Research on Crop Detection Algorithm Based on Improved YOLOv7

In the field of crop target detection, traditional target detection algorithms are often difficult to achieve satisfactory accuracy due to factors such as dense distribution of species and poor imaging quality, which brings many inconveniences and challenges in practical agricultural production appl...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced network, monitoring, and controls Vol. 10; no. 2; pp. 10 - 19
Main Authors Shi, Xiaoqi, Ye, Xin
Format Journal Article
LanguageEnglish
Published Xi'an Sciendo 16.06.2025
De Gruyter Poland
Subjects
Online AccessGet full text
ISSN2470-8038
2470-8038
DOI10.2478/ijanmc-2025-0012

Cover

Loading…
Abstract In the field of crop target detection, traditional target detection algorithms are often difficult to achieve satisfactory accuracy due to factors such as dense distribution of species and poor imaging quality, which brings many inconveniences and challenges in practical agricultural production applications. To address this situation, the study introduces an enhanced YOLOv7 algorithm, incorporating the attention mechanism, with the objective of substantially elevating the overall performance in crop target detection tasks. The improved algorithm can more accurately focus on the key features of crops by cleverly incorporating the attention mechanism, effectively filtering out the interference of complex background and noise, so as to achieve more accurate recognition of various crops. After a large amount of experimental data verification, the improved algorithm can achieve an average recognition accuracy of 80% for a variety of crops, with an average accuracy of 75%, and the highest recognition efficiency is as high as 91% in the detection of some specific crops. In contrast to other prominent crop target detection algorithms, the refined algorithm presented in this paper exhibits remarkable performance benefits. Notably, its target detection efficacy is highly significant, enabling swift and precise identification of crop species.
AbstractList In the field of crop target detection, traditional target detection algorithms are often difficult to achieve satisfactory accuracy due to factors such as dense distribution of species and poor imaging quality, which brings many inconveniences and challenges in practical agricultural production applications. To address this situation, the study introduces an enhanced YOLOv7 algorithm, incorporating the attention mechanism, with the objective of substantially elevating the overall performance in crop target detection tasks. The improved algorithm can more accurately focus on the key features of crops by cleverly incorporating the attention mechanism, effectively filtering out the interference of complex background and noise, so as to achieve more accurate recognition of various crops. After a large amount of experimental data verification, the improved algorithm can achieve an average recognition accuracy of 80% for a variety of crops, with an average accuracy of 75%, and the highest recognition efficiency is as high as 91% in the detection of some specific crops. In contrast to other prominent crop target detection algorithms, the refined algorithm presented in this paper exhibits remarkable performance benefits. Notably, its target detection efficacy is highly significant, enabling swift and precise identification of crop species.
Author Ye, Xin
Shi, Xiaoqi
Author_xml – sequence: 1
  givenname: Xiaoqi
  surname: Shi
  fullname: Shi, Xiaoqi
  email: shixiaoqi713@163.com
  organization: School of Computer Science and Engineering Xi’an Technological University Xi’an, 710021, China
– sequence: 2
  givenname: Xin
  surname: Ye
  fullname: Ye, Xin
  email: yexin@xatu.edu.cn
  organization: School of Computer Science and Engineering Xi’an Technological University Xi’an, 710021, China
BookMark eNp1kL1PwzAQxS1UJErpzhiJOXBnJ3EydCjlq1KkSggGJstxnDZVExc7Lep_j6MgwcJ076z33lm_SzJqTasJuUa4pRFP7-qtbBsVUqBxCID0jIz9O4QpsHT0R1-QqXNbAKCYZDGyMZm9aqelVZvAtMHCmn3woDututqv893a2LrbNMG9dLrsHctmb83R649VvjryK3JeyZ3T0585Ie9Pj2-LlzBfPS8X8zxUmMQQ0irCVGnlv5HRNCloyaKKIi-rKAMZZwoL4DLjFSuLRCooUJZcY0xlRCnPgE3IzdDrr38etOvE1hxs608KRtF3Mh5z74LBpaxxzupK7G3dSHsSCKLnJAZOouckek4-MhsiX3LXaVvqtT2cvPjt_y-KniGwb_pzb_w
Cites_doi 10.1038/s41598-024-65322-8
10.1007/s12530-022-09449-x
ContentType Journal Article
Copyright 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.2478/ijanmc-2025-0012
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2470-8038
EndPage 19
ExternalDocumentID 10_2478_ijanmc_2025_0012
10_2478_ijanmc_2025_001210210
GeographicLocations China
India
GeographicLocations_xml – name: China
– name: India
GroupedDBID 9WM
AATOW
ABFKT
ADBBV
AFKRA
AHGSO
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
EBS
IAO
ICD
M~E
OK1
PHGZM
PHGZT
PIMPY
QD8
SLJYH
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c1650-2f418cec4709286b2d34f217df490a59c1b07a97f3db6ac0b1ad7e152a4227903
IEDL.DBID BENPR
ISSN 2470-8038
IngestDate Mon Jun 30 07:18:12 EDT 2025
Thu Jul 03 08:29:50 EDT 2025
Thu Jul 10 10:33:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1650-2f418cec4709286b2d34f217df490a59c1b07a97f3db6ac0b1ad7e152a4227903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3219283757?pq-origsite=%requestingapplication%
PQID 3219283757
PQPubID 6762062
PageCount 10
ParticipantIDs proquest_journals_3219283757
crossref_primary_10_2478_ijanmc_2025_0012
walterdegruyter_journals_10_2478_ijanmc_2025_001210210
PublicationCentury 2000
PublicationDate 2025-06-16
PublicationDateYYYYMMDD 2025-06-16
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-16
  day: 16
PublicationDecade 2020
PublicationPlace Xi'an
PublicationPlace_xml – name: Xi'an
PublicationTitle International journal of advanced network, monitoring, and controls
PublicationYear 2025
Publisher Sciendo
De Gruyter Poland
Publisher_xml – name: Sciendo
– name: De Gruyter Poland
References 2025062219113079697_j_ijanmc-2025-0012_ref_009
2025062219113079697_j_ijanmc-2025-0012_ref_004
2025062219113079697_j_ijanmc-2025-0012_ref_003
2025062219113079697_j_ijanmc-2025-0012_ref_014
2025062219113079697_j_ijanmc-2025-0012_ref_002
2025062219113079697_j_ijanmc-2025-0012_ref_013
2025062219113079697_j_ijanmc-2025-0012_ref_001
2025062219113079697_j_ijanmc-2025-0012_ref_012
2025062219113079697_j_ijanmc-2025-0012_ref_008
2025062219113079697_j_ijanmc-2025-0012_ref_007
2025062219113079697_j_ijanmc-2025-0012_ref_006
2025062219113079697_j_ijanmc-2025-0012_ref_005
2025062219113079697_j_ijanmc-2025-0012_ref_011
2025062219113079697_j_ijanmc-2025-0012_ref_010
References_xml – ident: 2025062219113079697_j_ijanmc-2025-0012_ref_004
– ident: 2025062219113079697_j_ijanmc-2025-0012_ref_005
– ident: 2025062219113079697_j_ijanmc-2025-0012_ref_001
– ident: 2025062219113079697_j_ijanmc-2025-0012_ref_002
– ident: 2025062219113079697_j_ijanmc-2025-0012_ref_010
– ident: 2025062219113079697_j_ijanmc-2025-0012_ref_011
– ident: 2025062219113079697_j_ijanmc-2025-0012_ref_012
– ident: 2025062219113079697_j_ijanmc-2025-0012_ref_013
– ident: 2025062219113079697_j_ijanmc-2025-0012_ref_003
  doi: 10.1038/s41598-024-65322-8
– ident: 2025062219113079697_j_ijanmc-2025-0012_ref_014
– ident: 2025062219113079697_j_ijanmc-2025-0012_ref_006
  doi: 10.1007/s12530-022-09449-x
– ident: 2025062219113079697_j_ijanmc-2025-0012_ref_009
– ident: 2025062219113079697_j_ijanmc-2025-0012_ref_008
– ident: 2025062219113079697_j_ijanmc-2025-0012_ref_007
SSID ssj0002169513
Score 2.2944906
Snippet In the field of crop target detection, traditional target detection algorithms are often difficult to achieve satisfactory accuracy due to factors such as...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Index Database
Publisher
StartPage 10
SubjectTerms Accuracy
Agricultural production
Algorithms
Artificial intelligence
Attention Mechanism
Crop diseases
Crop Species Recognition
Crops
Datasets
Deep learning
Fruits
Labeling
Neural networks
Plant diseases
Target Detection
Vegetables
Vision systems
YOLOv7
Title Research on Crop Detection Algorithm Based on Improved YOLOv7
URI https://www.degruyter.com/doi/10.2478/ijanmc-2025-0012
https://www.proquest.com/docview/3219283757
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JT8JAFJ4oXLy4G1E0c_DiYUKX6bQcjAGEEKNgjCR4amYraqRFKBr_vW-6SDTRWw_TSfq9fel7CJ0Bz0QQJnPChIIARYKkC-lLAvwcUO4xGmXrfG4HrD-i12NvXCTcFkVbZakTM0WtEmly5A0XRMtMavH8y9kbMVujTHW1WKGxjqqgggMIvqrt7uDu_jvL4tgMXAg3r0861A8azy88nkpgDscjxtb_tEcrJ3PzIytXKz2ZLz_TsjyaWZ3eNtos3EXcyum7g9Z0vIu2ylUMuJDMPXRRdtDhJMadeTLDVzrNuqxi3HqdwIekT1PcBpOlzIk8lQDPj8Ob4bu_j0a97kOnT4rNCETa4FIRJ6J2ILWkvgWgMOEol0YQXKiINi3uNaUtLJ83_chVgnFpCZsrX4Op5tRMDLTcA1SJk1gfIizgJWZ-LxUQLCnJAiUkD4zjJDxha1lD5yU-4SwfgBFC4GCwDHMsQ4Ol6Y1zaqheAhgWorAIV4SrIfYL1NWpv640m8eto__vPUYbOTkZsVkdVdL5Up-Aq5CK04IfvgC0z72w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2V9gAXdkRZfYADh4gsjpMeEGJpVaAUhECCU_AWFkFaSgDxU3wj4yxUIMGNWw7OHJ6fPW88Yw_AGnImxjCZW0woDFAkrnQhA2khn0PKfUbjrJ3PcZe1L-jhpX9ZgY_yLowpqyz3xGyjVj1pzsg3PVxa5qUWP9juP1mma5TJrpYtNHJaHOn3NwzZnrcO9nF-11231Tzfa1tFVwFLOihHLDemTii1pIGNBplwlUdjFOYqpg2b-w3pCDvgjSD2lGBc2sLhKtDo5jg1r-3ZHtodgRr1MJSpQm232T09-zrVcR2GksXL86EuDcLNu3uePEoko-tbRlt8939DUTv-lqXHlb4ZvLynZTo283KtSRgv5CnZyfk0BRWdTMNE2fqBFDvBDGyVFXukl5C9Qa9P9nWaVXUlZOfhBoFLbx_JLrpIZUbkRxf4fXXSOXkNZuHiXzCbg2rSS_Q8EIE_MXOdVWBwpiQLlZA8NEJN-MLRsg4bJT5RP39wI8JAxWAZ5VhGBktTi-fWYakEMCqW3nM0JEod2A9Qh6N-M2k6ndsLf9tdhdH2-XEn6hx0jxZhLJ9aZjlsCarp4EUvo0xJxUrBDQLX_03HTwOo-Us
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8NADLZKkRBLeYvyzMDCEDWPy10yMBRKKVBaJKhUpugeSQFBUpUC4t_jy4MKBAtbhnOGz77z57PPBjhAm4kxTOYmFQoDFIk7XUgmTbRnn3CPkjgb53PVo50BuRh6wwpY5VuY7NxXWbayMVZxVqpMmN94eOTJs0SdOp6pXfQczDMvcLwqzDc7Zzf9r3sVx6ZIGtw8I_mr6HcPNKOVtfcsQa2i0eT1Y1omRDM_016GWkEQjWau0RWoRMkqLJXDF4xiL67BUVkzZ6SJcTJJx0YrmmZ1VYnRfBqlGPTfPxvH6KSUXpFfHuD3Xb_bf2PrMGif3p50zGIWgiltJFGmExPbl5EkzAocnwpHuSTGcELFJLC4F0hbWIwHLHaVoFxawuaKReicOdE9Ai13A6pJmkSbYAgUovpBqcDwSEnqKyG5r6mS8IQdyToclviE47zlRYihgsYyzLEMNZa6Gs6pw04JYFgY_0vo4imom-p4rA70B6izVX_9Us8at7b-K7gPC9etdtg9711uw2Kuc2radAeq08lrtIsMYir2CqP5BGKwwSk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Crop+Detection+Algorithm+Based+on+Improved+YOLOv7&rft.jtitle=International+journal+of+advanced+network%2C+monitoring%2C+and+controls&rft.au=Shi%2C+Xiaoqi&rft.au=Ye%2C+Xin&rft.date=2025-06-16&rft.pub=Sciendo&rft.eissn=2470-8038&rft.volume=10&rft.issue=2&rft.spage=10&rft.epage=19&rft_id=info:doi/10.2478%2Fijanmc-2025-0012&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_ijanmc_2025_001210210
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-8038&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-8038&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-8038&client=summon