Atomistic simulations of mechanically activated reactions for oxygen release from polymers

Singlet oxygen molecules are useful in several therapeutic applications involving photo-activated release of oxygen from carrier molecules toward targeted cells. However, the drawbacks of existing photo-activated methods encourage the development of alternatives, particularly polymer mechanophores t...

Full description

Saved in:
Bibliographic Details
Published inRSC Mechanochemistry Vol. 1; no. 4; pp. 361 - 366
Main Authors Cobeña-Reyes, José, Bhuiyan, Fakhrul H, Martini, Ashlie
Format Journal Article
LanguageEnglish
Published 10.09.2024
Online AccessGet full text
ISSN2976-8683
2976-8683
DOI10.1039/d4mr00004h

Cover

Loading…
Abstract Singlet oxygen molecules are useful in several therapeutic applications involving photo-activated release of oxygen from carrier molecules toward targeted cells. However, the drawbacks of existing photo-activated methods encourage the development of alternatives, particularly polymer mechanophores that act as oxygen carriers. Here, we present a reactive molecular dynamics simulation-based study of an endoperoxide-based polymer for which oxygen release can be activated either thermally or mechanochemically. Simulations of the polymers heated are compared to simulations of the polymers subject to compression and shear at room temperature. Results show that oxygen release is preceded by deformation of the anthracene ring in both thermal and mechanochemical reactions. However, in the mechanically activated reaction, this deformation is imposed directly by chemical bonding between the oxygen and atoms in the shearing surfaces, eliminating the need for high temperature to initiate the oxygen release. These results could be useful in the development of alternative therapeutic protocols that do not rely on photo-activated reactions. Reactive molecular dynamics simulations differentiate thermal and mechanochemical pathways for oxygen release from polymers with implications for therapeutic applications.
AbstractList Singlet oxygen molecules are useful in several therapeutic applications involving photo-activated release of oxygen from carrier molecules toward targeted cells. However, the drawbacks of existing photo-activated methods encourage the development of alternatives, particularly polymer mechanophores that act as oxygen carriers. Here, we present a reactive molecular dynamics simulation-based study of an endoperoxide-based polymer for which oxygen release can be activated either thermally or mechanochemically. Simulations of the polymers heated are compared to simulations of the polymers subject to compression and shear at room temperature. Results show that oxygen release is preceded by deformation of the anthracene ring in both thermal and mechanochemical reactions. However, in the mechanically activated reaction, this deformation is imposed directly by chemical bonding between the oxygen and atoms in the shearing surfaces, eliminating the need for high temperature to initiate the oxygen release. These results could be useful in the development of alternative therapeutic protocols that do not rely on photo-activated reactions.
Singlet oxygen molecules are useful in several therapeutic applications involving photo-activated release of oxygen from carrier molecules toward targeted cells. However, the drawbacks of existing photo-activated methods encourage the development of alternatives, particularly polymer mechanophores that act as oxygen carriers. Here, we present a reactive molecular dynamics simulation-based study of an endoperoxide-based polymer for which oxygen release can be activated either thermally or mechanochemically. Simulations of the polymers heated are compared to simulations of the polymers subject to compression and shear at room temperature. Results show that oxygen release is preceded by deformation of the anthracene ring in both thermal and mechanochemical reactions. However, in the mechanically activated reaction, this deformation is imposed directly by chemical bonding between the oxygen and atoms in the shearing surfaces, eliminating the need for high temperature to initiate the oxygen release. These results could be useful in the development of alternative therapeutic protocols that do not rely on photo-activated reactions. Reactive molecular dynamics simulations differentiate thermal and mechanochemical pathways for oxygen release from polymers with implications for therapeutic applications.
Author Cobeña-Reyes, José
Martini, Ashlie
Bhuiyan, Fakhrul H
AuthorAffiliation University of California Merced
Department of Mechanical Engineering
AuthorAffiliation_xml – sequence: 0
  name: University of California Merced
– sequence: 0
  name: Department of Mechanical Engineering
Author_xml – sequence: 1
  givenname: José
  surname: Cobeña-Reyes
  fullname: Cobeña-Reyes, José
– sequence: 2
  givenname: Fakhrul H
  surname: Bhuiyan
  fullname: Bhuiyan, Fakhrul H
– sequence: 3
  givenname: Ashlie
  surname: Martini
  fullname: Martini, Ashlie
BookMark eNpNkM9LwzAUx4NMcM5dvAs5C9Wkr22y45g_JkwE2clLydIXG2makVSx_72tE_Vd3pcvHx6PzymZtL5FQs45u-IMFtdV5gIbJquPyDRdiCKRhYTJv3xC5jG-DQgAh1yyKXlZdt7Z2FlNo3XvjeqsbyP1hjrUtWqtVk3TU6U7-6E6rGjAMY-M8YH6z_4V26FsUEWkJnhH977pHYZ4Ro6NaiLOf_aMbO9ut6t1snm6f1gtN4nmRV4nQg-fVRJYlcudAM0EKKO4gEznWKVQFGCMVKkAxnfpQhudp9pgMfCpFAgzcnk4q4OPMaAp98E6FfqSs3L0Ut5kj8_fXtYDfHGAQ9S_3J83-AJK2GMS
Cites_doi 10.1007/s11249-016-0692-9
10.1021/acs.langmuir.8b00315
10.1021/acs.chemrev.6b00458
10.1016/j.biomaterials.2017.09.007
10.1016/j.apsusc.2022.153209
10.1039/c3cc48293f
10.1088/0965-0393/18/1/015012
10.1126/science.adf5273
10.1016/j.cpc.2021.108171
10.1021/jacs.1c11868
10.1039/C9NR00958B
10.1039/D2FD00086E
10.1002/marc.202000654
10.1039/D2RA06036A
10.1002/admi.202300218
10.1021/ja5048297
10.1021/jp5121146
10.1021/jacs.0c09220
10.3762/bjoc.18.128
10.1021/acs.jpclett.2c03493
10.1021/jp004368u
10.1115/1.4029635
10.1039/D0RA00831A
10.1002/adfm.202112000
10.1039/D0OB01744B
10.1007/s11249-020-01378-7
10.1021/jp201599t
10.1002/cplu.201900737
10.1039/D0SM00465K
10.1073/pnas.2109791119
10.1021/ja403757p
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1039/d4mr00004h
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
EISSN 2976-8683
EndPage 366
ExternalDocumentID 10_1039_D4MR00004H
d4mr00004h
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
ANUXI
GROUPED_DOAJ
M~E
AAYXX
ABIQK
CITATION
H13
ID FETCH-LOGICAL-c165h-7c868d830d58b73c073afa1734c5ed23663ff8a27301b29cfc52cfe60d5287e3
ISSN 2976-8683
IngestDate Tue Jul 01 02:18:54 EDT 2025
Tue Dec 17 20:58:19 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c165h-7c868d830d58b73c073afa1734c5ed23663ff8a27301b29cfc52cfe60d5287e3
Notes https://doi.org/10.1039/d4mr00004h
Electronic supplementary information (ESI) available. See DOI
ORCID 0000-0003-0987-0902
0000-0003-2017-6081
OpenAccessLink http://pubs.rsc.org/en/content/articlepdf/2024/MR/D4MR00004H
PageCount 6
ParticipantIDs crossref_primary_10_1039_D4MR00004H
rsc_primary_d4mr00004h
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240910
2024-09-10
PublicationDateYYYYMMDD 2024-09-10
PublicationDate_xml – month: 9
  year: 2024
  text: 20240910
  day: 10
PublicationDecade 2020
PublicationTitle RSC Mechanochemistry
PublicationYear 2024
References Stauch (D4MR00004H/cit16/1) 2016; 116
Avilés (D4MR00004H/cit21/1) 2023
Bhuiyan (D4MR00004H/cit27/1) 2022; 591
Salim (D4MR00004H/cit15/1) 2022; 12
Hernández (D4MR00004H/cit6/1) 2022; 18
Adams (D4MR00004H/cit10/1) 2015; 119
Bowers (D4MR00004H/cit22/1) 2006
Huang (D4MR00004H/cit3/1) 2019
Brega (D4MR00004H/cit7/1) 2020; 18
Bhuiyan (D4MR00004H/cit28/1) 2023; 241
Li (D4MR00004H/cit1/1) 2022; 32
Tian (D4MR00004H/cit11/1) 2020; 142
Stratigaki (D4MR00004H/cit13/1) 2020; 85
Khajeh (D4MR00004H/cit32/1) 2018; 34
Thompson (D4MR00004H/cit25/1) 2022; 271
Deneke (D4MR00004H/cit8/1) 2020; 16
Martínez-Tong (D4MR00004H/cit14/1) 2021; 42
Van Duin (D4MR00004H/cit19/1) 2001; 105
Zhang (D4MR00004H/cit29/1) 2016; 63
Versaw (D4MR00004H/cit12/1) 2021; 143
Vashisth (D4MR00004H/cit30/1) 2019; 11
Turksoy (D4MR00004H/cit2/1) 2020; 10
Guo (D4MR00004H/cit24/1) 2015; 82
Martini (D4MR00004H/cit33/1) 2021; 69
Kim (D4MR00004H/cit9/1) 2022; 119
Zholdassov (D4MR00004H/cit31/1) 2023; 380
Martins (D4MR00004H/cit5/1) 2014; 50
Larsen (D4MR00004H/cit17/1) 2013; 135
Liu (D4MR00004H/cit4/1) 2017; 146
Liu (D4MR00004H/cit20/1) 2011; 115
Liao (D4MR00004H/cit23/1) 2014; 136
Stukowski (D4MR00004H/cit26/1) 2009; 18
Walter (D4MR00004H/cit18/1) 2023; 14
References_xml – issn: 2006
  volume-title: , Scalable algorithms for molecular dynamics simulations on commodity clusters
  end-page: 84
  publication-title: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing
  doi: Bowers Chow Xu Dror Eastwood Gregersen Klepeis Kolossvary Moraes Sacerdoti
– volume: 63
  start-page: 1
  year: 2016
  ident: D4MR00004H/cit29/1
  publication-title: Tribol. Lett.
  doi: 10.1007/s11249-016-0692-9
– volume: 34
  start-page: 5971
  year: 2018
  ident: D4MR00004H/cit32/1
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b00315
– start-page: 9269081
  year: 2019
  ident: D4MR00004H/cit3/1
  publication-title: Research
– volume: 116
  start-page: 14137
  year: 2016
  ident: D4MR00004H/cit16/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00458
– volume: 146
  start-page: 40
  year: 2017
  ident: D4MR00004H/cit4/1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.09.007
– volume: 591
  start-page: 153209
  year: 2022
  ident: D4MR00004H/cit27/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.153209
– volume: 50
  start-page: 3317
  year: 2014
  ident: D4MR00004H/cit5/1
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc48293f
– volume: 18
  start-page: 015012
  year: 2009
  ident: D4MR00004H/cit26/1
  publication-title: Modell. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/18/1/015012
– volume: 380
  start-page: 1053
  year: 2023
  ident: D4MR00004H/cit31/1
  publication-title: Science
  doi: 10.1126/science.adf5273
– volume: 271
  start-page: 108171
  year: 2022
  ident: D4MR00004H/cit25/1
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2021.108171
– volume: 143
  start-page: 21461
  year: 2021
  ident: D4MR00004H/cit12/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c11868
– volume: 11
  start-page: 7447
  year: 2019
  ident: D4MR00004H/cit30/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR00958B
– volume: 241
  start-page: 194
  year: 2023
  ident: D4MR00004H/cit28/1
  publication-title: Faraday Discuss.
  doi: 10.1039/D2FD00086E
– volume: 42
  start-page: 2000654
  year: 2021
  ident: D4MR00004H/cit14/1
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.202000654
– volume: 12
  start-page: 33835
  year: 2022
  ident: D4MR00004H/cit15/1
  publication-title: RSC Adv.
  doi: 10.1039/D2RA06036A
– start-page: 2300218
  year: 2023
  ident: D4MR00004H/cit21/1
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202300218
– volume: 136
  start-page: 12194
  year: 2014
  ident: D4MR00004H/cit23/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5048297
– volume: 119
  start-page: 7115
  year: 2015
  ident: D4MR00004H/cit10/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5121146
– volume: 142
  start-page: 18687
  year: 2020
  ident: D4MR00004H/cit11/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c09220
– volume: 18
  start-page: 1225
  year: 2022
  ident: D4MR00004H/cit6/1
  publication-title: Beilstein J. Org. Chem.
  doi: 10.3762/bjoc.18.128
– volume: 14
  start-page: 1445
  year: 2023
  ident: D4MR00004H/cit18/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.2c03493
– volume: 105
  start-page: 9396
  year: 2001
  ident: D4MR00004H/cit19/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp004368u
– volume: 82
  start-page: 031005
  year: 2015
  ident: D4MR00004H/cit24/1
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4029635
– volume: 10
  start-page: 9182
  year: 2020
  ident: D4MR00004H/cit2/1
  publication-title: RSC Adv.
  doi: 10.1039/D0RA00831A
– volume: 32
  start-page: 2112000
  year: 2022
  ident: D4MR00004H/cit1/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202112000
– volume: 18
  start-page: 9191
  year: 2020
  ident: D4MR00004H/cit7/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/D0OB01744B
– volume: 69
  start-page: 1
  year: 2021
  ident: D4MR00004H/cit33/1
  publication-title: Tribol. Lett.
  doi: 10.1007/s11249-020-01378-7
– volume: 115
  start-page: 11016
  year: 2011
  ident: D4MR00004H/cit20/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp201599t
– volume: 85
  start-page: 1095
  year: 2020
  ident: D4MR00004H/cit13/1
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201900737
– volume: 16
  start-page: 6230
  year: 2020
  ident: D4MR00004H/cit8/1
  publication-title: Soft Matter
  doi: 10.1039/D0SM00465K
– volume: 119
  start-page: e2109791119
  year: 2022
  ident: D4MR00004H/cit9/1
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2109791119
– start-page: 84
  volume-title: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing
  year: 2006
  ident: D4MR00004H/cit22/1
– volume: 135
  start-page: 8189
  year: 2013
  ident: D4MR00004H/cit17/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403757p
SSID ssj0003313580
Score 2.2679594
Snippet Singlet oxygen molecules are useful in several therapeutic applications involving photo-activated release of oxygen from carrier molecules toward targeted...
SourceID crossref
rsc
SourceType Index Database
Publisher
StartPage 361
Title Atomistic simulations of mechanically activated reactions for oxygen release from polymers
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe6ceGCQGNiwCZLcKtckthpnGPZh6pJ5TCKNHGpbNdRKppm6pqJ7MDfzrMdJ4HtMLhElWu7rd-v78PvC6GPiSlaJhklEoxlwhIdEQGSlkRLU29L6IALk-A8-zKefmOX1_H1YHDXi1qqdnKk7h_NK_kfqsIY0NVkyf4DZdtNYQBeA33hCRSG55NoPNmVhS20PLxdFVUvqq3QJqHXnP-6tuUy7oTRLEFBVG6OCS4sf9aws-2aAqLMJZrclOu6aILivc569fV0OLMbmu5arj1c67oopTa-9s-hIFe61t6r4Pzvra2fV6va3bReiB_5tloPp6PuLtwUMrBBBZPbfL3S_YuIiJmoiSYk1fKrCDQbwseuL81IPzLmGW4PV6zHPKkry97IYeq6sTxg8QE1FVLP2My2ymPTTpB55_1f8q2NOrT-dpouurV76FkE5oVh6LNf3d0cpaHxDpu-hP77-8q2NP3ULf9Dl9nb-pYxVjWZv0QvGpsCTxxAXqGB3hyg7y04cA8cuMxwHxy4BQduwYEBHNiBAzfgwAYc2IPjNZpfnM9Pp6RppEFUOI5zkij4CUtOg2XMZUIVsHWRiTChTMUa_pSgdWYZF5Hh9jJKVabiSGV6DPPBoNb0EO1vyo1-gzBXnEmaBJKHivFApJngLNXwMYqFIFeP0Ad_IosbVy5l8fDYj9AhHFY7YcmKrX0jf_uk5e_Q8w5_79H-blvpY1ANd_LEXqmcWGr-BlpsZQ0
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomistic+simulations+of+mechanically+activated+reactions+for+oxygen+release+from+polymers&rft.jtitle=RSC+Mechanochemistry&rft.au=Cobe%C3%B1a-Reyes%2C+Jos%C3%A9&rft.au=Bhuiyan%2C+Fakhrul+H.&rft.au=Martini%2C+Ashlie&rft.date=2024-09-10&rft.issn=2976-8683&rft.eissn=2976-8683&rft.volume=1&rft.issue=4&rft.spage=361&rft.epage=366&rft_id=info:doi/10.1039%2FD4MR00004H&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D4MR00004H
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2976-8683&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2976-8683&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2976-8683&client=summon