Research on Crop Detection Algorithm Based on Improved YOLOv7
In the field of crop target detection, traditional target detection algorithms are often difficult to achieve satisfactory accuracy due to factors such as dense distribution of species and poor imaging quality, which brings many inconveniences and challenges in practical agricultural production appl...
Saved in:
Published in | International journal of advanced network, monitoring, and controls Vol. 10; no. 2; pp. 10 - 19 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Xi'an
Sciendo
16.06.2025
De Gruyter Poland |
Subjects | |
Online Access | Get full text |
ISSN | 2470-8038 2470-8038 |
DOI | 10.2478/ijanmc-2025-0012 |
Cover
Loading…
Abstract | In the field of crop target detection, traditional target detection algorithms are often difficult to achieve satisfactory accuracy due to factors such as dense distribution of species and poor imaging quality, which brings many inconveniences and challenges in practical agricultural production applications. To address this situation, the study introduces an enhanced YOLOv7 algorithm, incorporating the attention mechanism, with the objective of substantially elevating the overall performance in crop target detection tasks. The improved algorithm can more accurately focus on the key features of crops by cleverly incorporating the attention mechanism, effectively filtering out the interference of complex background and noise, so as to achieve more accurate recognition of various crops. After a large amount of experimental data verification, the improved algorithm can achieve an average recognition accuracy of 80% for a variety of crops, with an average accuracy of 75%, and the highest recognition efficiency is as high as 91% in the detection of some specific crops. In contrast to other prominent crop target detection algorithms, the refined algorithm presented in this paper exhibits remarkable performance benefits. Notably, its target detection efficacy is highly significant, enabling swift and precise identification of crop species. |
---|---|
AbstractList | In the field of crop target detection, traditional target detection algorithms are often difficult to achieve satisfactory accuracy due to factors such as dense distribution of species and poor imaging quality, which brings many inconveniences and challenges in practical agricultural production applications. To address this situation, the study introduces an enhanced YOLOv7 algorithm, incorporating the attention mechanism, with the objective of substantially elevating the overall performance in crop target detection tasks. The improved algorithm can more accurately focus on the key features of crops by cleverly incorporating the attention mechanism, effectively filtering out the interference of complex background and noise, so as to achieve more accurate recognition of various crops. After a large amount of experimental data verification, the improved algorithm can achieve an average recognition accuracy of 80% for a variety of crops, with an average accuracy of 75%, and the highest recognition efficiency is as high as 91% in the detection of some specific crops. In contrast to other prominent crop target detection algorithms, the refined algorithm presented in this paper exhibits remarkable performance benefits. Notably, its target detection efficacy is highly significant, enabling swift and precise identification of crop species. |
Author | Ye, Xin Shi, Xiaoqi |
Author_xml | – sequence: 1 givenname: Xiaoqi surname: Shi fullname: Shi, Xiaoqi email: shixiaoqi713@163.com organization: School of Computer Science and Engineering Xi’an Technological University Xi’an, 710021, China – sequence: 2 givenname: Xin surname: Ye fullname: Ye, Xin email: yexin@xatu.edu.cn organization: School of Computer Science and Engineering Xi’an Technological University Xi’an, 710021, China |
BookMark | eNp1kL1PwzAQxS1UJErpzhiJOXBnJ3EydCjlq1KkSggGJstxnDZVExc7Lep_j6MgwcJ076z33lm_SzJqTasJuUa4pRFP7-qtbBsVUqBxCID0jIz9O4QpsHT0R1-QqXNbAKCYZDGyMZm9aqelVZvAtMHCmn3woDututqv893a2LrbNMG9dLrsHctmb83R649VvjryK3JeyZ3T0585Ie9Pj2-LlzBfPS8X8zxUmMQQ0irCVGnlv5HRNCloyaKKIi-rKAMZZwoL4DLjFSuLRCooUJZcY0xlRCnPgE3IzdDrr38etOvE1hxs608KRtF3Mh5z74LBpaxxzupK7G3dSHsSCKLnJAZOouckek4-MhsiX3LXaVvqtT2cvPjt_y-KniGwb_pzb_w |
Cites_doi | 10.1038/s41598-024-65322-8 10.1007/s12530-022-09449-x |
ContentType | Journal Article |
Copyright | 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
DOI | 10.2478/ijanmc-2025-0012 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2470-8038 |
EndPage | 19 |
ExternalDocumentID | 10_2478_ijanmc_2025_0012 10_2478_ijanmc_2025_001210210 |
GeographicLocations | China India |
GeographicLocations_xml | – name: China – name: India |
GroupedDBID | 9WM AATOW ABFKT ADBBV AFKRA AHGSO ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU EBS IAO ICD M~E OK1 PHGZM PHGZT PIMPY QD8 SLJYH AAYXX CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c1650-2f418cec4709286b2d34f217df490a59c1b07a97f3db6ac0b1ad7e152a4227903 |
IEDL.DBID | BENPR |
ISSN | 2470-8038 |
IngestDate | Mon Jun 30 07:18:12 EDT 2025 Thu Jul 03 08:29:50 EDT 2025 Thu Jul 10 10:33:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1650-2f418cec4709286b2d34f217df490a59c1b07a97f3db6ac0b1ad7e152a4227903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3219283757?pq-origsite=%requestingapplication% |
PQID | 3219283757 |
PQPubID | 6762062 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3219283757 crossref_primary_10_2478_ijanmc_2025_0012 walterdegruyter_journals_10_2478_ijanmc_2025_001210210 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-16 |
PublicationDateYYYYMMDD | 2025-06-16 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Xi'an |
PublicationPlace_xml | – name: Xi'an |
PublicationTitle | International journal of advanced network, monitoring, and controls |
PublicationYear | 2025 |
Publisher | Sciendo De Gruyter Poland |
Publisher_xml | – name: Sciendo – name: De Gruyter Poland |
References | 2025062219113079697_j_ijanmc-2025-0012_ref_009 2025062219113079697_j_ijanmc-2025-0012_ref_004 2025062219113079697_j_ijanmc-2025-0012_ref_003 2025062219113079697_j_ijanmc-2025-0012_ref_014 2025062219113079697_j_ijanmc-2025-0012_ref_002 2025062219113079697_j_ijanmc-2025-0012_ref_013 2025062219113079697_j_ijanmc-2025-0012_ref_001 2025062219113079697_j_ijanmc-2025-0012_ref_012 2025062219113079697_j_ijanmc-2025-0012_ref_008 2025062219113079697_j_ijanmc-2025-0012_ref_007 2025062219113079697_j_ijanmc-2025-0012_ref_006 2025062219113079697_j_ijanmc-2025-0012_ref_005 2025062219113079697_j_ijanmc-2025-0012_ref_011 2025062219113079697_j_ijanmc-2025-0012_ref_010 |
References_xml | – ident: 2025062219113079697_j_ijanmc-2025-0012_ref_004 – ident: 2025062219113079697_j_ijanmc-2025-0012_ref_005 – ident: 2025062219113079697_j_ijanmc-2025-0012_ref_001 – ident: 2025062219113079697_j_ijanmc-2025-0012_ref_002 – ident: 2025062219113079697_j_ijanmc-2025-0012_ref_010 – ident: 2025062219113079697_j_ijanmc-2025-0012_ref_011 – ident: 2025062219113079697_j_ijanmc-2025-0012_ref_012 – ident: 2025062219113079697_j_ijanmc-2025-0012_ref_013 – ident: 2025062219113079697_j_ijanmc-2025-0012_ref_003 doi: 10.1038/s41598-024-65322-8 – ident: 2025062219113079697_j_ijanmc-2025-0012_ref_014 – ident: 2025062219113079697_j_ijanmc-2025-0012_ref_006 doi: 10.1007/s12530-022-09449-x – ident: 2025062219113079697_j_ijanmc-2025-0012_ref_009 – ident: 2025062219113079697_j_ijanmc-2025-0012_ref_008 – ident: 2025062219113079697_j_ijanmc-2025-0012_ref_007 |
SSID | ssj0002169513 |
Score | 2.2944906 |
Snippet | In the field of crop target detection, traditional target detection algorithms are often difficult to achieve satisfactory accuracy due to factors such as... |
SourceID | proquest crossref walterdegruyter |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 10 |
SubjectTerms | Accuracy Agricultural production Algorithms Artificial intelligence Attention Mechanism Crop diseases Crop Species Recognition Crops Datasets Deep learning Fruits Labeling Neural networks Plant diseases Target Detection Vegetables Vision systems YOLOv7 |
Title | Research on Crop Detection Algorithm Based on Improved YOLOv7 |
URI | https://www.degruyter.com/doi/10.2478/ijanmc-2025-0012 https://www.proquest.com/docview/3219283757 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JT8JAFJ4oXLy4G1E0c_DiYUKX6bQcjAGEEKNgjCR4amYraqRFKBr_vW-6SDTRWw_TSfq9fel7CJ0Bz0QQJnPChIIARYKkC-lLAvwcUO4xGmXrfG4HrD-i12NvXCTcFkVbZakTM0WtEmly5A0XRMtMavH8y9kbMVujTHW1WKGxjqqgggMIvqrt7uDu_jvL4tgMXAg3r0861A8azy88nkpgDscjxtb_tEcrJ3PzIytXKz2ZLz_TsjyaWZ3eNtos3EXcyum7g9Z0vIu2ylUMuJDMPXRRdtDhJMadeTLDVzrNuqxi3HqdwIekT1PcBpOlzIk8lQDPj8Ob4bu_j0a97kOnT4rNCETa4FIRJ6J2ILWkvgWgMOEol0YQXKiINi3uNaUtLJ83_chVgnFpCZsrX4Op5tRMDLTcA1SJk1gfIizgJWZ-LxUQLCnJAiUkD4zjJDxha1lD5yU-4SwfgBFC4GCwDHMsQ4Ol6Y1zaqheAhgWorAIV4SrIfYL1NWpv640m8eto__vPUYbOTkZsVkdVdL5Up-Aq5CK04IfvgC0z72w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2V9gAXdkRZfYADh4gsjpMeEGJpVaAUhECCU_AWFkFaSgDxU3wj4yxUIMGNWw7OHJ6fPW88Yw_AGnImxjCZW0woDFAkrnQhA2khn0PKfUbjrJ3PcZe1L-jhpX9ZgY_yLowpqyz3xGyjVj1pzsg3PVxa5qUWP9juP1mma5TJrpYtNHJaHOn3NwzZnrcO9nF-11231Tzfa1tFVwFLOihHLDemTii1pIGNBplwlUdjFOYqpg2b-w3pCDvgjSD2lGBc2sLhKtDo5jg1r-3ZHtodgRr1MJSpQm232T09-zrVcR2GksXL86EuDcLNu3uePEoko-tbRlt8939DUTv-lqXHlb4ZvLynZTo283KtSRgv5CnZyfk0BRWdTMNE2fqBFDvBDGyVFXukl5C9Qa9P9nWaVXUlZOfhBoFLbx_JLrpIZUbkRxf4fXXSOXkNZuHiXzCbg2rSS_Q8EIE_MXOdVWBwpiQLlZA8NEJN-MLRsg4bJT5RP39wI8JAxWAZ5VhGBktTi-fWYakEMCqW3nM0JEod2A9Qh6N-M2k6ndsLf9tdhdH2-XEn6hx0jxZhLJ9aZjlsCarp4EUvo0xJxUrBDQLX_03HTwOo-Us |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8NADLZKkRBLeYvyzMDCEDWPy10yMBRKKVBaJKhUpugeSQFBUpUC4t_jy4MKBAtbhnOGz77z57PPBjhAm4kxTOYmFQoDFIk7XUgmTbRnn3CPkjgb53PVo50BuRh6wwpY5VuY7NxXWbayMVZxVqpMmN94eOTJs0SdOp6pXfQczDMvcLwqzDc7Zzf9r3sVx6ZIGtw8I_mr6HcPNKOVtfcsQa2i0eT1Y1omRDM_016GWkEQjWau0RWoRMkqLJXDF4xiL67BUVkzZ6SJcTJJx0YrmmZ1VYnRfBqlGPTfPxvH6KSUXpFfHuD3Xb_bf2PrMGif3p50zGIWgiltJFGmExPbl5EkzAocnwpHuSTGcELFJLC4F0hbWIwHLHaVoFxawuaKReicOdE9Ai13A6pJmkSbYAgUovpBqcDwSEnqKyG5r6mS8IQdyToclviE47zlRYihgsYyzLEMNZa6Gs6pw04JYFgY_0vo4imom-p4rA70B6izVX_9Us8at7b-K7gPC9etdtg9711uw2Kuc2radAeq08lrtIsMYir2CqP5BGKwwSk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Crop+Detection+Algorithm+Based+on+Improved+YOLOv7&rft.jtitle=International+journal+of+advanced+network%2C+monitoring%2C+and+controls&rft.au=Shi%2C+Xiaoqi&rft.au=Ye%2C+Xin&rft.date=2025-06-16&rft.pub=Sciendo&rft.eissn=2470-8038&rft.volume=10&rft.issue=2&rft.spage=10&rft.epage=19&rft_id=info:doi/10.2478%2Fijanmc-2025-0012&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_ijanmc_2025_001210210 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-8038&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-8038&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-8038&client=summon |