Modeling and Forecasting Ukraine’s Population by Time Series Using the Matlab Econometrics Toolbox

The article deals with modeling and forecasting the population of Ukraine by time series. It is shown that time series analysis is a complex, multicomponent econometric task which does not have a universal approach to its solution. This is due both to the diversity of methods of and approaches to ti...

Full description

Saved in:
Bibliographic Details
Published inBìznes ìnform (Multilingual ed.) Vol. 5; no. 496; pp. 98 - 105
Main Authors Kovalova, K. O., Misiura, I. Y.
Format Journal Article
LanguageEnglish
Published Research Centre of Industrial Problems of Development of NAS of Ukraine 01.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The article deals with modeling and forecasting the population of Ukraine by time series. It is shown that time series analysis is a complex, multicomponent econometric task which does not have a universal approach to its solution. This is due both to the diversity of methods of and approaches to time series analysis which were developed over time and to the specifics of time series data. For example, the authors of the article worked with a univariate nonstationary time series, therefore, the approaches and methods presented in the article are not recommended for time series with different properties. The article has an enormous practical value, since it discusses in detail issues of computer modeling of tasks of the kind. The carried out analysis of the literature has shown the relevance of the problems considered, among which particular attention should be paid to the choice of the ARIMA model, data visualization, and forecast accuracy.
AbstractList The article deals with modeling and forecasting the population of Ukraine by time series. It is shown that time series analysis is a complex, multicomponent econometric task which does not have a universal approach to its solution. This is due both to the diversity of methods of and approaches to time series analysis which were developed over time and to the specifics of time series data. For example, the authors of the article worked with a univariate nonstationary time series, therefore, the approaches and methods presented in the article are not recommended for time series with different properties. The article has an enormous practical value, since it discusses in detail issues of computer modeling of tasks of the kind. The carried out analysis of the literature has shown the relevance of the problems considered, among which particular attention should be paid to the choice of the ARIMA model, data visualization, and forecast accuracy.
Author Kovalova, K. O.
Misiura, I. Y.
Author_xml – sequence: 1
  givenname: K. O.
  orcidid: 0000-0001-6790-6147
  surname: Kovalova
  fullname: Kovalova, K. O.
– sequence: 2
  givenname: I. Y.
  orcidid: 0000-0002-5208-0853
  surname: Misiura
  fullname: Misiura, I. Y.
BookMark eNo9kEtOHDEQhq2ISCGEO_gCJi677baXCEFAYpRImZGys_yoJiY9bWQ3EuxyDa7HSdINgdrU69e3-D6Tg6lMSAgFfiKFNfKrWIp1nbJMcLBMMWsYcPWBHAoJwAD0r4Nlfkt9Iset3XLOQQolen1I0qYkHPN0Q_2U6EWpGH2b1333p_o84fPfp0Z_lLv70c-5TDQ80m3eI_2JNWOju7Zm599IN34efaDnsUxlj3PNsdFtKWMoD1_Ix8GPDY__9yOyuzjfnl2y6-_frs5Or1kErRQbBmVkTB2XBnRSJmhUXmgtVBBJwBCj1AlFH7hVPkQlESDy0A-CpyXo5RG5euWm4m_dXc17Xx9d8dm9HEq9cb7OOY7oQA6667HrOarO9MaigJ7HDoxVfQh2YZlXVqyltYrDOw-4e5HvVq1u1epW-U45a5ankv8ADVB6Og
ContentType Journal Article
CorporateAuthor Simon Kuznets Kharkiv National University of Economics
CorporateAuthor_xml – name: Simon Kuznets Kharkiv National University of Economics
DBID AAYXX
CITATION
DOA
DOI 10.32983/2222-4459-2019-5-98-105
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 2311-116X
EndPage 105
ExternalDocumentID oai_doaj_org_article_13f647e470e548789e2170c418957bb9
10_32983_2222_4459_2019_5_98_105
GroupedDBID 5VS
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
IPNFZ
KQ8
OK1
RIG
ID FETCH-LOGICAL-c1655-ff583cd403816d58b6e5a26625b2d21fcc36de27b095abc53e11c0b7f20d5a2a3
IEDL.DBID DOA
ISSN 2222-4459
IngestDate Tue Oct 22 15:06:27 EDT 2024
Fri Aug 23 02:38:50 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 496
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1655-ff583cd403816d58b6e5a26625b2d21fcc36de27b095abc53e11c0b7f20d5a2a3
ORCID 0000-0001-6790-6147
0000-0002-5208-0853
OpenAccessLink https://doaj.org/article/13f647e470e548789e2170c418957bb9
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_13f647e470e548789e2170c418957bb9
crossref_primary_10_32983_2222_4459_2019_5_98_105
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Bìznes ìnform (Multilingual ed.)
PublicationYear 2019
Publisher Research Centre of Industrial Problems of Development of NAS of Ukraine
Publisher_xml – name: Research Centre of Industrial Problems of Development of NAS of Ukraine
SSID ssj0001325276
Score 2.1207364
Snippet The article deals with modeling and forecasting the population of Ukraine by time series. It is shown that time series analysis is a complex, multicomponent...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 98
SubjectTerms ARIMA models
Econometrics Toolbox
MATLAB
nonstationarity
time series
Title Modeling and Forecasting Ukraine’s Population by Time Series Using the Matlab Econometrics Toolbox
URI https://doaj.org/article/13f647e470e548789e2170c418957bb9
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSiwxEA3iRjdyfXG9PsjCbbDzqO5kqaKIoLiYAXchz42XGbFH0J2_4e_5JabS4zCu3NirJl2E5lQ1OUlX1SHkWDe5sG7fshBMZqr1jjkwirnOq-hkm8oNZlvctldjdX0P90tSX5gTNrQHHoA74TK3qkuqaxKSa21SIdFNUFwb6LwfSvcas7SZqqcrUoAYlOXKxZQCM6TxSGG0PFkMliDhhgEz2OMUvq1NSy3861pz-YdszEkiPR1ebpOspMkWWfuqIe63SUQJMywkp24SKcprBtdjAjMdP6DmQ_p4e-_p3UKci_pXisUeFA_DUk9rogAt3I_euFmJAzrMjepaoaej6fS_n77skPHlxej8is31EljgLQDLGbQMUdWfgRG0bxO4sgAL8CIKnkOQbUyi84VWOR9AJs5D47ssmlgMndwlq5PpJP0lNHHs3VUstOEKki7ffYcFWyJmESGbPcK_kLKPQ1sMW7YTFV2L6FpE1yK6FqzR5SHskTOEdGGPja3rQHG3nbvb_uTuf78xyT5Zr36veYsHZHX29JwOC7eY-aMaRp8qncYo
link.rule.ids 315,783,787,867,2109,27938,27939
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+Forecasting+Ukraine%E2%80%99s+Population+by+Time+Series+Using+the+Matlab+Econometrics+Toolbox&rft.jtitle=B%C3%ACznes+%C3%ACnform+%28Multilingual+ed.%29&rft.au=Kovalova+Kateryna+O.&rft.au=Misiura+Ievgeniia+Yu&rft.date=2019-05-01&rft.pub=Research+Centre+of+Industrial+Problems+of+Development+of+NAS+of+Ukraine&rft.issn=2222-4459&rft.eissn=2311-116X&rft.volume=5&rft.issue=496&rft.spage=98&rft.epage=105&rft_id=info:doi/10.32983%2F2222-4459-2019-5-98-105&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_13f647e470e548789e2170c418957bb9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2222-4459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2222-4459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2222-4459&client=summon