Application of Generalized Failure Mechanism Knowledge to Reprocessing Plant for Supporting Maintenance Activity

To achieve a higher level of safety in the Rokkasho reprocessing plant, it is important to predict the failure mechanism extensively and proactively. Although the effort toward such proactive approaches to explore the possibility of potential failure mechanisms has been based mainly on human experie...

Full description

Saved in:
Bibliographic Details
Published inNihon Genshiryoku Gakkai wabun ronbunshi = Transactions of the Atomic Energy Society of Japan Vol. 21; no. 2; pp. 82 - 95
Main Authors YASUDA, Yuuya, TAKAHASHI, Makoto
Format Journal Article
LanguageJapanese
Published Tokyo Atomic Energy Society of Japan 2022
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To achieve a higher level of safety in the Rokkasho reprocessing plant, it is important to predict the failure mechanism extensively and proactively. Although the effort toward such proactive approaches to explore the possibility of potential failure mechanisms has been based mainly on human experience, the possibility of overlooking important failure mechanisms should be decreased as much as possible. In the present study, the concept of Generalized Failure Mechanism Knowledge (GFMK) has been practically applied to the Rokkasho reprocessing plant, and the applicability of the proposed method to the maintenance activities has been evaluated. GFMK is a knowledge scheme that describes failure mechanisms independent of any particular subject. In this scheme, specific conditions are generalized, which allows us to apply GFMK to completely different equipment. The GFMK base has been built from the records of trouble at the Rokkasho reprocessing plant and applied to the SFP cooling pump to derive possible failure modes, and its appropriateness has been confirmed. As one of the derived failure mechanisms has not been considered in the maintenance activities, the authors believe that the proposed method may contribute to avoiding overlooking possible failures.
AbstractList To achieve a higher level of safety in the Rokkasho reprocessing plant, it is important to predict the failure mechanism extensively and proactively. Although the effort toward such proactive approaches to explore the possibility of potential failure mechanisms has been based mainly on human experience, the possibility of overlooking important failure mechanisms should be decreased as much as possible. In the present study, the concept of Generalized Failure Mechanism Knowledge (GFMK) has been practically applied to the Rokkasho reprocessing plant, and the applicability of the proposed method to the maintenance activities has been evaluated. GFMK is a knowledge scheme that describes failure mechanisms independent of any particular subject. In this scheme, specific conditions are generalized, which allows us to apply GFMK to completely different equipment. The GFMK base has been built from the records of trouble at the Rokkasho reprocessing plant and applied to the SFP cooling pump to derive possible failure modes, and its appropriateness has been confirmed. As one of the derived failure mechanisms has not been considered in the maintenance activities, the authors believe that the proposed method may contribute to avoiding overlooking possible failures.
ArticleNumber J21.012
Author TAKAHASHI, Makoto
YASUDA, Yuuya
Author_xml – sequence: 1
  fullname: YASUDA, Yuuya
  organization: Dept. of Quantum Science and Energy Engineering, Faculty of Engineering, Tohoku University
– sequence: 2
  fullname: TAKAHASHI, Makoto
  organization: Dept. of Quantum Science and Energy Engineering, Faculty of Engineering, Tohoku University
BookMark eNo9kEtPAjEQgBuDiYgcvTfxvNjH7pY9EiL4gGh8nJtSZrFkade2aPDXW4Qwh07S-Tqd-S5RxzoLCF1TMuCciduoIKwHj4wOCGVnqMvosMxYxWkHdSnPRcaGorpA_RDWhBDGKBc076J21LaN0SoaZ7Gr8RQseNWYX1jiiTLN1gOeg_5U1oQNfrLup4HlCnB0-BVa7zSEYOwKvzTKRlw7j9-2bet83F_OlbERrLIa8EhH823i7gqd16oJ0D_mHvqY3L2P77PZ8_RhPJplmpYFy0RVLMplXVc0RcVVXfJhSSq24AtCIBeMLinjQogEVVrkOU91rUi5KKhShPMeujn0TUN-bSFEuXZbb9OXkomyyHNa5HsqO1DauxA81LL1ZqP8TlIi917lv1eZvMrkNfHjA78OUa3gRKu0sG7gSCeY7Y_jq1M1afQSLP8DJuyGNQ
Cites_doi 10.1115/1.3439009
10.1527/tjsai.26.607
10.31399/asm.tb.faesmch.9781627083010
10.3327/jaesj.34.678
10.1016/j.egypro.2017.09.468
ContentType Journal Article
Copyright 2022 Atomic Energy Society of Japan
Copyright Japan Science and Technology Agency 2022
Copyright_xml – notice: 2022 Atomic Energy Society of Japan
– notice: Copyright Japan Science and Technology Agency 2022
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
KR7
L7M
SOI
DOI 10.3327/taesj.J21.012
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2186-2931
EndPage 95
ExternalDocumentID 10_3327_taesj_J21_012
article_taesj_21_2_21_J21_012_article_char_en
GroupedDBID ACIWK
AFRAH
ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
OK1
RJT
AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
KR7
L7M
SOI
ID FETCH-LOGICAL-c1652-795b6dff9111193af6386092b3b00e4721d1237776df9c7443386ca06b51aa033
ISSN 1347-2879
IngestDate Mon Jun 30 12:04:52 EDT 2025
Tue Jul 01 01:47:05 EDT 2025
Wed Apr 05 05:27:43 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1652-795b6dff9111193af6386092b3b00e4721d1237776df9c7443386ca06b51aa033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/taesj/21/2/21_J21.012/_article/-char/en
PQID 2765441543
PQPubID 2048475
PageCount 14
ParticipantIDs proquest_journals_2765441543
crossref_primary_10_3327_taesj_J21_012
jstage_primary_article_taesj_21_2_21_J21_012_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Nihon Genshiryoku Gakkai wabun ronbunshi = Transactions of the Atomic Energy Society of Japan
PublicationTitleAlternate Trans. At. Energy Soc. Jpn.
PublicationYear 2022
Publisher Atomic Energy Society of Japan
Japan Science and Technology Agency
Publisher_xml – name: Atomic Energy Society of Japan
– name: Japan Science and Technology Agency
References 8) T. Kashima, H. Kimura, H. Koizumi, M. Imamura, “Operation and evaluation for design defect prevention system based on structured knowledge,” Trans. Jpn. Soc. Artif. Intell., 26[5], 607–620 (2011), [in Japanese], https://doi.org/10.1527/tjsai.26.607.
2) J. A. Collins, B. T. Hagan, H. M. Bratt, “The failure-experience matrix - A useful design tool,” J. Eng. Ind., 98[3], 1074–1079 (1976), https://doi.org/10.1115/1.3439009.
9) M. Takahashi, M. Kitamura, K. Sugiyama, “Derivation of diagnostic knowledge from multi-level, multi-attribute model representation of nuclear power plant,” Proc. Topical Meeting on Adv. in Human Factors Res. on Man/Comput. Interact. : Human and Beyond, 5–10 (1990).
17) Japan nuclear fuel Ltd., 六ヶ所再処理工場使用済燃料受入れ・貯蔵施設における安全冷却水系冷却水循環ポンプの一時停止に関する報告について, 2000 Nov. 28, [Internet], https://www.jnfl.co.jp/press/pressj2000/pr001128b.html, (cited 2021 Aug. 1).
3) V. Ramachandran, A. C. Raghuram, R. V. Krishnan, S. K. Bhaumik, Failure Analysis of Engineering Structures : Methodology and Case Histories, ASM International, ISBN : 978-0-87170-820-5 (2005).
16) Japan nuclear fuel Ltd., The Progress Report (Comprehensive Test by Spent Fuel) Reprocessing Facility Active Test (Fourth Step) [再処理施設アクティブ試験(使用済燃料による総合試験)経過報告(第4ステップ)], 2008, [in Japanese], https://www.jnfl.co.jp/press/pressj2007/080227sanko1.pdf, (cited 2021 Aug. 1).
11) Y. Yasuda, M. Takahashi, “Study on the structured representation of failure mechanism in Rokkasho Reprocessing Plant,” Proc. Int. Conf. Nucl. Eng., Chiba, Japan, May. 17–21, 2015, ISBN978-4-88898-256-6 C3853 37037E (2015), [CD-ROM].
1) Japan nuclear fuel Ltd. and Mitsubishi Heavy Industries, Ltd., 再処理施設の設計基準事象選定(J/M1004), 1996, [in Japanese].
4) Y. Hatamura, Recommendation for Failure Science[失敗学のすすめ], Kodansha Ltd., ISBN4-06-210346-X (2000), [in Japanese].
10) M. Takahashi, M. Kitamura, K. Sugiyama, “Representation of generalized failure mechanism knowledge for diagnosis of nuclear power plant,” J. At. Energy Soc. Jpn., 34[7], 678–692 (1992), [in Japanese], https://doi.org/10.3327/jaesj.34.678.
15) Japan nuclear fuel Ltd., The Progress Report (Comprehensive Test by Spent Fuel) Reprocessing Facility Active Test (First Step) [再処理施設アクティブ試験(使用済燃料による総合試験)中間報告書(その1)], 2006, [in Japanese], https://www.jnfl.co.jp/cycle-recycle/testing/uran-testing-progress070312.pdf, (cited 2021 Aug. 1).
14) Japan nuclear fuel Ltd., The Progress Report (Comprehensive Test by Spent Fuel) Reprocessing Facility Active Test (Part 1 of Second Step) [再処理施設 アクティブ試験(使用済燃料による総合試験)中間報告書(その2-1)], 2006, [in Japanese], https://www.jnfl.co.jp/press/pressj2006/061208sanko.pdf, (cited 2021 Aug. 1).
18) Japan nuclear fuel Ltd., ウラン・プルトニウム混合脱硝建屋 グローブポート押さえのひび割れ事象の処置について, 2015 Oct. 21, [Internet], https://www.nsr.go.jp/data/000128023.pdf, (cited 2021 Aug. 1).
7) Y. Tamura, SSMによる構造化知識マネジメント 設計開発における不具合防止に役立つ知識の構築と活用, JUSE Press, Ltd., ISBN978-4-8171-9451-0 (2012), [in Japanese].
5) M. Nakao, 100 Scenarios of Failure[失敗百選-41の原因から未来の失敗を予測する-], Morikita Publishing Co., Ltd., ISBN978-4-627-66471-5 (2005), [in Japanese].
6) M. Nakao, 100 Scenarios of Failure II[続・失敗百選-リコールと事故を防ぐ60のポイント-], Morikita Publishing Co., Ltd., ISBN978-4-627-66771-6 (2010), [in Japanese].
12) Y. Yasuda, M. Takahashi, “Application of generalized failure mechanism knowledge to reprocessing plant for proactive risk management,” Energy Procedia, 131, 216–221 (2017), https://doi.org/10.1016/j.egypro.2017.09.468.
13) K. Watanabe, M. Takahashi, “Derivation of failure mechanism based on knowledge engineering methods for plant tested,” Proc. SICE Tohoku Chapter 306th Workshop, Miyagi, Japan, Dec. 10, 2016, [in Japanese], https://www.topic.ad.jp/sice/htdocs/papers/306/306-2.pdf, (cited 2021 Aug. 1).
11
12
13
14
15
16
17
18
1
2
3
4
5
6
7
8
9
10
References_xml – reference: 13) K. Watanabe, M. Takahashi, “Derivation of failure mechanism based on knowledge engineering methods for plant tested,” Proc. SICE Tohoku Chapter 306th Workshop, Miyagi, Japan, Dec. 10, 2016, [in Japanese], https://www.topic.ad.jp/sice/htdocs/papers/306/306-2.pdf, (cited 2021 Aug. 1).
– reference: 14) Japan nuclear fuel Ltd., The Progress Report (Comprehensive Test by Spent Fuel) Reprocessing Facility Active Test (Part 1 of Second Step) [再処理施設 アクティブ試験(使用済燃料による総合試験)中間報告書(その2-1)], 2006, [in Japanese], https://www.jnfl.co.jp/press/pressj2006/061208sanko.pdf, (cited 2021 Aug. 1).
– reference: 5) M. Nakao, 100 Scenarios of Failure[失敗百選-41の原因から未来の失敗を予測する-], Morikita Publishing Co., Ltd., ISBN978-4-627-66471-5 (2005), [in Japanese].
– reference: 12) Y. Yasuda, M. Takahashi, “Application of generalized failure mechanism knowledge to reprocessing plant for proactive risk management,” Energy Procedia, 131, 216–221 (2017), https://doi.org/10.1016/j.egypro.2017.09.468.
– reference: 4) Y. Hatamura, Recommendation for Failure Science[失敗学のすすめ], Kodansha Ltd., ISBN4-06-210346-X (2000), [in Japanese].
– reference: 11) Y. Yasuda, M. Takahashi, “Study on the structured representation of failure mechanism in Rokkasho Reprocessing Plant,” Proc. Int. Conf. Nucl. Eng., Chiba, Japan, May. 17–21, 2015, ISBN978-4-88898-256-6 C3853 37037E (2015), [CD-ROM].
– reference: 17) Japan nuclear fuel Ltd., 六ヶ所再処理工場使用済燃料受入れ・貯蔵施設における安全冷却水系冷却水循環ポンプの一時停止に関する報告について, 2000 Nov. 28, [Internet], https://www.jnfl.co.jp/press/pressj2000/pr001128b.html, (cited 2021 Aug. 1).
– reference: 15) Japan nuclear fuel Ltd., The Progress Report (Comprehensive Test by Spent Fuel) Reprocessing Facility Active Test (First Step) [再処理施設アクティブ試験(使用済燃料による総合試験)中間報告書(その1)], 2006, [in Japanese], https://www.jnfl.co.jp/cycle-recycle/testing/uran-testing-progress070312.pdf, (cited 2021 Aug. 1).
– reference: 16) Japan nuclear fuel Ltd., The Progress Report (Comprehensive Test by Spent Fuel) Reprocessing Facility Active Test (Fourth Step) [再処理施設アクティブ試験(使用済燃料による総合試験)経過報告(第4ステップ)], 2008, [in Japanese], https://www.jnfl.co.jp/press/pressj2007/080227sanko1.pdf, (cited 2021 Aug. 1).
– reference: 9) M. Takahashi, M. Kitamura, K. Sugiyama, “Derivation of diagnostic knowledge from multi-level, multi-attribute model representation of nuclear power plant,” Proc. Topical Meeting on Adv. in Human Factors Res. on Man/Comput. Interact. : Human and Beyond, 5–10 (1990).
– reference: 1) Japan nuclear fuel Ltd. and Mitsubishi Heavy Industries, Ltd., 再処理施設の設計基準事象選定(J/M1004), 1996, [in Japanese].
– reference: 3) V. Ramachandran, A. C. Raghuram, R. V. Krishnan, S. K. Bhaumik, Failure Analysis of Engineering Structures : Methodology and Case Histories, ASM International, ISBN : 978-0-87170-820-5 (2005).
– reference: 6) M. Nakao, 100 Scenarios of Failure II[続・失敗百選-リコールと事故を防ぐ60のポイント-], Morikita Publishing Co., Ltd., ISBN978-4-627-66771-6 (2010), [in Japanese].
– reference: 2) J. A. Collins, B. T. Hagan, H. M. Bratt, “The failure-experience matrix - A useful design tool,” J. Eng. Ind., 98[3], 1074–1079 (1976), https://doi.org/10.1115/1.3439009.
– reference: 8) T. Kashima, H. Kimura, H. Koizumi, M. Imamura, “Operation and evaluation for design defect prevention system based on structured knowledge,” Trans. Jpn. Soc. Artif. Intell., 26[5], 607–620 (2011), [in Japanese], https://doi.org/10.1527/tjsai.26.607.
– reference: 18) Japan nuclear fuel Ltd., ウラン・プルトニウム混合脱硝建屋 グローブポート押さえのひび割れ事象の処置について, 2015 Oct. 21, [Internet], https://www.nsr.go.jp/data/000128023.pdf, (cited 2021 Aug. 1).
– reference: 7) Y. Tamura, SSMによる構造化知識マネジメント 設計開発における不具合防止に役立つ知識の構築と活用, JUSE Press, Ltd., ISBN978-4-8171-9451-0 (2012), [in Japanese].
– reference: 10) M. Takahashi, M. Kitamura, K. Sugiyama, “Representation of generalized failure mechanism knowledge for diagnosis of nuclear power plant,” J. At. Energy Soc. Jpn., 34[7], 678–692 (1992), [in Japanese], https://doi.org/10.3327/jaesj.34.678.
– ident: 17
– ident: 18
– ident: 5
– ident: 4
– ident: 1
– ident: 2
  doi: 10.1115/1.3439009
– ident: 11
– ident: 8
  doi: 10.1527/tjsai.26.607
– ident: 13
– ident: 16
– ident: 14
– ident: 15
– ident: 3
  doi: 10.31399/asm.tb.faesmch.9781627083010
– ident: 10
  doi: 10.3327/jaesj.34.678
– ident: 6
– ident: 9
– ident: 7
– ident: 12
  doi: 10.1016/j.egypro.2017.09.468
SSID ssj0002213714
ssib003171133
ssib002670214
ssib002227771
Score 2.1964025
Snippet To achieve a higher level of safety in the Rokkasho reprocessing plant, it is important to predict the failure mechanism extensively and proactively. Although...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 82
SubjectTerms Failure
failure mechanism
Failure mechanisms
failure mode
Failure modes
Generalized Failure Mechanism Knowledge (GFMK)
Maintenance
maintenance activity
plant diagnosis
Reprocessing
risk management
Title Application of Generalized Failure Mechanism Knowledge to Reprocessing Plant for Supporting Maintenance Activity
URI https://www.jstage.jst.go.jp/article/taesj/21/2/21_J21.012/_article/-char/en
https://www.proquest.com/docview/2765441543
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Transactions of the Atomic Energy Society of Japan, 2022, Vol.21(2), pp.82-95
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5FBSQuiKcIFLQH4GI52Lt-Slws2hISpRIilcrJ2vWjpJHsKrGF2t_Ej2Rmd-06pYfCxYm8a8v2fJ7Her4ZQt55eSbdkgW2JyBW9cJS2NL3uS3CMoJ3y8ncCMnJi-NgeuLNTv3T0ej3IGupbeQku7qVV_I_UoV9IFdkyf6DZPuTwg74D_KFLUgYtneScXL99RmdPlNCenUFTuSRWGHCubUokNqLnTDm3eoZupvgd2uGAK4UYOOiRuUbYo_PeqMyoRcCK0lUilGQZLrHxNCTPV79xIIcBaZ7bS7rdWt9Eeu1WFm_hGwra1NX8ANj1nt-oEuoawrFtstKSBokRFuHmnzYZY_C4Azsdw_ZH6D3DxJlKNr2srchy2SeTJPv06-ab7Sum3q4fsEGi5nIYrUhYtMqs1D7sEWWDS6IO9TQmkNtkMgG6lb3LTKGWzfrvGkSOGf4UboRxfZ8MmPuxDFp2zult2-YxD5REUIkPEGqDk_h8NTBltb3GAQlaAbm36J-RY8xF8sfqgjf3Jgu6opn-LhzATtO0P1ziAPO_nYGlIezfEwemdCEJhpnT8ioqJ6SBypFONs-IxcDtNG6pAO0UYM22qON9mijTU2HaKMKbRTQRq_RRgdoox3anpOTo8Pl56lt-nXYmRv4EKjFvgzyskT7CXGBKEG3B07MJAfdXnjwxHLwk8IwhElxFnoeh_FMOIH0XSEczl-QvaquipeEgvbwYSRyeZmDy1xEHstlLuM4c71c-vmYfOgeYHqhy7Kkt8pqTD7px9tPM2-rmQazGG7M9H4UOY-gYsZkvxNKal78bcrCADv3-R5_ddfLeE0eIvb12t0-2Ws2bfEGvNlGvlUg-gNs0KeV
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Generalized+Failure+Mechanism+Knowledge+to+Reprocessing+Plant+for+Supporting+Maintenance+Activity&rft.jtitle=Nihon+Genshiryoku+Gakkai+wabun+ronbunshi+%3D+Transactions+of+the+Atomic+Energy+Society+of+Japan&rft.au=YASUDA%2C+Yuuya&rft.au=TAKAHASHI%2C+Makoto&rft.date=2022&rft.issn=1347-2879&rft.eissn=2186-2931&rft.volume=21&rft.issue=2&rft.spage=82&rft.epage=95&rft_id=info:doi/10.3327%2Ftaesj.J21.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_3327_taesj_J21_012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-2879&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-2879&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-2879&client=summon