analytical approaches in public bus transit network design and operations planning with focus on emerging technologies and sustainability publication-title: J. Public Transp. – volume: 33 start-page: 1082 year: 2019 end-page: 1105 ident: b46 article-title: Detecting clusters over intercity transportation networks using k-shortest paths and hierarchical clustering: a case study of Mainland China publication-title: Int. J. Geogr. Inf. Sci. – volume: 94 start-page: 348 year: 2016 end-page: 359 ident: b38 article-title: Measuring vulnerability of urban metro network from line operation perspective publication-title: Transp. Res. Part A: Policy Pr. – volume: 24 start-page: 482 year: 2017 end-page: 490 ident: b39 article-title: The topology of urban road networks and its role to urban mobility publication-title: Transp. Res. Procedia – volume: 43 start-page: 102 year: 2009 end-page: 110 ident: b33 article-title: Improving accessibility to rural health services: The maximal covering network improvement problem publication-title: Soc.- Econ. Plan. Sci. – volume: 98 start-page: 223 year: 2018 end-page: 233 ident: b49 article-title: Analysis of selected transportation network structures based on graph measures publication-title: Zesz. Nauk. Transp./Politech. Ślaska – volume: 126 start-page: 115 year: 2019 end-page: 138 ident: b25 article-title: Bus transit network design with uncertainties on the basis of a metro network: A two-step model framework publication-title: Transp. Res. Part B: Methodol. – volume: 11 year: 2019 ident: b21 article-title: Urban transit network properties evaluation and optimization based on complex network theory publication-title: Sustain. (Switzerland) – volume: 8 start-page: 12154 year: 2020 end-page: 12167 ident: b42 article-title: A multi-objective optimization and hybrid heuristic approach for urban bus route network design publication-title: IEEE Access – volume: 23 start-page: 16786 year: 2022 end-page: 16798 ident: b27 article-title: Analysis and optimization of urban public transport lines based on multiobjective adaptive particle swarm optimization publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 17 start-page: 670 year: 2016 end-page: 679 ident: b34 article-title: Multi-objective transit route network design as set covering problem publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 130 start-page: 166 year: 2019 end-page: 186 ident: b20 article-title: A multi-objective meta-heuristic approach for transit network design and frequency setting problem in a bus transit system publication-title: Comput. Ind. Eng. – volume: 2018 year: 2018 ident: b48 article-title: Policy-combination oriented optimization for public transportation based on the game theory publication-title: Math. Probl. Eng. – volume: 389 start-page: 3678 year: 2010 end-page: 3691 ident: b13 article-title: The complexity and robustness of metro networks publication-title: Phys. A – volume: 20 year: 2023 ident: b3 article-title: Analysing inequity in land use and transportation models by genetic algorithm for realistically quantified penetration rate of advanced driving system equipped vehicles publication-title: Transp. Res. Interdiscip. Perspect. – volume: 65 start-page: 126 year: 2017 end-page: 139 ident: b4 article-title: Osmnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks publication-title: Comput. Environ. Urban Syst. – volume: 2019 year: 2019 ident: b14 article-title: Optimal topology of multilayer urban traffic networks publication-title: Complexity – volume: 25 start-page: 513 year: 2013 end-page: 524 ident: b7 article-title: Solution algorithm for a new bi-level discrete network design problem publication-title: Promet- Traffic Transp. – volume: 229 start-page: 281 year: 2013 end-page: 302 ident: b17 article-title: A review of urban transportation network design problems publication-title: European J. Oper. Res. – volume: 416 start-page: 378 year: 2014 end-page: 385 ident: b6 article-title: A manipulator game model of urban public traffic network publication-title: Phys. A – volume: 78 start-page: 27 year: 2017 end-page: 43 ident: b19 article-title: Multi-objective rapid transit network design with modal competition: The case of concepción, Chile publication-title: Comput. Oper. Res. – volume: 36 start-page: 2440 year: 2009 end-page: 2449 ident: b30 article-title: A route set construction algorithm for the transit network design problem publication-title: Comput. Oper. Res. – volume: 62 start-page: 172 year: 2017 end-page: 183 ident: b5 article-title: Topological evolution of a metropolitan rail transport network: The case of Stockholm publication-title: J. Transp. Geogr. – volume: 596 year: 2022 ident: b23 article-title: Identification of critical stations in a metro system: A substitute complex network analysis publication-title: Phys. A – start-page: 269 year: 2005 end-page: 277 ident: b37 article-title: Performance of urban mesh networks publication-title: Proceedings of the 8th ACM International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems – volume: 167 year: 2022 ident: b41 article-title: Large-scale multimodal transportation network models and algorithms-part ii: Network capacity and network design problem publication-title: Transp. Res. Part E: Logist. Transp. Rev. – volume: 44 start-page: 447 year: 2010 end-page: 459 ident: b24 article-title: A game theoretic framework for the robust railway transit network design problem publication-title: Transp. Res. Part B: Methodol. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b35 article-title: Scikit-learn: Machine learning in python publication-title: J. Mach. Learn. Res. – volume: 168 year: 2022 ident: b15 article-title: Modeling the capacity of multimodal and intermodal urban transportation networks that incorporate emerging travel modes publication-title: Transp. Res. Part E: Logist. Transp. Rev. – volume: 40 start-page: 2429 year: 2013 end-page: 2449 ident: b31 article-title: Multi-objective discrete urban road network design publication-title: Comput. Oper. Res. – volume: 2021 year: 2021 ident: b9 article-title: Impact of road network topology on public transportation development publication-title: Wirel. Commun. Mob. Comput. – volume: 2020 start-page: 1 year: 2020 end-page: 16 ident: b28 article-title: Multiperspective bus route planning in a Stackelberg game framework publication-title: J. Adv. Transp. – volume: 16 year: 2024 ident: b44 article-title: Analysis of topological properties and robustness of urban public transport networks publication-title: Sustain. (Switzerland) – volume: 34 start-page: 255 year: 2000 end-page: 275 ident: b45 article-title: Modeling the capacity and level of service of urban transportation networks publication-title: Transp. Res. Part B: Methodol. – volume: 27 start-page: 57 year: 1986 end-page: 66 ident: b12 article-title: The hierarchical network design problem publication-title: European J. Oper. Res. – volume: 11 start-page: 93635 year: 2023 end-page: 93663 ident: b1 article-title: Game theory applications in micro and macroscopic simulations in transportation networks: A comprehensive review publication-title: IEEE Access – volume: 22 start-page: 276 year: 2017 end-page: 295 ident: b36 article-title: A review on bilevel optimization: From classical to evolutionary approaches and applications publication-title: IEEE Trans. Evol. Comput. – volume: 25 start-page: 1 year: 2012 end-page: 5 ident: b2 article-title: Speeding up the Floyd–Warshall algorithm for the cycled shortest path problem publication-title: Appl. Math. Lett. – volume: 62 start-page: 13 year: 2014 end-page: 34 ident: b10 article-title: Symbiotic network design strategies in the presence of coexisting transportation networks publication-title: Transp. Res. Part B: Methodol. – volume: 296 start-page: 131 year: 2021 end-page: 162 ident: b22 article-title: A new bi-objective model of the urban public transportation hub network design under uncertainty publication-title: Ann. Oper. Res. – volume: 109 year: 2012 ident: b32 article-title: Transport on coupled spatial networks publication-title: Phys. Rev. Lett. – volume: 20 start-page: 3 issue: 1 year: 2012 ident: 10.1016/j.cor.2025.107211_b11 article-title: Transit network design: A procedure and an application to a large urban area publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2010.09.003 – volume: 20 year: 2023 ident: 10.1016/j.cor.2025.107211_b3 article-title: Analysing inequity in land use and transportation models by genetic algorithm for realistically quantified penetration rate of advanced driving system equipped vehicles publication-title: Transp. Res. Interdiscip. Perspect. – volume: 42 start-page: 951 issue: 7 year: 2008 ident: 10.1016/j.cor.2025.107211_b18 article-title: Demand responsive urban public transport system design: Methodology and application publication-title: Transp. Res. Part A: Policy Pr. – volume: 62 start-page: 13 year: 2014 ident: 10.1016/j.cor.2025.107211_b10 article-title: Symbiotic network design strategies in the presence of coexisting transportation networks publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2014.01.008 – volume: 36 start-page: 2440 issue: 8 year: 2009 ident: 10.1016/j.cor.2025.107211_b30 article-title: A route set construction algorithm for the transit network design problem publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2008.09.014 – volume: 16 issue: 15 year: 2024 ident: 10.1016/j.cor.2025.107211_b44 article-title: Analysis of topological properties and robustness of urban public transport networks publication-title: Sustain. (Switzerland) – volume: 11 issue: 7 year: 2019 ident: 10.1016/j.cor.2025.107211_b21 article-title: Urban transit network properties evaluation and optimization based on complex network theory publication-title: Sustain. (Switzerland) – volume: 25 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.cor.2025.107211_b2 article-title: Speeding up the Floyd–Warshall algorithm for the cycled shortest path problem publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2011.06.008 – volume: 229 start-page: 281 issue: 2 year: 2013 ident: 10.1016/j.cor.2025.107211_b17 article-title: A review of urban transportation network design problems publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2013.01.001 – volume: 1857 start-page: 1 issue: 1 year: 2003 ident: 10.1016/j.cor.2025.107211_b40 article-title: Multicommodity maximal covering network design problem for planning critical routes for earthquake response publication-title: Transp. Res. Rec. doi: 10.3141/1857-01 – volume: 126 start-page: 115 year: 2019 ident: 10.1016/j.cor.2025.107211_b25 article-title: Bus transit network design with uncertainties on the basis of a metro network: A two-step model framework publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2019.05.011 – volume: 62 start-page: 172 year: 2017 ident: 10.1016/j.cor.2025.107211_b5 article-title: Topological evolution of a metropolitan rail transport network: The case of Stockholm publication-title: J. Transp. Geogr. doi: 10.1016/j.jtrangeo.2017.06.002 – volume: 45 start-page: 105 issue: 2 year: 2011 ident: 10.1016/j.cor.2025.107211_b8 article-title: Modeling capacity flexibility of transportation networks publication-title: Transp. Res. Part A: Policy Pr. – volume: 2019 year: 2019 ident: 10.1016/j.cor.2025.107211_b14 article-title: Optimal topology of multilayer urban traffic networks publication-title: Complexity doi: 10.1155/2019/4230981 – volume: 40 start-page: 2429 issue: 10 year: 2013 ident: 10.1016/j.cor.2025.107211_b31 article-title: Multi-objective discrete urban road network design publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2013.03.016 – volume: 249 start-page: 97 issue: 1–2 year: 2017 ident: 10.1016/j.cor.2025.107211_b43 article-title: Game theoretical transportation network design among multiple regions publication-title: Ann. Oper. Res. doi: 10.1007/s10479-014-1700-9 – volume: 23 start-page: 16786 issue: 9 year: 2022 ident: 10.1016/j.cor.2025.107211_b27 article-title: Analysis and optimization of urban public transport lines based on multiobjective adaptive particle swarm optimization publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3086808 – volume: 8 start-page: 12154 year: 2020 ident: 10.1016/j.cor.2025.107211_b42 article-title: A multi-objective optimization and hybrid heuristic approach for urban bus route network design publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2966008 – volume: 17 start-page: 670 issue: 3 year: 2016 ident: 10.1016/j.cor.2025.107211_b34 article-title: Multi-objective transit route network design as set covering problem publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2015.2480885 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.cor.2025.107211_b35 article-title: Scikit-learn: Machine learning in python publication-title: J. Mach. Learn. Res. – volume: 44 start-page: 447 issue: 4 year: 2010 ident: 10.1016/j.cor.2025.107211_b24 article-title: A game theoretic framework for the robust railway transit network design problem publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2009.08.004 – volume: 43 start-page: 102 issue: 2 year: 2009 ident: 10.1016/j.cor.2025.107211_b33 article-title: Improving accessibility to rural health services: The maximal covering network improvement problem publication-title: Soc.- Econ. Plan. Sci. doi: 10.1016/j.seps.2008.02.012 – volume: 2020 start-page: 1 year: 2020 ident: 10.1016/j.cor.2025.107211_b28 article-title: Multiperspective bus route planning in a Stackelberg game framework publication-title: J. Adv. Transp. doi: 10.1155/2020/8846955 – volume: 167 year: 2022 ident: 10.1016/j.cor.2025.107211_b41 article-title: Large-scale multimodal transportation network models and algorithms-part ii: Network capacity and network design problem publication-title: Transp. Res. Part E: Logist. Transp. Rev. doi: 10.1016/j.tre.2022.102918 – volume: 98 start-page: 223 year: 2018 ident: 10.1016/j.cor.2025.107211_b49 article-title: Analysis of selected transportation network structures based on graph measures publication-title: Zesz. Nauk. Transp./Politech. Ślaska – volume: 65 start-page: 126 year: 2017 ident: 10.1016/j.cor.2025.107211_b4 article-title: Osmnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2017.05.004 – start-page: 269 year: 2005 ident: 10.1016/j.cor.2025.107211_b37 article-title: Performance of urban mesh networks – volume: 132 start-page: 40 issue: 1 year: 2006 ident: 10.1016/j.cor.2025.107211_b16 article-title: Optimal transit route network design problem with variable transit demand: Genetic algorithm approach publication-title: J. Transp. Eng. doi: 10.1061/(ASCE)0733-947X(2006)132:1(40) – volume: 94 start-page: 348 year: 2016 ident: 10.1016/j.cor.2025.107211_b38 article-title: Measuring vulnerability of urban metro network from line operation perspective publication-title: Transp. Res. Part A: Policy Pr. – volume: 27 start-page: 57 issue: 1 year: 1986 ident: 10.1016/j.cor.2025.107211_b12 article-title: The hierarchical network design problem publication-title: European J. Oper. Res. doi: 10.1016/S0377-2217(86)80007-8 – volume: 78 start-page: 27 year: 2017 ident: 10.1016/j.cor.2025.107211_b19 article-title: Multi-objective rapid transit network design with modal competition: The case of concepción, Chile publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2016.08.009 – volume: 34 start-page: 255 issue: 4 year: 2000 ident: 10.1016/j.cor.2025.107211_b45 article-title: Modeling the capacity and level of service of urban transportation networks publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/S0191-2615(99)00024-7 – volume: 416 start-page: 378 year: 2014 ident: 10.1016/j.cor.2025.107211_b6 article-title: A manipulator game model of urban public traffic network publication-title: Phys. A doi: 10.1016/j.physa.2014.09.015 – volume: 109 issue: 12 year: 2012 ident: 10.1016/j.cor.2025.107211_b32 article-title: Transport on coupled spatial networks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.128703 – volume: 389 start-page: 3678 issue: 17 year: 2010 ident: 10.1016/j.cor.2025.107211_b13 article-title: The complexity and robustness of metro networks publication-title: Phys. A doi: 10.1016/j.physa.2010.04.008 – volume: 22 start-page: 276 issue: 2 year: 2017 ident: 10.1016/j.cor.2025.107211_b36 article-title: A review on bilevel optimization: From classical to evolutionary approaches and applications publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2712906 – volume: 2021 year: 2021 ident: 10.1016/j.cor.2025.107211_b9 article-title: Impact of road network topology on public transportation development publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2021/6209592 – volume: 596 year: 2022 ident: 10.1016/j.cor.2025.107211_b23 article-title: Identification of critical stations in a metro system: A substitute complex network analysis publication-title: Phys. A doi: 10.1016/j.physa.2022.127123 – volume: 24 start-page: 482 year: 2017 ident: 10.1016/j.cor.2025.107211_b39 article-title: The topology of urban road networks and its role to urban mobility publication-title: Transp. Res. Procedia doi: 10.1016/j.trpro.2017.05.087 – volume: 168 year: 2022 ident: 10.1016/j.cor.2025.107211_b15 article-title: Modeling the capacity of multimodal and intermodal urban transportation networks that incorporate emerging travel modes publication-title: Transp. Res. Part E: Logist. Transp. Rev. doi: 10.1016/j.tre.2022.102937 – volume: 296 start-page: 131 issue: 1–2 year: 2021 ident: 10.1016/j.cor.2025.107211_b22 article-title: A new bi-objective model of the urban public transportation hub network design under uncertainty publication-title: Ann. Oper. Res. doi: 10.1007/s10479-019-03430-9 – volume: 130 start-page: 166 year: 2019 ident: 10.1016/j.cor.2025.107211_b20 article-title: A multi-objective meta-heuristic approach for transit network design and frequency setting problem in a bus transit system publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2019.02.025 – volume: 25 start-page: 513 issue: 6 year: 2013 ident: 10.1016/j.cor.2025.107211_b7 article-title: Solution algorithm for a new bi-level discrete network design problem publication-title: Promet- Traffic Transp. – volume: 2018 year: 2018 ident: 10.1016/j.cor.2025.107211_b48 article-title: Policy-combination oriented optimization for public transportation based on the game theory publication-title: Math. Probl. Eng. doi: 10.1155/2018/7510279 – volume: 33 start-page: 1082 issue: 5 year: 2019 ident: 10.1016/j.cor.2025.107211_b46 article-title: Detecting clusters over intercity transportation networks using k-shortest paths and hierarchical clustering: a case study of Mainland China publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2019.1566551 – volume: 26 year: 2024 ident: 10.1016/j.cor.2025.107211_b29 article-title: A critical review of analytical approaches in public bus transit network design and operations planning with focus on emerging technologies and sustainability publication-title: J. Public Transp. doi: 10.1016/j.jpubtr.2024.100100 – volume: 33 start-page: 658 issue: 6 year: 2013 ident: 10.1016/j.cor.2025.107211_b26 article-title: Complex network topology of transportation systems publication-title: Transp. Rev. doi: 10.1080/01441647.2013.848955 – volume: 46 start-page: 35 year: 2015 ident: 10.1016/j.cor.2025.107211_b47 article-title: Assessing the role of network topology in transportation network resilience publication-title: J. Transp. Geogr. doi: 10.1016/j.jtrangeo.2015.05.006 – volume: 11 start-page: 93635 year: 2023 ident: 10.1016/j.cor.2025.107211_b1 article-title: Game theory applications in micro and macroscopic simulations in transportation networks: A comprehensive review publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3308048 |
SSID | ssj0000721 |
Score | 2.4707105 |
Snippet | The design of transportation networks is an intriguing and complex subject, primarily driven by the high costs and existing deficiencies in transit systems.... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 107211 |
SubjectTerms | Centrality measures Metro networks Stackelberg model Urban transport network design |
Title | A Stackelberg approach to transportation infrastructure planning: Integrating User Decision-making |
URI | https://dx.doi.org/10.1016/j.cor.2025.107211 |
Volume | 184 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7MDUQP_piK88fIwZMQ16Zp2nob07Ep7KKD3UrWJDDBbYx69W_3pU1wgl48lVcaKF9eXr5HXr4HcINpj9BIvGmKezXl2h4SyqCgnCkVhLowTu1zIkZT_jSLZw0Y-LswtqzSxf46plfR2r3pOTR768Wi92JdFQkHpjh1g-8daOFDxE1o9cfPo8l3QE6q61f2e2oH-MPNqswLczzMElmMtk2Gft-etrac4REcOK5I-vXvHENDL9uw60vV23DoWzIQt0LbsL-lL3gC8z5BMonrtBKyIl4_nJQrUnpR82pmCPrZRtZash8bTdauldE9GTs5CTTIFN2VPLimPPS96mN1CtPh4-tgRF1TBVqEQpQ0C4qEq7DgJsriTBoWKoaLFnmOnKdKRVJLIyOVKJ0FHOmiCazil2FIC0SC-Vl0Bs3laqnPgYSZZqmaC5xtxWOTpVKaJBKGRSaQMQs6cOuxzNe1dkbui8recgQ-t8DnNfAd4B7t_IcD5Bjb_x528b9hl7Bnrbou5QqaiK--RnZRzruwc_cZdp0PfQFfg83k |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qBR8HH1WxPnPwJKzdzWZf3kq1tFp7sYXelnSTQAXbUtarv93JJsEKevG4j8DyZTL5hnz7DcANlj2xROLtpbhXe0zqQ0LuFx6jQviBLJR1-xzGvTF7mkSTGnTcvzBaVmlzv8npVba2d1oWzdZyNmu96lBFwoEljmnwvQGbLAoTreu7-_zWeWgDMHOUEHn6dXe0WYm8sMLDGpFGeK1Lod83p7UNp3sAe5Ypkrb5mEOoyXkDtpxQvQH7riEDseuzAbtr7oJHMG0TpJK4SisbK-Lcw0m5IKWzNK_mhWCUrbhxkv1YSbK0jYzuSd-aSeAFGWOwkgfbksd7r7pYHcO4-zjq9DzbUsErgjguvcwvEiaCgqkwizKuaCAoLllkOXyaChFyyRUPRSJk5jMki8rXfl-KIimIE6zOwhOozxdzeQokyCRNxTTGuRYsUlnKuUrCWNFQ-TyifhNuHZb50jhn5E5S9pYj8LkGPjfAN4E5tPMf059jZv972Nn_hl3Ddm_0MsgH_eHzOezoJ0ahcgF1xFpeIs8op1dVHH0BGCLOrw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Stackelberg+approach+to+transportation+infrastructure+planning%3A+Integrating+User+Decision-making&rft.jtitle=Computers+%26+operations+research&rft.au=Cepeda-Valero%2C+Oscar-Mauricio&rft.au=Torres-Delgado%2C+Jose-Fidel&rft.au=Gonz%C3%A1lez%2C+Andres+D.&rft.date=2025-12-01&rft.issn=0305-0548&rft.volume=184&rft.spage=107211&rft_id=info:doi/10.1016%2Fj.cor.2025.107211&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cor_2025_107211 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon |