Classification of Silent Speech in English and Bengali Languages Using Stacked Autoencoder
The purpose of a brain–computer interface (BCI) is to enhance or support the normal functions of disabled people, and as such, BCIs have been utilized for a variety of applications, such as prostheses and identification of mental state. One such application concerned with providing a means of commun...
Saved in:
Published in | SN computer science Vol. 3; no. 5; p. 389 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
22.07.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The purpose of a brain–computer interface (BCI) is to enhance or support the normal functions of disabled people, and as such, BCIs have been utilized for a variety of applications, such as prostheses and identification of mental state. One such application concerned with providing a means of communication for disabled individuals is focused on the recognition of silent speech (also known as imagined speech) in an individual. Silent speech can be defined as the speech originating inside the brain of an individual that has not been vocalized by the individual. The proposed work is concerned with the classification of silent speech from the brain activity of an individual recorded using an electroencephalogram (EEG). EEG data from 45 subjects were collected while they imagined the English vowels /a/, /e/, /i/, /o/, and /u/ without vocalization. EEG data were also recorded from 22 subjects who imagined five Bengali vowels /আ/, /ই/, /উ/, /এ/ and /ও/ without vocalization. The selected Bengali vowels have a similar pronunciation to the English vowels. Various temporal and spectral features were evaluated from the EEG recordings, which were then classified using a stacked autoencoder (SAE). The SAE achieved an accuracy of 75.56% and 73.6% in classifying the silent speech from the English and Bengali languages, respectively. Moreover, it has been observed that the proposed SAE outperforms conventional methods such as common spatial pattern (CSP) and support vector machine (SVM) during classification. |
---|---|
AbstractList | The purpose of a brain–computer interface (BCI) is to enhance or support the normal functions of disabled people, and as such, BCIs have been utilized for a variety of applications, such as prostheses and identification of mental state. One such application concerned with providing a means of communication for disabled individuals is focused on the recognition of silent speech (also known as imagined speech) in an individual. Silent speech can be defined as the speech originating inside the brain of an individual that has not been vocalized by the individual. The proposed work is concerned with the classification of silent speech from the brain activity of an individual recorded using an electroencephalogram (EEG). EEG data from 45 subjects were collected while they imagined the English vowels /a/, /e/, /i/, /o/, and /u/ without vocalization. EEG data were also recorded from 22 subjects who imagined five Bengali vowels /আ/, /ই/, /উ/, /এ/ and /ও/ without vocalization. The selected Bengali vowels have a similar pronunciation to the English vowels. Various temporal and spectral features were evaluated from the EEG recordings, which were then classified using a stacked autoencoder (SAE). The SAE achieved an accuracy of 75.56% and 73.6% in classifying the silent speech from the English and Bengali languages, respectively. Moreover, it has been observed that the proposed SAE outperforms conventional methods such as common spatial pattern (CSP) and support vector machine (SVM) during classification. The purpose of a brain–computer interface (BCI) is to enhance or support the normal functions of disabled people, and as such, BCIs have been utilized for a variety of applications, such as prostheses and identification of mental state. One such application concerned with providing a means of communication for disabled individuals is focused on the recognition of silent speech (also known as imagined speech) in an individual. Silent speech can be defined as the speech originating inside the brain of an individual that has not been vocalized by the individual. The proposed work is concerned with the classification of silent speech from the brain activity of an individual recorded using an electroencephalogram (EEG). EEG data from 45 subjects were collected while they imagined the English vowels /a/, /e/, /i/, /o/, and /u/ without vocalization. EEG data were also recorded from 22 subjects who imagined five Bengali vowels /আ/, /ই/, /উ/, /এ/ and /ও/ without vocalization. The selected Bengali vowels have a similar pronunciation to the English vowels. Various temporal and spectral features were evaluated from the EEG recordings, which were then classified using a stacked autoencoder (SAE). The SAE achieved an accuracy of 75.56% and 73.6% in classifying the silent speech from the English and Bengali languages, respectively. Moreover, it has been observed that the proposed SAE outperforms conventional methods such as common spatial pattern (CSP) and support vector machine (SVM) during classification. |
ArticleNumber | 389 |
Author | Phadikar, Souvik Ghosh, Rajdeep Sinha, Nidul |
Author_xml | – sequence: 1 givenname: Rajdeep orcidid: 0000-0002-8045-0137 surname: Ghosh fullname: Ghosh, Rajdeep email: rajdeep.publication@gmail.com organization: School of Computing Science and Engineering, VIT Bhopal University – sequence: 2 givenname: Nidul surname: Sinha fullname: Sinha, Nidul organization: Department of Electrical Engineering, NIT Silchar – sequence: 3 givenname: Souvik surname: Phadikar fullname: Phadikar, Souvik organization: Department of Electrical Engineering, NIT Silchar |
BookMark | eNp9kLtOwzAUhi1UJErpCzBZYg4cO85tLFW5SJUYShcWy3FOUpfgFDsZ8vaEBgnE0Omc4f_O5bskE9tYJOSawS0DSO684FmSBcB5AIwnIujPyJTHMQvSDJLJn_6CzL3fAwCPQIg4mpK3Za28N6XRqjWNpU1JN6ZG29LNAVHvqLF0Zava-B1VtqD3aCtVG7pWtupUhZ5uvbEV3bRKv2NBF13boNVNge6KnJeq9jj_qTOyfVi9Lp-C9cvj83KxDjSLRR9gGAOEKUCuc6Gh5Bx1lIU4vJKKSGSsEHmaa6a04nkKRRKVWR6VPEYm8iItwhm5GeceXPPZoW_lvumcHVZKnoUhizPO2ZBKx5R2jfcOS6lNe_y5dcrUkoH8lilHmXKQKY8yZT-g_B96cOZDuf40FI6QH8K2Qvd71QnqCwAbiZg |
CitedBy_id | crossref_primary_10_1109_TCDS_2024_3431224 crossref_primary_10_1016_j_mlwa_2023_100486 |
Cites_doi | 10.3758/BF03204132 10.1016/j.neunet.2009.05.008 10.1016/j.asoc.2013.10.023 10.3233/JIFS-169690 10.1016/0013-4694(70)90143-4 10.1109/JBHI.2020.2995235 10.1109/86.847812 10.1016/j.bspc.2021.103241 10.1007/s11571-019-09558-5 10.1073/pnas.94.26.14965 10.1049/iet-spr.2018.5111 10.3390/s19030551 10.1016/j.bspc.2013.07.011 10.1016/j.eswa.2016.04.011 10.1002/0471656372 10.1109/TASLP.2017.2758164 10.1126/science.172.3982.499 10.1109/IEMBS.2004.1404259 10.1109/NAECON.2015.7443095 10.1109/ICBBE.2010.5515807 10.1145/2559184.2559190 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022 – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s42979-022-01274-y |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (UHCL Subscription) ProQuest Computer Science Collection Computer Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2661-8907 |
ExternalDocumentID | 10_1007_s42979_022_01274_y |
GrantInformation_xml | – fundername: NPIU-MHRD grantid: 1-5770264050 |
GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABHQN ABJNI ABMQK ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AFBBN AFKRA AFQWF AGMZJ AGQEE AGRTI AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS BAPOH BENPR BGLVJ CCPQU DPUIP EBLON EBS FIGPU FNLPD GGCAI GNWQR HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM NPVJJ NQJWS OK1 PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR 2JN AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c164y-e36003800bcb4c0f22ec593e012845491d4b8bc1aca2b80d75f9b5f26e14bd8d3 |
IEDL.DBID | BENPR |
ISSN | 2661-8907 2662-995X |
IngestDate | Fri Jul 25 09:13:46 EDT 2025 Thu Apr 24 23:08:22 EDT 2025 Tue Jul 01 03:19:17 EDT 2025 Fri Feb 21 02:45:52 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Deep learning Stacked autoencoder Imagined speech Electroencephalogram Silent speech Brain–computer interface |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c164y-e36003800bcb4c0f22ec593e012845491d4b8bc1aca2b80d75f9b5f26e14bd8d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8045-0137 |
PQID | 2933169221 |
PQPubID | 6623307 |
ParticipantIDs | proquest_journals_2933169221 crossref_citationtrail_10_1007_s42979_022_01274_y crossref_primary_10_1007_s42979_022_01274_y springer_journals_10_1007_s42979_022_01274_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220722 |
PublicationDateYYYYMMDD | 2022-07-22 |
PublicationDate_xml | – month: 7 year: 2022 text: 20220722 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Kolkata |
PublicationTitle | SN computer science |
PublicationTitleAbbrev | SN COMPUT. SCI |
PublicationYear | 2022 |
Publisher | Springer Nature Singapore Springer Nature B.V |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
References | He, Eguren, Azorín, Grossman, Luu, Contreras-Vidal (CR1) 2018; 15 Wang, Liu, Liang, Yang, Hu (CR19) 2019; 147 Craik, He, Contreras-Vidal (CR33) 2019; 16 DaSalla, Kambara, Sato, Koike (CR10) 2009; 22 CR17 Murugappan, Rizon, Nagarajan, Yaacob, Zunaidi, Hazry (CR32) 2007; 1 Birbaumer, Kubler, Ghanayim, Hinterberger, Perelmouter, Kaiser, Iversen, Kotchoubey, Neumann, Flor (CR2) 2000; 8 CR15 CR14 CR12 Suppes, Lu, Han (CR7) 1997; 94 Vincent, Larochelle, Lajoie, Bengio, Manzagol, Bottou (CR25) 2010; 11 Phadikar, Sinha, Ghosh (CR28) 2020; 25 Sereshkeh, Trott, Bricout, Chau (CR21) 2017; 25 D’Zmura, Deng, Lappas, Thorpe, Srinivasan, Jacko (CR11) 2009 Torres-García, Reyes-García, Villaseñor-Pineda, García-Aguilar (CR18) 2016; 59 Huang, Wang, Liu, Wang (CR29) 2004; 2 McAdam, Whitaker (CR5) 1971; 172 Rithwik, Benzy, Vinod (CR31) 2022; 72 Chi, Hagedorn, Schoonover, D'Zmura (CR13) 2011; 13 Hjorth (CR30) 1970; 29 Chengaiyan, Retnapandian, Anandan (CR20) 2020; 14 CR8 Kamalakkannan, Rajkumar, Raj, Devi (CR16) 2014; 1 Ghosh, Sinha, Biswas (CR27) 2019; 13 Ghosh, Kumar, Sinha, Biswas (CR4) 2018; 35 Mesgarani, David, Shamma (CR9) 2007; 4 Molfese (CR6) 1978; 23 Matsumoto, Hori (CR34) 2014; 20 Nguyen, Karavas, Artemiadis (CR22) 2017; 15 Lin, Ye, Huang, Li, Zhang, Xue, Chen (CR24) 2016 Shenoi (CR26) 2005 Wang, Zhang, Zhong, Zhang (CR3) 2013; 8 Dai, Zheng, Na, Wang, Zhang (CR23) 2019; 19 P Vincent (1274_CR25) 2010; 11 R Ghosh (1274_CR27) 2019; 13 AA Torres-García (1274_CR18) 2016; 59 P Suppes (1274_CR7) 1997; 94 M Matsumoto (1274_CR34) 2014; 20 Y He (1274_CR1) 2018; 15 L Wang (1274_CR19) 2019; 147 1274_CR12 R Ghosh (1274_CR4) 2018; 35 1274_CR14 Q Lin (1274_CR24) 2016 1274_CR15 DL Molfese (1274_CR6) 1978; 23 1274_CR17 M D’Zmura (1274_CR11) 2009 1274_CR8 M Murugappan (1274_CR32) 2007; 1 Bo Hjorth (1274_CR30) 1970; 29 X Chi (1274_CR13) 2011; 13 N Birbaumer (1274_CR2) 2000; 8 M Dai (1274_CR23) 2019; 19 N Mesgarani (1274_CR9) 2007; 4 CH Nguyen (1274_CR22) 2017; 15 R Kamalakkannan (1274_CR16) 2014; 1 P Rithwik (1274_CR31) 2022; 72 L Wang (1274_CR3) 2013; 8 L Huang (1274_CR29) 2004; 2 AR Sereshkeh (1274_CR21) 2017; 25 DW McAdam (1274_CR5) 1971; 172 S Chengaiyan (1274_CR20) 2020; 14 CS DaSalla (1274_CR10) 2009; 22 BA Shenoi (1274_CR26) 2005 S Phadikar (1274_CR28) 2020; 25 A Craik (1274_CR33) 2019; 16 |
References_xml | – ident: CR14 – volume: 23 start-page: 237 issue: 3 year: 1978 end-page: 243 ident: CR6 article-title: Left and right hemisphere involvement in speech perception: Electrophysiological correlates publication-title: Percept Psychophys doi: 10.3758/BF03204132 – volume: 22 start-page: 1334 issue: 9 year: 2009 end-page: 1339 ident: CR10 article-title: Single-trial classification of vowel speech imagery using common spatial patterns publication-title: Neural Netw doi: 10.1016/j.neunet.2009.05.008 – ident: CR12 – volume: 20 start-page: 95 year: 2014 end-page: 102 ident: CR34 article-title: Classification of silent speech using support vector machine and relevance vector machine publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2013.10.023 – volume: 35 start-page: 1501 issue: 2 year: 2018 end-page: 1510 ident: CR4 article-title: Motor imagery task classification using intelligent algorithm with prominent trial selection publication-title: J Intell Fuzzy Syst doi: 10.3233/JIFS-169690 – volume: 29 start-page: 306 issue: 3 year: 1970 end-page: 310 ident: CR30 article-title: EEG analysis based on time domain properties publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(70)90143-4 – volume: 25 start-page: 475 issue: 2 year: 2020 end-page: 484 ident: CR28 article-title: Automatic eyeblink artifact removal from EEG signal using wavelet transform with heuristically optimized threshold publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2020.2995235 – start-page: 802 year: 2016 end-page: 810 ident: CR24 article-title: Classification of epileptic EEG signals with stacked sparse autoencoder based on deep learning publication-title: International conference on intelligent computing – volume: 11 start-page: 3371 issue: 12 year: 2010 end-page: 3408 ident: CR25 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – ident: CR8 – volume: 8 start-page: 190 issue: 2 year: 2000 end-page: 193 ident: CR2 article-title: The thought translation device (TTD) for completely paralyzed patients publication-title: IEEE Trans Rehabil Eng doi: 10.1109/86.847812 – volume: 72 year: 2022 ident: CR31 article-title: High accuracy decoding of motor imagery directions from EEG-based brain computer interface using filter bank spatially regularised common spatial pattern method publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.103241 – volume: 14 start-page: 1 issue: 1 year: 2020 end-page: 19 ident: CR20 article-title: Identification of vowels in consonant–vowel–consonant words from speech imagery based EEG signals publication-title: Cogn Neurodyn doi: 10.1007/s11571-019-09558-5 – volume: 94 start-page: 14965 issue: 26 year: 1997 end-page: 14969 ident: CR7 article-title: Brain wave recognition of words publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.94.26.14965 – year: 2009 ident: CR11 article-title: Toward EEG sensing of imagined speech publication-title: Human-computer interaction. New Trends. HCI 2009 Lecture notes in computer science – volume: 13 start-page: 141 issue: 2 year: 2019 end-page: 148 ident: CR27 article-title: Automated eye blink artefact removal from EEG using support vector machine and autoencoder publication-title: IET Signal Proc doi: 10.1049/iet-spr.2018.5111 – volume: 19 start-page: 1 issue: 3 year: 2019 end-page: 16 ident: CR23 article-title: EEG classification of motor imagery using a novel deep learning framework publication-title: Sensors doi: 10.3390/s19030551 – volume: 15 start-page: 1 issue: 021004 year: 2018 end-page: 15 ident: CR1 article-title: Brain–machine interfaces for controlling lower-limb powered robotic systems publication-title: J Neural Eng – volume: 8 start-page: 901 issue: 6 year: 2013 end-page: 908 ident: CR3 article-title: Analysis and classification of speech imagery EEG for BCI publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2013.07.011 – volume: 4 start-page: 765 year: 2007 end-page: 768 ident: CR9 article-title: Representation of phonemes in primary auditory cortex: how the brain analyzes speech publication-title: IEEE Int Conf Acoust Speech Signal Process – ident: CR15 – volume: 147 start-page: 1 issue: 106842 year: 2019 end-page: 12 ident: CR19 article-title: Analysis and classification of hybrid BCI based on motor imagery and speech imagery publication-title: Measurement – volume: 59 start-page: 1 year: 2016 end-page: 12 ident: CR18 article-title: Implementing a fuzzy inference system in a multi-objective EEG channel selection model for imagined speech classification publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.04.011 – ident: CR17 – year: 2005 ident: CR26 publication-title: Introduction to digital signal processing and filter design doi: 10.1002/0471656372 – volume: 13 start-page: 201 issue: 4 year: 2011 end-page: 206 ident: CR13 article-title: EEG-based discrimination of imagined speech phonemes publication-title: Int J Bioelectromagn – volume: 25 start-page: 2292 issue: 12 year: 2017 end-page: 2300 ident: CR21 article-title: EEG classification of covert speech using regularized neural networks publication-title: IEEE/ACM Trans Audio Speech Lang Process doi: 10.1109/TASLP.2017.2758164 – volume: 1 start-page: 21 issue: 2 year: 2007 end-page: 25 ident: CR32 article-title: EEG feature extraction for classifying emotions using FCM and FKM publication-title: Int J Comput Commun – volume: 1 start-page: 20 issue: 2 year: 2014 end-page: 32 ident: CR16 article-title: Imagined speech classification using EEG publication-title: Adv Biomed Sci Eng – volume: 172 start-page: 499 issue: 3982 year: 1971 end-page: 502 ident: CR5 article-title: Language production: Electroencephalographic localization in the normal human brain publication-title: Science doi: 10.1126/science.172.3982.499 – volume: 16 start-page: 1 issue: 031001 year: 2019 end-page: 28 ident: CR33 article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review publication-title: J Neural Eng – volume: 15 start-page: 1 issue: 1 year: 2017 end-page: 16 ident: CR22 article-title: Inferring imagined speech using EEG signals: a new approach using Riemannian manifold features publication-title: J Neural Eng – volume: 2 start-page: 4537 year: 2004 end-page: 4539 ident: CR29 article-title: Approximate entropy of EEG as a measure of cerebral ischemic injury publication-title: Annl Int Conf IEEE Eng Med Biol Soc doi: 10.1109/IEMBS.2004.1404259 – volume: 23 start-page: 237 issue: 3 year: 1978 ident: 1274_CR6 publication-title: Percept Psychophys doi: 10.3758/BF03204132 – volume: 8 start-page: 190 issue: 2 year: 2000 ident: 1274_CR2 publication-title: IEEE Trans Rehabil Eng doi: 10.1109/86.847812 – volume: 16 start-page: 1 issue: 031001 year: 2019 ident: 1274_CR33 publication-title: J Neural Eng – ident: 1274_CR17 doi: 10.1109/NAECON.2015.7443095 – volume: 1 start-page: 21 issue: 2 year: 2007 ident: 1274_CR32 publication-title: Int J Comput Commun – volume: 94 start-page: 14965 issue: 26 year: 1997 ident: 1274_CR7 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.94.26.14965 – ident: 1274_CR12 doi: 10.1109/ICBBE.2010.5515807 – volume: 25 start-page: 2292 issue: 12 year: 2017 ident: 1274_CR21 publication-title: IEEE/ACM Trans Audio Speech Lang Process doi: 10.1109/TASLP.2017.2758164 – volume: 14 start-page: 1 issue: 1 year: 2020 ident: 1274_CR20 publication-title: Cogn Neurodyn doi: 10.1007/s11571-019-09558-5 – volume: 22 start-page: 1334 issue: 9 year: 2009 ident: 1274_CR10 publication-title: Neural Netw doi: 10.1016/j.neunet.2009.05.008 – volume: 2 start-page: 4537 year: 2004 ident: 1274_CR29 publication-title: Annl Int Conf IEEE Eng Med Biol Soc doi: 10.1109/IEMBS.2004.1404259 – volume: 4 start-page: 765 year: 2007 ident: 1274_CR9 publication-title: IEEE Int Conf Acoust Speech Signal Process – volume: 59 start-page: 1 year: 2016 ident: 1274_CR18 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.04.011 – volume: 13 start-page: 141 issue: 2 year: 2019 ident: 1274_CR27 publication-title: IET Signal Proc doi: 10.1049/iet-spr.2018.5111 – volume: 11 start-page: 3371 issue: 12 year: 2010 ident: 1274_CR25 publication-title: J Mach Learn Res – volume: 13 start-page: 201 issue: 4 year: 2011 ident: 1274_CR13 publication-title: Int J Bioelectromagn – ident: 1274_CR14 doi: 10.1145/2559184.2559190 – volume-title: Introduction to digital signal processing and filter design year: 2005 ident: 1274_CR26 doi: 10.1002/0471656372 – volume: 15 start-page: 1 issue: 021004 year: 2018 ident: 1274_CR1 publication-title: J Neural Eng – volume: 35 start-page: 1501 issue: 2 year: 2018 ident: 1274_CR4 publication-title: J Intell Fuzzy Syst doi: 10.3233/JIFS-169690 – volume: 172 start-page: 499 issue: 3982 year: 1971 ident: 1274_CR5 publication-title: Science doi: 10.1126/science.172.3982.499 – volume: 1 start-page: 20 issue: 2 year: 2014 ident: 1274_CR16 publication-title: Adv Biomed Sci Eng – volume: 8 start-page: 901 issue: 6 year: 2013 ident: 1274_CR3 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2013.07.011 – ident: 1274_CR15 – volume: 15 start-page: 1 issue: 1 year: 2017 ident: 1274_CR22 publication-title: J Neural Eng – volume: 19 start-page: 1 issue: 3 year: 2019 ident: 1274_CR23 publication-title: Sensors doi: 10.3390/s19030551 – volume: 147 start-page: 1 issue: 106842 year: 2019 ident: 1274_CR19 publication-title: Measurement – start-page: 802 volume-title: International conference on intelligent computing year: 2016 ident: 1274_CR24 – volume: 25 start-page: 475 issue: 2 year: 2020 ident: 1274_CR28 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2020.2995235 – volume: 20 start-page: 95 year: 2014 ident: 1274_CR34 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2013.10.023 – volume: 72 year: 2022 ident: 1274_CR31 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.103241 – ident: 1274_CR8 – volume-title: Human-computer interaction. New Trends. HCI 2009 Lecture notes in computer science year: 2009 ident: 1274_CR11 – volume: 29 start-page: 306 issue: 3 year: 1970 ident: 1274_CR30 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(70)90143-4 |
SSID | ssj0002504465 |
Score | 2.1897914 |
Snippet | The purpose of a brain–computer interface (BCI) is to enhance or support the normal functions of disabled people, and as such, BCIs have been utilized for a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 389 |
SubjectTerms | Accuracy Brain research Classification Communication Computer Imaging Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Discriminant analysis Electroencephalography English language Fourier transforms Human-computer interface Imagination Information Systems and Communication Service Languages Neural networks Original Research Pattern Recognition and Graphics Principal components analysis Prostheses Signal processing Software Engineering/Programming and Operating Systems Speaking Speech Speech recognition Support vector machines Vision Vowels |
Title | Classification of Silent Speech in English and Bengali Languages Using Stacked Autoencoder |
URI | https://link.springer.com/article/10.1007/s42979-022-01274-y https://www.proquest.com/docview/2933169221 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LS8MwGA9uu3gRRcXpHDl402Cbpo-cZJXVITrEORheSl7FgbRzj8P-e5Ms3VDQc9Mcfl_y_b58TwCuQiVirfk9RBgPEKFFhDgXCgWBVCIKi0T5pt75eRgNxuRxEk6cw23h0iprnWgVtayE8ZHfaloK_Ihi7N_NvpCZGmWiq26ERgO0tApO9OOrlfaHL69bL4tp0EXsPElNRBhRGk5c5Yytn9PKOKbIJLSbCCxB65_stDM5f0VJLflkh-DAWY2wtxHzEdhT5TF4twMtTaqPRRdWBRxNDYnA0Uwp8QGnJXRVupCVEqaq1HQwhU_ORbmANl8AantTX2UJe6tlZdpaSjU_AeOs_3Y_QG5UAhL6vbNGKohMjM_zuOBEeAXGSoQ0UJZ-9BPQl4QnXPhMMMwTT8ZhQXlY4Ej5hMtEBqegWValOgNQGguEMa4ND0I4Z5QFhfS0QKWShZRRG_g1RLlwfcTNOIvPfNsB2cKaa1hzC2u-boPr7T-zTReNf1d3auRzd6MW-U7-bXBTS2P3-e_dzv_f7QLsY3sAYoRxBzSX85W61HbGkndBI8keuqDVy9J02HVH6xsqm9Hb |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB6VcoDLihWgLRTWBziBRWI7aXxAqLtQWvq4tJUqLtnYnohKKO32IdQ_xW_EdpNWINFbz3HmMP487wfAmwh1y0r-gIpMcSpkHlOlNFLODeo4yhMMXb_zcBR3p-LbLJrV4HfVC-PKKiuZ6AW1WWgXI_9g1RIPY8lY-Gl5T93WKJddrVZo7GHRx90v67KtP_Y-2_t9y1jny-S2S8utAlRb12BHkccuHRYESiuhg5wx1JHk6CW19ZZCI1SidJjpjKkkMK0olyrKWYyhUCYx3NJ9AA8F59K9qKTz9RDTcePAhN9eadUeo1JGs7JPx3frWdHfktSVz7t8r6C7v3Xh0cD9JyfrVV3nCVyUNipp70F1CTUsnsJ3vz7TFRb5uySLnIznTmWR8RJR_yDzgpQ9wSQrDLnBwiqfORmUAdE18dUJxFq3VnAY0t5uFm6IpsHVM5iehYXPoV4sCrwCYpy9k2XKmjlCKJXJjOcmsPAxaHJj4gaEFYtSXU4td8szfqaHecueralla-rZmu4a8O7wz3I_s-Pk6WbF-bR8v-v0iLYGvK9u4_j5_9RenKZ2DY-6k-EgHfRG_ZfwmHkwtChjTahvVlt8ZS2cjXrtYUXg7tw4_gMAFgsA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Silent+Speech+in+English+and+Bengali+Languages+Using+Stacked+Autoencoder&rft.jtitle=SN+computer+science&rft.au=Ghosh%2C+Rajdeep&rft.au=Sinha%2C+Nidul&rft.au=Phadikar%2C+Souvik&rft.date=2022-07-22&rft.pub=Springer+Nature+B.V&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=3&rft.issue=5&rft.spage=389&rft_id=info:doi/10.1007%2Fs42979-022-01274-y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon |