BAMITA: Bayesian multiple imputation for tensor arrays

Data increasingly take the form of a multi-way array, or tensor, in several biomedical domains. Such tensors are often incompletely observed. For example, we are motivated by longitudinal microbiome studies in which several timepoints are missing for several subjects. There is a growing literature o...

Full description

Saved in:
Bibliographic Details
Published inBiostatistics (Oxford, England) Vol. 26; no. 1
Main Authors Jiang, Ziren, Li, Gen, Lock, Eric F
Format Journal Article
LanguageEnglish
Published England Oxford Publishing Limited (England) 14.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Data increasingly take the form of a multi-way array, or tensor, in several biomedical domains. Such tensors are often incompletely observed. For example, we are motivated by longitudinal microbiome studies in which several timepoints are missing for several subjects. There is a growing literature on missing data imputation for tensors. However, existing methods give a point estimate for missing values without capturing uncertainty. We propose a multiple imputation approach for tensors in a flexible Bayesian framework, that yields realistic simulated values for missing entries and can propagate uncertainty through subsequent analyses. Our model uses efficient and widely applicable conjugate priors for a CANDECOMP/PARAFAC (CP) factorization, with a separable residual covariance structure. This approach is shown to perform well with respect to both imputation accuracy and uncertainty calibration, for scenarios in which either single entries or entire fibers of the tensor are missing. For two microbiome applications, it is shown to accurately capture uncertainty in the full microbiome profile at missing timepoints and used to infer trends in species diversity for the population. Documented R code to perform our multiple imputation approach is available at https://github.com/lockEF/MultiwayImputation.
AbstractList Data increasingly take the form of a multi-way array, or tensor, in several biomedical domains. Such tensors are often incompletely observed. For example, we are motivated by longitudinal microbiome studies in which several timepoints are missing for several subjects. There is a growing literature on missing data imputation for tensors. However, existing methods give a point estimate for missing values without capturing uncertainty. We propose a multiple imputation approach for tensors in a flexible Bayesian framework, that yields realistic simulated values for missing entries and can propagate uncertainty through subsequent analyses. Our model uses efficient and widely applicable conjugate priors for a CANDECOMP/PARAFAC (CP) factorization, with a separable residual covariance structure. This approach is shown to perform well with respect to both imputation accuracy and uncertainty calibration, for scenarios in which either single entries or entire fibers of the tensor are missing. For two microbiome applications, it is shown to accurately capture uncertainty in the full microbiome profile at missing timepoints and used to infer trends in species diversity for the population. Documented R code to perform our multiple imputation approach is available at https://github.com/lockEF/MultiwayImputation.
Data increasingly take the form of a multi-way array, or tensor, in several biomedical domains. Such tensors are often incompletely observed. For example, we are motivated by longitudinal microbiome studies in which several timepoints are missing for several subjects. There is a growing literature on missing data imputation for tensors. However, existing methods give a point estimate for missing values without capturing uncertainty. We propose a multiple imputation approach for tensors in a flexible Bayesian framework, that yields realistic simulated values for missing entries and can propagate uncertainty through subsequent analyses. Our model uses efficient and widely applicable conjugate priors for a CANDECOMP/PARAFAC (CP) factorization, with a separable residual covariance structure. This approach is shown to perform well with respect to both imputation accuracy and uncertainty calibration, for scenarios in which either single entries or entire fibers of the tensor are missing. For two microbiome applications, it is shown to accurately capture uncertainty in the full microbiome profile at missing timepoints and used to infer trends in species diversity for the population. Documented R code to perform our multiple imputation approach is available at https://github.com/lockEF/MultiwayImputation.Data increasingly take the form of a multi-way array, or tensor, in several biomedical domains. Such tensors are often incompletely observed. For example, we are motivated by longitudinal microbiome studies in which several timepoints are missing for several subjects. There is a growing literature on missing data imputation for tensors. However, existing methods give a point estimate for missing values without capturing uncertainty. We propose a multiple imputation approach for tensors in a flexible Bayesian framework, that yields realistic simulated values for missing entries and can propagate uncertainty through subsequent analyses. Our model uses efficient and widely applicable conjugate priors for a CANDECOMP/PARAFAC (CP) factorization, with a separable residual covariance structure. This approach is shown to perform well with respect to both imputation accuracy and uncertainty calibration, for scenarios in which either single entries or entire fibers of the tensor are missing. For two microbiome applications, it is shown to accurately capture uncertainty in the full microbiome profile at missing timepoints and used to infer trends in species diversity for the population. Documented R code to perform our multiple imputation approach is available at https://github.com/lockEF/MultiwayImputation.
Author Lock, Eric F
Li, Gen
Jiang, Ziren
Author_xml – sequence: 1
  givenname: Ziren
  surname: Jiang
  fullname: Jiang, Ziren
– sequence: 2
  givenname: Gen
  orcidid: 0000-0002-7298-2141
  surname: Li
  fullname: Li, Gen
– sequence: 3
  givenname: Eric F
  orcidid: 0000-0003-4663-2356
  surname: Lock
  fullname: Lock, Eric F
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39673775$$D View this record in MEDLINE/PubMed
BookMark eNpdkMtOwzAQRS1URFvgE0CR2LAJdfxKza6teFQqYlPWlh1PJJckLnYi0b8npQUJVjOLozt3zhgNGt8AQlcZvsuwpBPjfGx162Lrijh5_9SAWX6CRhkT05RRng--d54ywdgQjWPcYEwIFfQMDakUOc1zPkJiPntZrmf3yVzvIDrdJHVXtW5bQeLqbbe_4Juk9CFpoYn90CHoXbxAp6WuIlwe5zl6e3xYL57T1evTcjFbpUUmRJZOraRWCq4ZANX7OiUGQ40GojXhpTXUMmGMBJwBBsKZKcCykgAn1kqg5-j2kLsN_qOD2KraxQKqSjfgu6hon9n_gRnp0Zt_6MZ3oenbKUoolTkTEvfU9ZHqTA1WbYOrddipHyM9wA9AEXyMAcpfJMNqb179Ma-O5ukXa9t7TA
Cites_doi 10.1111/1467-9868.00353
10.1109/TNNLS.2018.2851612
10.1137/07070111X
10.1080/10618600.2023.2257783
10.1016/j.chemolab.2010.08.004
10.1214/24-BA1423
10.1038/ng.3624
10.1109/TPAMI.2013.164
10.1214/11-BA606
10.1007/BF02310791
10.1097/NNR.0000000000000208
10.1214/15-AOAS839
10.1093/bioinformatics/btr597
10.1016/j.trc.2012.12.007
10.1109/TSP.2016.2586759
10.1002/j.1538-7305.1948.tb01338.x
10.4310/23-SII786
10.1007/BF02289464
10.1016/j.trc.2018.11.003
10.1109/TPAMI.2012.39
ContentType Journal Article
Copyright The Author 2024. Published by Oxford University Press. All rights reserved. For Permissions, email: journals.permissions@oup.com.
The Author 2024. Published by Oxford University Press. All rights reserved. For Permissions, email: journals.permissions@oup.com
Copyright_xml – notice: The Author 2024. Published by Oxford University Press. All rights reserved. For Permissions, email: journals.permissions@oup.com.
– notice: The Author 2024. Published by Oxford University Press. All rights reserved. For Permissions, email: journals.permissions@oup.com
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
DOI 10.1093/biostatistics/kxae047
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Nursing & Allied Health Premium
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1468-4357
ExternalDocumentID 39673775
10_1093_biostatistics_kxae047
Genre Journal Article
GrantInformation_xml – fundername: NIH HHS
  grantid: R01-HG010731
– fundername: NIGMS NIH HHS
  grantid: R01 GM130622
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5VS
5WA
6PF
70D
AAIJN
AAJKP
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
AAWTL
AAYXX
ABDFA
ABDTM
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABLJU
ABNKS
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYJX
ADYVW
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHGBF
AHMBA
AHXPO
AIJHB
AJBYB
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
ANAKG
APIBT
APWMN
ATGXG
AXUDD
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQUQU
BTQHN
CDBKE
CITATION
CS3
CZ4
DAKXR
DILTD
DU5
D~K
E3Z
EBS
EE~
F5P
F9B
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KOP
KQ8
KSI
KSN
M-Z
N9A
NGC
NMDNZ
NOMLY
O9-
ODMLO
OJQWA
OJZSN
OK1
OVD
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
RD5
ROL
ROX
RUSNO
RW1
RXO
TEORI
TJP
TN5
TR2
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
ID FETCH-LOGICAL-c1661-8d93d965a4ee3a1465f0eb3bae2aa25fdb3d46bb9e01e0e254bced4f2e52dd9e3
ISSN 1465-4644
1468-4357
IngestDate Fri Jul 11 15:43:41 EDT 2025
Thu Aug 28 04:02:24 EDT 2025
Thu Jul 10 06:32:29 EDT 2025
Tue Jul 01 03:45:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords multiple imputation
Bayesian inference
microbiome data
missing data
multiway data
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
The Author 2024. Published by Oxford University Press. All rights reserved. For Permissions, email: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1661-8d93d965a4ee3a1465f0eb3bae2aa25fdb3d46bb9e01e0e254bced4f2e52dd9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4663-2356
0000-0002-7298-2141
PMID 39673775
PQID 3233974690
PQPubID 26167
ParticipantIDs proquest_miscellaneous_3146775042
proquest_journals_3233974690
pubmed_primary_39673775
crossref_primary_10_1093_biostatistics_kxae047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-14
PublicationDateYYYYMMDD 2024-12-14
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-14
  day: 14
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Biostatistics (Oxford, England)
PublicationTitleAlternate Biostatistics
PublicationYear 2024
Publisher Oxford Publishing Limited (England)
Publisher_xml – name: Oxford Publishing Limited (England)
References Carroll (2024121421595674700_kxae047-B2) 1970; 35
Salakhutdinov (2024121421595674700_kxae047-B15) 2008
Hoff (2024121421595674700_kxae047-B10) 2015; 9
Shannon (2024121421595674700_kxae047-B16) 1948; 27
Frühwirth-Schnatter (2024121421595674700_kxae047-B6) 2024; 1
Spiegelhalter (2024121421595674700_kxae047-B17) 2002; 64
Guan (2024121421595674700_kxae047-B7) 2024; 33
Guhaniyogi (2024121421595674700_kxae047-B8) 2017; 18
Thukral (2024121421595674700_kxae047-B20) 2017; 54
Tucker (2024121421595674700_kxae047-B21) 1966; 31
Tan (2024121421595674700_kxae047-B19) 2013; 28
Hoff (2024121421595674700_kxae047-B9) 2011; 6
Wu (2024121421595674700_kxae047-B23) 2018; 30
Hore (2024121421595674700_kxae047-B11) 2016; 48
Acar (2024121421595674700_kxae047-B1) 2011; 106
Chen (2024121421595674700_kxae047-B3) 2019; 98
Cong (2024121421595674700_kxae047-B5) 2017; 66
Kolda (2024121421595674700_kxae047-B12) 2009; 51
Yokota (2024121421595674700_kxae047-B24) 2016; 64
Mazumder (2024121421595674700_kxae047-B14) 2010; 11
Stekhoven (2024121421595674700_kxae047-B18) 2012; 28
Chen (2024121421595674700_kxae047-B4) 2013; 36
Wang (2024121421595674700_kxae047-B22) 2024; 17
Liu (2024121421595674700_kxae047-B13) 2012; 35
39575114 - ArXiv. 2024 Oct 30:arXiv:2410.23412v1.
References_xml – volume: 11
  start-page: 2287
  year: 2010
  ident: 2024121421595674700_kxae047-B14
  article-title: Spectral regularization algorithms for learning large incomplete matrices
  publication-title: J Mach Learn Res
– volume: 64
  start-page: 583
  year: 2002
  ident: 2024121421595674700_kxae047-B17
  article-title: Bayesian measures of model complexity and fit
  publication-title: J R Stat Soc Ser B (Stat Methodol
  doi: 10.1111/1467-9868.00353
– volume: 30
  start-page: 751
  year: 2018
  ident: 2024121421595674700_kxae047-B23
  article-title: A fused CP factorization method for incomplete tensors
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2851612
– volume: 51
  start-page: 455
  year: 2009
  ident: 2024121421595674700_kxae047-B12
  article-title: Tensor decompositions and applications
  publication-title: SIAM Rev.
  doi: 10.1137/07070111X
– volume: 33
  start-page: 538
  year: 2024
  ident: 2024121421595674700_kxae047-B7
  article-title: Smooth and probabilistic parafac model with auxiliary covariates
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.2023.2257783
– volume: 106
  start-page: 41
  year: 2011
  ident: 2024121421595674700_kxae047-B1
  article-title: Scalable tensor factorizations for incomplete data
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2010.08.004
– volume: 1
  start-page: 1
  year: 2024
  ident: 2024121421595674700_kxae047-B6
  article-title: Sparse Bayesian factor analysis when the number of factors is unknown
  publication-title: Bayesian Anal.
  doi: 10.1214/24-BA1423
– volume: 48
  start-page: 1094
  year: 2016
  ident: 2024121421595674700_kxae047-B11
  article-title: Tensor decomposition for multiple-tissue gene expression experiments
  publication-title: Nat Genet
  doi: 10.1038/ng.3624
– volume: 36
  start-page: 577
  year: 2013
  ident: 2024121421595674700_kxae047-B4
  article-title: Simultaneous tensor decomposition and completion using factor priors
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.164
– volume: 6
  start-page: 179
  year: 2011
  ident: 2024121421595674700_kxae047-B9
  article-title: Separable covariance arrays via the Tucker product, with applications to multivariate relational data
  publication-title: Bayesian Anal.
  doi: 10.1214/11-BA606
– volume: 35
  start-page: 283
  year: 1970
  ident: 2024121421595674700_kxae047-B2
  article-title: Analysis of individual differences in multidimensional scaling via an n-way generalization of “eckart-young” decomposition
  publication-title: Psychometrika
  doi: 10.1007/BF02310791
– start-page: 880
  year: 2008
  ident: 2024121421595674700_kxae047-B15
– volume: 66
  start-page: 123
  year: 2017
  ident: 2024121421595674700_kxae047-B5
  article-title: Influence of feeding type on gut microbiome development in hospitalized preterm infants
  publication-title: Nursing Res
  doi: 10.1097/NNR.0000000000000208
– volume: 54
  start-page: 1
  year: 2017
  ident: 2024121421595674700_kxae047-B20
  article-title: A review on measurement of alpha diversity in biology
  publication-title: Agric Res J
– volume: 9
  start-page: 1169
  year: 2015
  ident: 2024121421595674700_kxae047-B10
  article-title: Multilinear tensor regression for longitudinal relational data
  publication-title: Annals Appl Stat
  doi: 10.1214/15-AOAS839
– volume: 28
  start-page: 112
  year: 2012
  ident: 2024121421595674700_kxae047-B18
  article-title: Missforest—non-parametric missing value imputation for mixed-type data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr597
– volume: 28
  start-page: 15
  year: 2013
  ident: 2024121421595674700_kxae047-B19
  article-title: A tensor-based method for missing traffic data completion
  publication-title: Trans Res C Emerg Technol
  doi: 10.1016/j.trc.2012.12.007
– volume: 64
  start-page: 5423
  year: 2016
  ident: 2024121421595674700_kxae047-B24
  article-title: Smooth parafac decomposition for tensor completion
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2016.2586759
– volume: 18
  start-page: 1
  year: 2017
  ident: 2024121421595674700_kxae047-B8
  article-title: Bayesian tensor regression
  publication-title: J Mach Learn Res
– volume: 27
  start-page: 379
  year: 1948
  ident: 2024121421595674700_kxae047-B16
  article-title: A mathematical theory of communication
  publication-title: Bell Syst Techn J
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– volume: 17
  start-page: 199
  year: 2024
  ident: 2024121421595674700_kxae047-B22
  article-title: Bayesian tensor-on-tensor regression with efficient computation
  publication-title: Stat Its Interface.
  doi: 10.4310/23-SII786
– volume: 31
  start-page: 279
  year: 1966
  ident: 2024121421595674700_kxae047-B21
  article-title: Some mathematical notes on three-mode factor analysis
  publication-title: Psychometrika.
  doi: 10.1007/BF02289464
– volume: 98
  start-page: 73
  year: 2019
  ident: 2024121421595674700_kxae047-B3
  article-title: A Bayesian tensor decomposition approach for spatiotemporal traffic data imputation
  publication-title: Transport Res C Emerging Technol
  doi: 10.1016/j.trc.2018.11.003
– volume: 35
  start-page: 208
  year: 2012
  ident: 2024121421595674700_kxae047-B13
  article-title: Tensor completion for estimating missing values in visual data
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.39
– reference: 39575114 - ArXiv. 2024 Oct 30:arXiv:2410.23412v1.
SSID ssj0022363
Score 2.3935537
Snippet Data increasingly take the form of a multi-way array, or tensor, in several biomedical domains. Such tensors are often incompletely observed. For example, we...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Arrays
Bayes Theorem
Bayesian analysis
Biostatistics - methods
Data Interpretation, Statistical
Humans
Microbiomes
Microbiota
Missing data
Models, Statistical
Species diversity
Tensors
Uncertainty
Title BAMITA: Bayesian multiple imputation for tensor arrays
URI https://www.ncbi.nlm.nih.gov/pubmed/39673775
https://www.proquest.com/docview/3233974690
https://www.proquest.com/docview/3146775042
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46EXwR79YbFXzt7JK0W3zbRBneQJggvpSkPYUibLJNcP56T5q0a0VFfSlbOk7TfN3pd07OhZATjpZOysPUS0MBHkeC60mFNg_q41SmHFVmnsV_exf2H_jVY_BYtGW32SVT1Yzfv8wr-Q-qOIa46izZPyBbCsUB_Iz44hERxuOvMO51UfPkHvKenEGeDlkGCGa6W0MlkhDNVR0vOR7L2aS2k5uNdFKRrdesi4--FfHutsFHxVlwlVn38lNWySG7yYx3fT5QUbI2dNg6FmhevtAkdFpdyMPA46Epz9iEYqzjIcNqf6l9TWUqVZ03fn9-k-Cbspr1etef3kNldKDZF2dRTVBkxSySJYoWgW5WcX1fbhghycmb5pVzLpK1BDutiTm1Yuo05BvbIucYgzWyao0Dt2uQXicLMNwgy6Zd6GyThAbvM7dA2y3Qdudou4iea9B2Ddpb5OHyYnDe92zfCy9uIV3yOolgiQgDyQGY1LeU-qCYkkClpEGaKJbwUCkBfgt8QBNfxZDwlEJAk0QA2yaN4WgIu8SlVEgRC-nHgFS51ZGMIR9hwGWCpr_iDmkWyxC9mPIm0Y_L75CDYrEi-0-YRIwypLXa0eKQ4_I06im9-SSHMHrF3-hXsu4lQB2yYxa5vCITultSO9j762z2ycr8yT0gjen4FQ6RJE7VUf54fABTOmt-
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BAMITA%3A+Bayesian+multiple+imputation+for+tensor+arrays&rft.jtitle=Biostatistics+%28Oxford%2C+England%29&rft.au=Jiang%2C+Ziren&rft.au=Li%2C+Gen&rft.au=Lock%2C+Eric+F&rft.date=2024-12-14&rft.issn=1465-4644&rft.eissn=1468-4357&rft_id=info:doi/10.1093%2Fbiostatistics%2Fkxae047&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_biostatistics_kxae047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-4644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-4644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-4644&client=summon