Atomistic simulations of mechanically activated reactions for oxygen release from polymers
Singlet oxygen molecules are useful in several therapeutic applications involving photo-activated release of oxygen from carrier molecules toward targeted cells. However, the drawbacks of existing photo-activated methods encourage the development of alternatives, particularly polymer mechanophores t...
Saved in:
Published in | RSC Mechanochemistry Vol. 1; no. 4; pp. 361 - 366 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
10.09.2024
|
Online Access | Get full text |
ISSN | 2976-8683 2976-8683 |
DOI | 10.1039/d4mr00004h |
Cover
Loading…
Abstract | Singlet oxygen molecules are useful in several therapeutic applications involving photo-activated release of oxygen from carrier molecules toward targeted cells. However, the drawbacks of existing photo-activated methods encourage the development of alternatives, particularly polymer mechanophores that act as oxygen carriers. Here, we present a reactive molecular dynamics simulation-based study of an endoperoxide-based polymer for which oxygen release can be activated either thermally or mechanochemically. Simulations of the polymers heated are compared to simulations of the polymers subject to compression and shear at room temperature. Results show that oxygen release is preceded by deformation of the anthracene ring in both thermal and mechanochemical reactions. However, in the mechanically activated reaction, this deformation is imposed directly by chemical bonding between the oxygen and atoms in the shearing surfaces, eliminating the need for high temperature to initiate the oxygen release. These results could be useful in the development of alternative therapeutic protocols that do not rely on photo-activated reactions.
Reactive molecular dynamics simulations differentiate thermal and mechanochemical pathways for oxygen release from polymers with implications for therapeutic applications. |
---|---|
AbstractList | Singlet oxygen molecules are useful in several therapeutic applications involving photo-activated release of oxygen from carrier molecules toward targeted cells. However, the drawbacks of existing photo-activated methods encourage the development of alternatives, particularly polymer mechanophores that act as oxygen carriers. Here, we present a reactive molecular dynamics simulation-based study of an endoperoxide-based polymer for which oxygen release can be activated either thermally or mechanochemically. Simulations of the polymers heated are compared to simulations of the polymers subject to compression and shear at room temperature. Results show that oxygen release is preceded by deformation of the anthracene ring in both thermal and mechanochemical reactions. However, in the mechanically activated reaction, this deformation is imposed directly by chemical bonding between the oxygen and atoms in the shearing surfaces, eliminating the need for high temperature to initiate the oxygen release. These results could be useful in the development of alternative therapeutic protocols that do not rely on photo-activated reactions. Singlet oxygen molecules are useful in several therapeutic applications involving photo-activated release of oxygen from carrier molecules toward targeted cells. However, the drawbacks of existing photo-activated methods encourage the development of alternatives, particularly polymer mechanophores that act as oxygen carriers. Here, we present a reactive molecular dynamics simulation-based study of an endoperoxide-based polymer for which oxygen release can be activated either thermally or mechanochemically. Simulations of the polymers heated are compared to simulations of the polymers subject to compression and shear at room temperature. Results show that oxygen release is preceded by deformation of the anthracene ring in both thermal and mechanochemical reactions. However, in the mechanically activated reaction, this deformation is imposed directly by chemical bonding between the oxygen and atoms in the shearing surfaces, eliminating the need for high temperature to initiate the oxygen release. These results could be useful in the development of alternative therapeutic protocols that do not rely on photo-activated reactions. Reactive molecular dynamics simulations differentiate thermal and mechanochemical pathways for oxygen release from polymers with implications for therapeutic applications. |
Author | Cobeña-Reyes, José Martini, Ashlie Bhuiyan, Fakhrul H |
AuthorAffiliation | University of California Merced Department of Mechanical Engineering |
AuthorAffiliation_xml | – sequence: 0 name: University of California Merced – sequence: 0 name: Department of Mechanical Engineering |
Author_xml | – sequence: 1 givenname: José surname: Cobeña-Reyes fullname: Cobeña-Reyes, José – sequence: 2 givenname: Fakhrul H surname: Bhuiyan fullname: Bhuiyan, Fakhrul H – sequence: 3 givenname: Ashlie surname: Martini fullname: Martini, Ashlie |
BookMark | eNpNkM9LwzAUx4NMcM5dvAs5C9Wkr22y45g_JkwE2clLydIXG2makVSx_72tE_Vd3pcvHx6PzymZtL5FQs45u-IMFtdV5gIbJquPyDRdiCKRhYTJv3xC5jG-DQgAh1yyKXlZdt7Z2FlNo3XvjeqsbyP1hjrUtWqtVk3TU6U7-6E6rGjAMY-M8YH6z_4V26FsUEWkJnhH977pHYZ4Ro6NaiLOf_aMbO9ut6t1snm6f1gtN4nmRV4nQg-fVRJYlcudAM0EKKO4gEznWKVQFGCMVKkAxnfpQhudp9pgMfCpFAgzcnk4q4OPMaAp98E6FfqSs3L0Ut5kj8_fXtYDfHGAQ9S_3J83-AJK2GMS |
Cites_doi | 10.1007/s11249-016-0692-9 10.1021/acs.langmuir.8b00315 10.1021/acs.chemrev.6b00458 10.1016/j.biomaterials.2017.09.007 10.1016/j.apsusc.2022.153209 10.1039/c3cc48293f 10.1088/0965-0393/18/1/015012 10.1126/science.adf5273 10.1016/j.cpc.2021.108171 10.1021/jacs.1c11868 10.1039/C9NR00958B 10.1039/D2FD00086E 10.1002/marc.202000654 10.1039/D2RA06036A 10.1002/admi.202300218 10.1021/ja5048297 10.1021/jp5121146 10.1021/jacs.0c09220 10.3762/bjoc.18.128 10.1021/acs.jpclett.2c03493 10.1021/jp004368u 10.1115/1.4029635 10.1039/D0RA00831A 10.1002/adfm.202112000 10.1039/D0OB01744B 10.1007/s11249-020-01378-7 10.1021/jp201599t 10.1002/cplu.201900737 10.1039/D0SM00465K 10.1073/pnas.2109791119 10.1021/ja403757p |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1039/d4mr00004h |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2976-8683 |
EndPage | 366 |
ExternalDocumentID | 10_1039_D4MR00004H d4mr00004h |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS ANUXI GROUPED_DOAJ M~E AAYXX ABIQK CITATION H13 |
ID | FETCH-LOGICAL-c165h-7c868d830d58b73c073afa1734c5ed23663ff8a27301b29cfc52cfe60d5287e3 |
ISSN | 2976-8683 |
IngestDate | Tue Jul 01 02:18:54 EDT 2025 Tue Dec 17 20:58:19 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c165h-7c868d830d58b73c073afa1734c5ed23663ff8a27301b29cfc52cfe60d5287e3 |
Notes | https://doi.org/10.1039/d4mr00004h Electronic supplementary information (ESI) available. See DOI |
ORCID | 0000-0003-0987-0902 0000-0003-2017-6081 |
OpenAccessLink | http://pubs.rsc.org/en/content/articlepdf/2024/MR/D4MR00004H |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1039_D4MR00004H rsc_primary_d4mr00004h |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240910 2024-09-10 |
PublicationDateYYYYMMDD | 2024-09-10 |
PublicationDate_xml | – month: 9 year: 2024 text: 20240910 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | RSC Mechanochemistry |
PublicationYear | 2024 |
References | Stauch (D4MR00004H/cit16/1) 2016; 116 Avilés (D4MR00004H/cit21/1) 2023 Bhuiyan (D4MR00004H/cit27/1) 2022; 591 Salim (D4MR00004H/cit15/1) 2022; 12 Hernández (D4MR00004H/cit6/1) 2022; 18 Adams (D4MR00004H/cit10/1) 2015; 119 Bowers (D4MR00004H/cit22/1) 2006 Huang (D4MR00004H/cit3/1) 2019 Brega (D4MR00004H/cit7/1) 2020; 18 Bhuiyan (D4MR00004H/cit28/1) 2023; 241 Li (D4MR00004H/cit1/1) 2022; 32 Tian (D4MR00004H/cit11/1) 2020; 142 Stratigaki (D4MR00004H/cit13/1) 2020; 85 Khajeh (D4MR00004H/cit32/1) 2018; 34 Thompson (D4MR00004H/cit25/1) 2022; 271 Deneke (D4MR00004H/cit8/1) 2020; 16 Martínez-Tong (D4MR00004H/cit14/1) 2021; 42 Van Duin (D4MR00004H/cit19/1) 2001; 105 Zhang (D4MR00004H/cit29/1) 2016; 63 Versaw (D4MR00004H/cit12/1) 2021; 143 Vashisth (D4MR00004H/cit30/1) 2019; 11 Turksoy (D4MR00004H/cit2/1) 2020; 10 Guo (D4MR00004H/cit24/1) 2015; 82 Martini (D4MR00004H/cit33/1) 2021; 69 Kim (D4MR00004H/cit9/1) 2022; 119 Zholdassov (D4MR00004H/cit31/1) 2023; 380 Martins (D4MR00004H/cit5/1) 2014; 50 Larsen (D4MR00004H/cit17/1) 2013; 135 Liu (D4MR00004H/cit4/1) 2017; 146 Liu (D4MR00004H/cit20/1) 2011; 115 Liao (D4MR00004H/cit23/1) 2014; 136 Stukowski (D4MR00004H/cit26/1) 2009; 18 Walter (D4MR00004H/cit18/1) 2023; 14 |
References_xml | – issn: 2006 volume-title: , Scalable algorithms for molecular dynamics simulations on commodity clusters end-page: 84 publication-title: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing doi: Bowers Chow Xu Dror Eastwood Gregersen Klepeis Kolossvary Moraes Sacerdoti – volume: 63 start-page: 1 year: 2016 ident: D4MR00004H/cit29/1 publication-title: Tribol. Lett. doi: 10.1007/s11249-016-0692-9 – volume: 34 start-page: 5971 year: 2018 ident: D4MR00004H/cit32/1 publication-title: Langmuir doi: 10.1021/acs.langmuir.8b00315 – start-page: 9269081 year: 2019 ident: D4MR00004H/cit3/1 publication-title: Research – volume: 116 start-page: 14137 year: 2016 ident: D4MR00004H/cit16/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00458 – volume: 146 start-page: 40 year: 2017 ident: D4MR00004H/cit4/1 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.09.007 – volume: 591 start-page: 153209 year: 2022 ident: D4MR00004H/cit27/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.153209 – volume: 50 start-page: 3317 year: 2014 ident: D4MR00004H/cit5/1 publication-title: Chem. Commun. doi: 10.1039/c3cc48293f – volume: 18 start-page: 015012 year: 2009 ident: D4MR00004H/cit26/1 publication-title: Modell. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/18/1/015012 – volume: 380 start-page: 1053 year: 2023 ident: D4MR00004H/cit31/1 publication-title: Science doi: 10.1126/science.adf5273 – volume: 271 start-page: 108171 year: 2022 ident: D4MR00004H/cit25/1 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.108171 – volume: 143 start-page: 21461 year: 2021 ident: D4MR00004H/cit12/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c11868 – volume: 11 start-page: 7447 year: 2019 ident: D4MR00004H/cit30/1 publication-title: Nanoscale doi: 10.1039/C9NR00958B – volume: 241 start-page: 194 year: 2023 ident: D4MR00004H/cit28/1 publication-title: Faraday Discuss. doi: 10.1039/D2FD00086E – volume: 42 start-page: 2000654 year: 2021 ident: D4MR00004H/cit14/1 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.202000654 – volume: 12 start-page: 33835 year: 2022 ident: D4MR00004H/cit15/1 publication-title: RSC Adv. doi: 10.1039/D2RA06036A – start-page: 2300218 year: 2023 ident: D4MR00004H/cit21/1 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202300218 – volume: 136 start-page: 12194 year: 2014 ident: D4MR00004H/cit23/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5048297 – volume: 119 start-page: 7115 year: 2015 ident: D4MR00004H/cit10/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp5121146 – volume: 142 start-page: 18687 year: 2020 ident: D4MR00004H/cit11/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c09220 – volume: 18 start-page: 1225 year: 2022 ident: D4MR00004H/cit6/1 publication-title: Beilstein J. Org. Chem. doi: 10.3762/bjoc.18.128 – volume: 14 start-page: 1445 year: 2023 ident: D4MR00004H/cit18/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c03493 – volume: 105 start-page: 9396 year: 2001 ident: D4MR00004H/cit19/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp004368u – volume: 82 start-page: 031005 year: 2015 ident: D4MR00004H/cit24/1 publication-title: J. Appl. Mech. doi: 10.1115/1.4029635 – volume: 10 start-page: 9182 year: 2020 ident: D4MR00004H/cit2/1 publication-title: RSC Adv. doi: 10.1039/D0RA00831A – volume: 32 start-page: 2112000 year: 2022 ident: D4MR00004H/cit1/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202112000 – volume: 18 start-page: 9191 year: 2020 ident: D4MR00004H/cit7/1 publication-title: Org. Biomol. Chem. doi: 10.1039/D0OB01744B – volume: 69 start-page: 1 year: 2021 ident: D4MR00004H/cit33/1 publication-title: Tribol. Lett. doi: 10.1007/s11249-020-01378-7 – volume: 115 start-page: 11016 year: 2011 ident: D4MR00004H/cit20/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp201599t – volume: 85 start-page: 1095 year: 2020 ident: D4MR00004H/cit13/1 publication-title: ChemPlusChem doi: 10.1002/cplu.201900737 – volume: 16 start-page: 6230 year: 2020 ident: D4MR00004H/cit8/1 publication-title: Soft Matter doi: 10.1039/D0SM00465K – volume: 119 start-page: e2109791119 year: 2022 ident: D4MR00004H/cit9/1 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2109791119 – start-page: 84 volume-title: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing year: 2006 ident: D4MR00004H/cit22/1 – volume: 135 start-page: 8189 year: 2013 ident: D4MR00004H/cit17/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403757p |
SSID | ssj0003313580 |
Score | 2.2679594 |
Snippet | Singlet oxygen molecules are useful in several therapeutic applications involving photo-activated release of oxygen from carrier molecules toward targeted... |
SourceID | crossref rsc |
SourceType | Index Database Publisher |
StartPage | 361 |
Title | Atomistic simulations of mechanically activated reactions for oxygen release from polymers |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe6ceGCQGNiwCZLcKtckthpnGPZh6pJ5TCKNHGpbNdRKppm6pqJ7MDfzrMdJ4HtMLhElWu7rd-v78PvC6GPiSlaJhklEoxlwhIdEQGSlkRLU29L6IALk-A8-zKefmOX1_H1YHDXi1qqdnKk7h_NK_kfqsIY0NVkyf4DZdtNYQBeA33hCRSG55NoPNmVhS20PLxdFVUvqq3QJqHXnP-6tuUy7oTRLEFBVG6OCS4sf9aws-2aAqLMJZrclOu6aILivc569fV0OLMbmu5arj1c67oopTa-9s-hIFe61t6r4Pzvra2fV6va3bReiB_5tloPp6PuLtwUMrBBBZPbfL3S_YuIiJmoiSYk1fKrCDQbwseuL81IPzLmGW4PV6zHPKkry97IYeq6sTxg8QE1FVLP2My2ymPTTpB55_1f8q2NOrT-dpouurV76FkE5oVh6LNf3d0cpaHxDpu-hP77-8q2NP3ULf9Dl9nb-pYxVjWZv0QvGpsCTxxAXqGB3hyg7y04cA8cuMxwHxy4BQduwYEBHNiBAzfgwAYc2IPjNZpfnM9Pp6RppEFUOI5zkij4CUtOg2XMZUIVsHWRiTChTMUa_pSgdWYZF5Hh9jJKVabiSGV6DPPBoNb0EO1vyo1-gzBXnEmaBJKHivFApJngLNXwMYqFIFeP0Ad_IosbVy5l8fDYj9AhHFY7YcmKrX0jf_uk5e_Q8w5_79H-blvpY1ANd_LEXqmcWGr-BlpsZQ0 |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomistic+simulations+of+mechanically+activated+reactions+for+oxygen+release+from+polymers&rft.jtitle=RSC+Mechanochemistry&rft.au=Cobe%C3%B1a-Reyes%2C+Jos%C3%A9&rft.au=Bhuiyan%2C+Fakhrul+H.&rft.au=Martini%2C+Ashlie&rft.date=2024-09-10&rft.issn=2976-8683&rft.eissn=2976-8683&rft.volume=1&rft.issue=4&rft.spage=361&rft.epage=366&rft_id=info:doi/10.1039%2FD4MR00004H&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D4MR00004H |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2976-8683&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2976-8683&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2976-8683&client=summon |