Application of Generalized Failure Mechanism Knowledge to Reprocessing Plant for Supporting Maintenance Activity
To achieve a higher level of safety in the Rokkasho reprocessing plant, it is important to predict the failure mechanism extensively and proactively. Although the effort toward such proactive approaches to explore the possibility of potential failure mechanisms has been based mainly on human experie...
Saved in:
Published in | Nihon Genshiryoku Gakkai wabun ronbunshi = Transactions of the Atomic Energy Society of Japan Vol. 21; no. 2; pp. 82 - 95 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Japanese |
Published |
Tokyo
Atomic Energy Society of Japan
2022
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To achieve a higher level of safety in the Rokkasho reprocessing plant, it is important to predict the failure mechanism extensively and proactively. Although the effort toward such proactive approaches to explore the possibility of potential failure mechanisms has been based mainly on human experience, the possibility of overlooking important failure mechanisms should be decreased as much as possible. In the present study, the concept of Generalized Failure Mechanism Knowledge (GFMK) has been practically applied to the Rokkasho reprocessing plant, and the applicability of the proposed method to the maintenance activities has been evaluated. GFMK is a knowledge scheme that describes failure mechanisms independent of any particular subject. In this scheme, specific conditions are generalized, which allows us to apply GFMK to completely different equipment. The GFMK base has been built from the records of trouble at the Rokkasho reprocessing plant and applied to the SFP cooling pump to derive possible failure modes, and its appropriateness has been confirmed. As one of the derived failure mechanisms has not been considered in the maintenance activities, the authors believe that the proposed method may contribute to avoiding overlooking possible failures. |
---|---|
AbstractList | To achieve a higher level of safety in the Rokkasho reprocessing plant, it is important to predict the failure mechanism extensively and proactively. Although the effort toward such proactive approaches to explore the possibility of potential failure mechanisms has been based mainly on human experience, the possibility of overlooking important failure mechanisms should be decreased as much as possible. In the present study, the concept of Generalized Failure Mechanism Knowledge (GFMK) has been practically applied to the Rokkasho reprocessing plant, and the applicability of the proposed method to the maintenance activities has been evaluated. GFMK is a knowledge scheme that describes failure mechanisms independent of any particular subject. In this scheme, specific conditions are generalized, which allows us to apply GFMK to completely different equipment. The GFMK base has been built from the records of trouble at the Rokkasho reprocessing plant and applied to the SFP cooling pump to derive possible failure modes, and its appropriateness has been confirmed. As one of the derived failure mechanisms has not been considered in the maintenance activities, the authors believe that the proposed method may contribute to avoiding overlooking possible failures. |
ArticleNumber | J21.012 |
Author | TAKAHASHI, Makoto YASUDA, Yuuya |
Author_xml | – sequence: 1 fullname: YASUDA, Yuuya organization: Dept. of Quantum Science and Energy Engineering, Faculty of Engineering, Tohoku University – sequence: 2 fullname: TAKAHASHI, Makoto organization: Dept. of Quantum Science and Energy Engineering, Faculty of Engineering, Tohoku University |
BookMark | eNo9kEtPAjEQgBuDiYgcvTfxvNjH7pY9EiL4gGh8nJtSZrFkade2aPDXW4Qwh07S-Tqd-S5RxzoLCF1TMuCciduoIKwHj4wOCGVnqMvosMxYxWkHdSnPRcaGorpA_RDWhBDGKBc076J21LaN0SoaZ7Gr8RQseNWYX1jiiTLN1gOeg_5U1oQNfrLup4HlCnB0-BVa7zSEYOwKvzTKRlw7j9-2bet83F_OlbERrLIa8EhH823i7gqd16oJ0D_mHvqY3L2P77PZ8_RhPJplmpYFy0RVLMplXVc0RcVVXfJhSSq24AtCIBeMLinjQogEVVrkOU91rUi5KKhShPMeujn0TUN-bSFEuXZbb9OXkomyyHNa5HsqO1DauxA81LL1ZqP8TlIi917lv1eZvMrkNfHjA78OUa3gRKu0sG7gSCeY7Y_jq1M1afQSLP8DJuyGNQ |
Cites_doi | 10.1115/1.3439009 10.1527/tjsai.26.607 10.31399/asm.tb.faesmch.9781627083010 10.3327/jaesj.34.678 10.1016/j.egypro.2017.09.468 |
ContentType | Journal Article |
Copyright | 2022 Atomic Energy Society of Japan Copyright Japan Science and Technology Agency 2022 |
Copyright_xml | – notice: 2022 Atomic Energy Society of Japan – notice: Copyright Japan Science and Technology Agency 2022 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 KR7 L7M SOI |
DOI | 10.3327/taesj.J21.012 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2186-2931 |
EndPage | 95 |
ExternalDocumentID | 10_3327_taesj_J21_012 article_taesj_21_2_21_J21_012_article_char_en |
GroupedDBID | ACIWK AFRAH ALMA_UNASSIGNED_HOLDINGS JSF KQ8 OK1 RJT AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 KR7 L7M SOI |
ID | FETCH-LOGICAL-c1652-795b6dff9111193af6386092b3b00e4721d1237776df9c7443386ca06b51aa033 |
ISSN | 1347-2879 |
IngestDate | Mon Jun 30 12:04:52 EDT 2025 Tue Jul 01 01:47:05 EDT 2025 Wed Apr 05 05:27:43 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1652-795b6dff9111193af6386092b3b00e4721d1237776df9c7443386ca06b51aa033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/taesj/21/2/21_J21.012/_article/-char/en |
PQID | 2765441543 |
PQPubID | 2048475 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2765441543 crossref_primary_10_3327_taesj_J21_012 jstage_primary_article_taesj_21_2_21_J21_012_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022 2022-00-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Nihon Genshiryoku Gakkai wabun ronbunshi = Transactions of the Atomic Energy Society of Japan |
PublicationTitleAlternate | Trans. At. Energy Soc. Jpn. |
PublicationYear | 2022 |
Publisher | Atomic Energy Society of Japan Japan Science and Technology Agency |
Publisher_xml | – name: Atomic Energy Society of Japan – name: Japan Science and Technology Agency |
References | 8) T. Kashima, H. Kimura, H. Koizumi, M. Imamura, “Operation and evaluation for design defect prevention system based on structured knowledge,” Trans. Jpn. Soc. Artif. Intell., 26[5], 607–620 (2011), [in Japanese], https://doi.org/10.1527/tjsai.26.607. 2) J. A. Collins, B. T. Hagan, H. M. Bratt, “The failure-experience matrix - A useful design tool,” J. Eng. Ind., 98[3], 1074–1079 (1976), https://doi.org/10.1115/1.3439009. 9) M. Takahashi, M. Kitamura, K. Sugiyama, “Derivation of diagnostic knowledge from multi-level, multi-attribute model representation of nuclear power plant,” Proc. Topical Meeting on Adv. in Human Factors Res. on Man/Comput. Interact. : Human and Beyond, 5–10 (1990). 17) Japan nuclear fuel Ltd., 六ヶ所再処理工場使用済燃料受入れ・貯蔵施設における安全冷却水系冷却水循環ポンプの一時停止に関する報告について, 2000 Nov. 28, [Internet], https://www.jnfl.co.jp/press/pressj2000/pr001128b.html, (cited 2021 Aug. 1). 3) V. Ramachandran, A. C. Raghuram, R. V. Krishnan, S. K. Bhaumik, Failure Analysis of Engineering Structures : Methodology and Case Histories, ASM International, ISBN : 978-0-87170-820-5 (2005). 16) Japan nuclear fuel Ltd., The Progress Report (Comprehensive Test by Spent Fuel) Reprocessing Facility Active Test (Fourth Step) [再処理施設アクティブ試験(使用済燃料による総合試験)経過報告(第4ステップ)], 2008, [in Japanese], https://www.jnfl.co.jp/press/pressj2007/080227sanko1.pdf, (cited 2021 Aug. 1). 11) Y. Yasuda, M. Takahashi, “Study on the structured representation of failure mechanism in Rokkasho Reprocessing Plant,” Proc. Int. Conf. Nucl. Eng., Chiba, Japan, May. 17–21, 2015, ISBN978-4-88898-256-6 C3853 37037E (2015), [CD-ROM]. 1) Japan nuclear fuel Ltd. and Mitsubishi Heavy Industries, Ltd., 再処理施設の設計基準事象選定(J/M1004), 1996, [in Japanese]. 4) Y. Hatamura, Recommendation for Failure Science[失敗学のすすめ], Kodansha Ltd., ISBN4-06-210346-X (2000), [in Japanese]. 10) M. Takahashi, M. Kitamura, K. Sugiyama, “Representation of generalized failure mechanism knowledge for diagnosis of nuclear power plant,” J. At. Energy Soc. Jpn., 34[7], 678–692 (1992), [in Japanese], https://doi.org/10.3327/jaesj.34.678. 15) Japan nuclear fuel Ltd., The Progress Report (Comprehensive Test by Spent Fuel) Reprocessing Facility Active Test (First Step) [再処理施設アクティブ試験(使用済燃料による総合試験)中間報告書(その1)], 2006, [in Japanese], https://www.jnfl.co.jp/cycle-recycle/testing/uran-testing-progress070312.pdf, (cited 2021 Aug. 1). 14) Japan nuclear fuel Ltd., The Progress Report (Comprehensive Test by Spent Fuel) Reprocessing Facility Active Test (Part 1 of Second Step) [再処理施設 アクティブ試験(使用済燃料による総合試験)中間報告書(その2-1)], 2006, [in Japanese], https://www.jnfl.co.jp/press/pressj2006/061208sanko.pdf, (cited 2021 Aug. 1). 18) Japan nuclear fuel Ltd., ウラン・プルトニウム混合脱硝建屋 グローブポート押さえのひび割れ事象の処置について, 2015 Oct. 21, [Internet], https://www.nsr.go.jp/data/000128023.pdf, (cited 2021 Aug. 1). 7) Y. Tamura, SSMによる構造化知識マネジメント 設計開発における不具合防止に役立つ知識の構築と活用, JUSE Press, Ltd., ISBN978-4-8171-9451-0 (2012), [in Japanese]. 5) M. Nakao, 100 Scenarios of Failure[失敗百選-41の原因から未来の失敗を予測する-], Morikita Publishing Co., Ltd., ISBN978-4-627-66471-5 (2005), [in Japanese]. 6) M. Nakao, 100 Scenarios of Failure II[続・失敗百選-リコールと事故を防ぐ60のポイント-], Morikita Publishing Co., Ltd., ISBN978-4-627-66771-6 (2010), [in Japanese]. 12) Y. Yasuda, M. Takahashi, “Application of generalized failure mechanism knowledge to reprocessing plant for proactive risk management,” Energy Procedia, 131, 216–221 (2017), https://doi.org/10.1016/j.egypro.2017.09.468. 13) K. Watanabe, M. Takahashi, “Derivation of failure mechanism based on knowledge engineering methods for plant tested,” Proc. SICE Tohoku Chapter 306th Workshop, Miyagi, Japan, Dec. 10, 2016, [in Japanese], https://www.topic.ad.jp/sice/htdocs/papers/306/306-2.pdf, (cited 2021 Aug. 1). 11 12 13 14 15 16 17 18 1 2 3 4 5 6 7 8 9 10 |
References_xml | – reference: 13) K. Watanabe, M. Takahashi, “Derivation of failure mechanism based on knowledge engineering methods for plant tested,” Proc. SICE Tohoku Chapter 306th Workshop, Miyagi, Japan, Dec. 10, 2016, [in Japanese], https://www.topic.ad.jp/sice/htdocs/papers/306/306-2.pdf, (cited 2021 Aug. 1). – reference: 14) Japan nuclear fuel Ltd., The Progress Report (Comprehensive Test by Spent Fuel) Reprocessing Facility Active Test (Part 1 of Second Step) [再処理施設 アクティブ試験(使用済燃料による総合試験)中間報告書(その2-1)], 2006, [in Japanese], https://www.jnfl.co.jp/press/pressj2006/061208sanko.pdf, (cited 2021 Aug. 1). – reference: 5) M. Nakao, 100 Scenarios of Failure[失敗百選-41の原因から未来の失敗を予測する-], Morikita Publishing Co., Ltd., ISBN978-4-627-66471-5 (2005), [in Japanese]. – reference: 12) Y. Yasuda, M. Takahashi, “Application of generalized failure mechanism knowledge to reprocessing plant for proactive risk management,” Energy Procedia, 131, 216–221 (2017), https://doi.org/10.1016/j.egypro.2017.09.468. – reference: 4) Y. Hatamura, Recommendation for Failure Science[失敗学のすすめ], Kodansha Ltd., ISBN4-06-210346-X (2000), [in Japanese]. – reference: 11) Y. Yasuda, M. Takahashi, “Study on the structured representation of failure mechanism in Rokkasho Reprocessing Plant,” Proc. Int. Conf. Nucl. Eng., Chiba, Japan, May. 17–21, 2015, ISBN978-4-88898-256-6 C3853 37037E (2015), [CD-ROM]. – reference: 17) Japan nuclear fuel Ltd., 六ヶ所再処理工場使用済燃料受入れ・貯蔵施設における安全冷却水系冷却水循環ポンプの一時停止に関する報告について, 2000 Nov. 28, [Internet], https://www.jnfl.co.jp/press/pressj2000/pr001128b.html, (cited 2021 Aug. 1). – reference: 15) Japan nuclear fuel Ltd., The Progress Report (Comprehensive Test by Spent Fuel) Reprocessing Facility Active Test (First Step) [再処理施設アクティブ試験(使用済燃料による総合試験)中間報告書(その1)], 2006, [in Japanese], https://www.jnfl.co.jp/cycle-recycle/testing/uran-testing-progress070312.pdf, (cited 2021 Aug. 1). – reference: 16) Japan nuclear fuel Ltd., The Progress Report (Comprehensive Test by Spent Fuel) Reprocessing Facility Active Test (Fourth Step) [再処理施設アクティブ試験(使用済燃料による総合試験)経過報告(第4ステップ)], 2008, [in Japanese], https://www.jnfl.co.jp/press/pressj2007/080227sanko1.pdf, (cited 2021 Aug. 1). – reference: 9) M. Takahashi, M. Kitamura, K. Sugiyama, “Derivation of diagnostic knowledge from multi-level, multi-attribute model representation of nuclear power plant,” Proc. Topical Meeting on Adv. in Human Factors Res. on Man/Comput. Interact. : Human and Beyond, 5–10 (1990). – reference: 1) Japan nuclear fuel Ltd. and Mitsubishi Heavy Industries, Ltd., 再処理施設の設計基準事象選定(J/M1004), 1996, [in Japanese]. – reference: 3) V. Ramachandran, A. C. Raghuram, R. V. Krishnan, S. K. Bhaumik, Failure Analysis of Engineering Structures : Methodology and Case Histories, ASM International, ISBN : 978-0-87170-820-5 (2005). – reference: 6) M. Nakao, 100 Scenarios of Failure II[続・失敗百選-リコールと事故を防ぐ60のポイント-], Morikita Publishing Co., Ltd., ISBN978-4-627-66771-6 (2010), [in Japanese]. – reference: 2) J. A. Collins, B. T. Hagan, H. M. Bratt, “The failure-experience matrix - A useful design tool,” J. Eng. Ind., 98[3], 1074–1079 (1976), https://doi.org/10.1115/1.3439009. – reference: 8) T. Kashima, H. Kimura, H. Koizumi, M. Imamura, “Operation and evaluation for design defect prevention system based on structured knowledge,” Trans. Jpn. Soc. Artif. Intell., 26[5], 607–620 (2011), [in Japanese], https://doi.org/10.1527/tjsai.26.607. – reference: 18) Japan nuclear fuel Ltd., ウラン・プルトニウム混合脱硝建屋 グローブポート押さえのひび割れ事象の処置について, 2015 Oct. 21, [Internet], https://www.nsr.go.jp/data/000128023.pdf, (cited 2021 Aug. 1). – reference: 7) Y. Tamura, SSMによる構造化知識マネジメント 設計開発における不具合防止に役立つ知識の構築と活用, JUSE Press, Ltd., ISBN978-4-8171-9451-0 (2012), [in Japanese]. – reference: 10) M. Takahashi, M. Kitamura, K. Sugiyama, “Representation of generalized failure mechanism knowledge for diagnosis of nuclear power plant,” J. At. Energy Soc. Jpn., 34[7], 678–692 (1992), [in Japanese], https://doi.org/10.3327/jaesj.34.678. – ident: 17 – ident: 18 – ident: 5 – ident: 4 – ident: 1 – ident: 2 doi: 10.1115/1.3439009 – ident: 11 – ident: 8 doi: 10.1527/tjsai.26.607 – ident: 13 – ident: 16 – ident: 14 – ident: 15 – ident: 3 doi: 10.31399/asm.tb.faesmch.9781627083010 – ident: 10 doi: 10.3327/jaesj.34.678 – ident: 6 – ident: 9 – ident: 7 – ident: 12 doi: 10.1016/j.egypro.2017.09.468 |
SSID | ssj0002213714 ssib003171133 ssib002670214 ssib002227771 |
Score | 2.1964025 |
Snippet | To achieve a higher level of safety in the Rokkasho reprocessing plant, it is important to predict the failure mechanism extensively and proactively. Although... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 82 |
SubjectTerms | Failure failure mechanism Failure mechanisms failure mode Failure modes Generalized Failure Mechanism Knowledge (GFMK) Maintenance maintenance activity plant diagnosis Reprocessing risk management |
Title | Application of Generalized Failure Mechanism Knowledge to Reprocessing Plant for Supporting Maintenance Activity |
URI | https://www.jstage.jst.go.jp/article/taesj/21/2/21_J21.012/_article/-char/en https://www.proquest.com/docview/2765441543 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Transactions of the Atomic Energy Society of Japan, 2022, Vol.21(2), pp.82-95 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5FBSQuiKcIFLQH4GI52Lt-Slws2hISpRIilcrJ2vWjpJHsKrGF2t_Ej2Rmd-06pYfCxYm8a8v2fJ7Her4ZQt55eSbdkgW2JyBW9cJS2NL3uS3CMoJ3y8ncCMnJi-NgeuLNTv3T0ej3IGupbeQku7qVV_I_UoV9IFdkyf6DZPuTwg74D_KFLUgYtneScXL99RmdPlNCenUFTuSRWGHCubUokNqLnTDm3eoZupvgd2uGAK4UYOOiRuUbYo_PeqMyoRcCK0lUilGQZLrHxNCTPV79xIIcBaZ7bS7rdWt9Eeu1WFm_hGwra1NX8ANj1nt-oEuoawrFtstKSBokRFuHmnzYZY_C4Azsdw_ZH6D3DxJlKNr2srchy2SeTJPv06-ab7Sum3q4fsEGi5nIYrUhYtMqs1D7sEWWDS6IO9TQmkNtkMgG6lb3LTKGWzfrvGkSOGf4UboRxfZ8MmPuxDFp2zult2-YxD5REUIkPEGqDk_h8NTBltb3GAQlaAbm36J-RY8xF8sfqgjf3Jgu6opn-LhzATtO0P1ziAPO_nYGlIezfEwemdCEJhpnT8ioqJ6SBypFONs-IxcDtNG6pAO0UYM22qON9mijTU2HaKMKbRTQRq_RRgdoox3anpOTo8Pl56lt-nXYmRv4EKjFvgzyskT7CXGBKEG3B07MJAfdXnjwxHLwk8IwhElxFnoeh_FMOIH0XSEczl-QvaquipeEgvbwYSRyeZmDy1xEHstlLuM4c71c-vmYfOgeYHqhy7Kkt8pqTD7px9tPM2-rmQazGG7M9H4UOY-gYsZkvxNKal78bcrCADv3-R5_ddfLeE0eIvb12t0-2Ws2bfEGvNlGvlUg-gNs0KeV |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Generalized+Failure+Mechanism+Knowledge+to+Reprocessing+Plant+for+Supporting+Maintenance+Activity&rft.jtitle=Nihon+Genshiryoku+Gakkai+wabun+ronbunshi+%3D+Transactions+of+the+Atomic+Energy+Society+of+Japan&rft.au=YASUDA%2C+Yuuya&rft.au=TAKAHASHI%2C+Makoto&rft.date=2022&rft.issn=1347-2879&rft.eissn=2186-2931&rft.volume=21&rft.issue=2&rft.spage=82&rft.epage=95&rft_id=info:doi/10.3327%2Ftaesj.J21.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_3327_taesj_J21_012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-2879&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-2879&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-2879&client=summon |