Classification of Silent Speech in English and Bengali Languages Using Stacked Autoencoder

The purpose of a brain–computer interface (BCI) is to enhance or support the normal functions of disabled people, and as such, BCIs have been utilized for a variety of applications, such as prostheses and identification of mental state. One such application concerned with providing a means of commun...

Full description

Saved in:
Bibliographic Details
Published inSN computer science Vol. 3; no. 5; p. 389
Main Authors Ghosh, Rajdeep, Sinha, Nidul, Phadikar, Souvik
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 22.07.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The purpose of a brain–computer interface (BCI) is to enhance or support the normal functions of disabled people, and as such, BCIs have been utilized for a variety of applications, such as prostheses and identification of mental state. One such application concerned with providing a means of communication for disabled individuals is focused on the recognition of silent speech (also known as imagined speech) in an individual. Silent speech can be defined as the speech originating inside the brain of an individual that has not been vocalized by the individual. The proposed work is concerned with the classification of silent speech from the brain activity of an individual recorded using an electroencephalogram (EEG). EEG data from 45 subjects were collected while they imagined the English vowels /a/, /e/, /i/, /o/, and /u/ without vocalization. EEG data were also recorded from 22 subjects who imagined five Bengali vowels /আ/, /ই/, /উ/, /এ/ and /ও/ without vocalization. The selected Bengali vowels have a similar pronunciation to the English vowels. Various temporal and spectral features were evaluated from the EEG recordings, which were then classified using a stacked autoencoder (SAE). The SAE achieved an accuracy of 75.56% and 73.6% in classifying the silent speech from the English and Bengali languages, respectively. Moreover, it has been observed that the proposed SAE outperforms conventional methods such as common spatial pattern (CSP) and support vector machine (SVM) during classification.
AbstractList The purpose of a brain–computer interface (BCI) is to enhance or support the normal functions of disabled people, and as such, BCIs have been utilized for a variety of applications, such as prostheses and identification of mental state. One such application concerned with providing a means of communication for disabled individuals is focused on the recognition of silent speech (also known as imagined speech) in an individual. Silent speech can be defined as the speech originating inside the brain of an individual that has not been vocalized by the individual. The proposed work is concerned with the classification of silent speech from the brain activity of an individual recorded using an electroencephalogram (EEG). EEG data from 45 subjects were collected while they imagined the English vowels /a/, /e/, /i/, /o/, and /u/ without vocalization. EEG data were also recorded from 22 subjects who imagined five Bengali vowels /আ/, /ই/, /উ/, /এ/ and /ও/ without vocalization. The selected Bengali vowels have a similar pronunciation to the English vowels. Various temporal and spectral features were evaluated from the EEG recordings, which were then classified using a stacked autoencoder (SAE). The SAE achieved an accuracy of 75.56% and 73.6% in classifying the silent speech from the English and Bengali languages, respectively. Moreover, it has been observed that the proposed SAE outperforms conventional methods such as common spatial pattern (CSP) and support vector machine (SVM) during classification.
The purpose of a brain–computer interface (BCI) is to enhance or support the normal functions of disabled people, and as such, BCIs have been utilized for a variety of applications, such as prostheses and identification of mental state. One such application concerned with providing a means of communication for disabled individuals is focused on the recognition of silent speech (also known as imagined speech) in an individual. Silent speech can be defined as the speech originating inside the brain of an individual that has not been vocalized by the individual. The proposed work is concerned with the classification of silent speech from the brain activity of an individual recorded using an electroencephalogram (EEG). EEG data from 45 subjects were collected while they imagined the English vowels /a/, /e/, /i/, /o/, and /u/ without vocalization. EEG data were also recorded from 22 subjects who imagined five Bengali vowels /আ/, /ই/, /উ/, /এ/ and /ও/ without vocalization. The selected Bengali vowels have a similar pronunciation to the English vowels. Various temporal and spectral features were evaluated from the EEG recordings, which were then classified using a stacked autoencoder (SAE). The SAE achieved an accuracy of 75.56% and 73.6% in classifying the silent speech from the English and Bengali languages, respectively. Moreover, it has been observed that the proposed SAE outperforms conventional methods such as common spatial pattern (CSP) and support vector machine (SVM) during classification.
ArticleNumber 389
Author Phadikar, Souvik
Ghosh, Rajdeep
Sinha, Nidul
Author_xml – sequence: 1
  givenname: Rajdeep
  orcidid: 0000-0002-8045-0137
  surname: Ghosh
  fullname: Ghosh, Rajdeep
  email: rajdeep.publication@gmail.com
  organization: School of Computing Science and Engineering, VIT Bhopal University
– sequence: 2
  givenname: Nidul
  surname: Sinha
  fullname: Sinha, Nidul
  organization: Department of Electrical Engineering, NIT Silchar
– sequence: 3
  givenname: Souvik
  surname: Phadikar
  fullname: Phadikar, Souvik
  organization: Department of Electrical Engineering, NIT Silchar
BookMark eNp9kLtOwzAUhi1UJErpCzBZYg4cO85tLFW5SJUYShcWy3FOUpfgFDsZ8vaEBgnE0Omc4f_O5bskE9tYJOSawS0DSO684FmSBcB5AIwnIujPyJTHMQvSDJLJn_6CzL3fAwCPQIg4mpK3Za28N6XRqjWNpU1JN6ZG29LNAVHvqLF0Zava-B1VtqD3aCtVG7pWtupUhZ5uvbEV3bRKv2NBF13boNVNge6KnJeq9jj_qTOyfVi9Lp-C9cvj83KxDjSLRR9gGAOEKUCuc6Gh5Bx1lIU4vJKKSGSsEHmaa6a04nkKRRKVWR6VPEYm8iItwhm5GeceXPPZoW_lvumcHVZKnoUhizPO2ZBKx5R2jfcOS6lNe_y5dcrUkoH8lilHmXKQKY8yZT-g_B96cOZDuf40FI6QH8K2Qvd71QnqCwAbiZg
CitedBy_id crossref_primary_10_1109_TCDS_2024_3431224
crossref_primary_10_1016_j_mlwa_2023_100486
Cites_doi 10.3758/BF03204132
10.1016/j.neunet.2009.05.008
10.1016/j.asoc.2013.10.023
10.3233/JIFS-169690
10.1016/0013-4694(70)90143-4
10.1109/JBHI.2020.2995235
10.1109/86.847812
10.1016/j.bspc.2021.103241
10.1007/s11571-019-09558-5
10.1073/pnas.94.26.14965
10.1049/iet-spr.2018.5111
10.3390/s19030551
10.1016/j.bspc.2013.07.011
10.1016/j.eswa.2016.04.011
10.1002/0471656372
10.1109/TASLP.2017.2758164
10.1126/science.172.3982.499
10.1109/IEMBS.2004.1404259
10.1109/NAECON.2015.7443095
10.1109/ICBBE.2010.5515807
10.1145/2559184.2559190
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022
The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022
– notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s42979-022-01274-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (UHCL Subscription)
ProQuest Computer Science Collection
Computer Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID 10_1007_s42979_022_01274_y
GrantInformation_xml – fundername: NPIU-MHRD
  grantid: 1-5770264050
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFKRA
AFQWF
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARAPS
BAPOH
BENPR
BGLVJ
CCPQU
DPUIP
EBLON
EBS
FIGPU
FNLPD
GGCAI
GNWQR
HCIFZ
IKXTQ
IWAJR
JZLTJ
K7-
LLZTM
NPVJJ
NQJWS
OK1
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
2JN
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c164y-e36003800bcb4c0f22ec593e012845491d4b8bc1aca2b80d75f9b5f26e14bd8d3
IEDL.DBID BENPR
ISSN 2661-8907
2662-995X
IngestDate Fri Jul 25 09:13:46 EDT 2025
Thu Apr 24 23:08:22 EDT 2025
Tue Jul 01 03:19:17 EDT 2025
Fri Feb 21 02:45:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Deep learning
Stacked autoencoder
Imagined speech
Electroencephalogram
Silent speech
Brain–computer interface
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c164y-e36003800bcb4c0f22ec593e012845491d4b8bc1aca2b80d75f9b5f26e14bd8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8045-0137
PQID 2933169221
PQPubID 6623307
ParticipantIDs proquest_journals_2933169221
crossref_citationtrail_10_1007_s42979_022_01274_y
crossref_primary_10_1007_s42979_022_01274_y
springer_journals_10_1007_s42979_022_01274_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220722
PublicationDateYYYYMMDD 2022-07-22
PublicationDate_xml – month: 7
  year: 2022
  text: 20220722
  day: 22
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationYear 2022
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References He, Eguren, Azorín, Grossman, Luu, Contreras-Vidal (CR1) 2018; 15
Wang, Liu, Liang, Yang, Hu (CR19) 2019; 147
Craik, He, Contreras-Vidal (CR33) 2019; 16
DaSalla, Kambara, Sato, Koike (CR10) 2009; 22
CR17
Murugappan, Rizon, Nagarajan, Yaacob, Zunaidi, Hazry (CR32) 2007; 1
Birbaumer, Kubler, Ghanayim, Hinterberger, Perelmouter, Kaiser, Iversen, Kotchoubey, Neumann, Flor (CR2) 2000; 8
CR15
CR14
CR12
Suppes, Lu, Han (CR7) 1997; 94
Vincent, Larochelle, Lajoie, Bengio, Manzagol, Bottou (CR25) 2010; 11
Phadikar, Sinha, Ghosh (CR28) 2020; 25
Sereshkeh, Trott, Bricout, Chau (CR21) 2017; 25
D’Zmura, Deng, Lappas, Thorpe, Srinivasan, Jacko (CR11) 2009
Torres-García, Reyes-García, Villaseñor-Pineda, García-Aguilar (CR18) 2016; 59
Huang, Wang, Liu, Wang (CR29) 2004; 2
McAdam, Whitaker (CR5) 1971; 172
Rithwik, Benzy, Vinod (CR31) 2022; 72
Chi, Hagedorn, Schoonover, D'Zmura (CR13) 2011; 13
Hjorth (CR30) 1970; 29
Chengaiyan, Retnapandian, Anandan (CR20) 2020; 14
CR8
Kamalakkannan, Rajkumar, Raj, Devi (CR16) 2014; 1
Ghosh, Sinha, Biswas (CR27) 2019; 13
Ghosh, Kumar, Sinha, Biswas (CR4) 2018; 35
Mesgarani, David, Shamma (CR9) 2007; 4
Molfese (CR6) 1978; 23
Matsumoto, Hori (CR34) 2014; 20
Nguyen, Karavas, Artemiadis (CR22) 2017; 15
Lin, Ye, Huang, Li, Zhang, Xue, Chen (CR24) 2016
Shenoi (CR26) 2005
Wang, Zhang, Zhong, Zhang (CR3) 2013; 8
Dai, Zheng, Na, Wang, Zhang (CR23) 2019; 19
P Vincent (1274_CR25) 2010; 11
R Ghosh (1274_CR27) 2019; 13
AA Torres-García (1274_CR18) 2016; 59
P Suppes (1274_CR7) 1997; 94
M Matsumoto (1274_CR34) 2014; 20
Y He (1274_CR1) 2018; 15
L Wang (1274_CR19) 2019; 147
1274_CR12
R Ghosh (1274_CR4) 2018; 35
1274_CR14
Q Lin (1274_CR24) 2016
1274_CR15
DL Molfese (1274_CR6) 1978; 23
1274_CR17
M D’Zmura (1274_CR11) 2009
1274_CR8
M Murugappan (1274_CR32) 2007; 1
Bo Hjorth (1274_CR30) 1970; 29
X Chi (1274_CR13) 2011; 13
N Birbaumer (1274_CR2) 2000; 8
M Dai (1274_CR23) 2019; 19
N Mesgarani (1274_CR9) 2007; 4
CH Nguyen (1274_CR22) 2017; 15
R Kamalakkannan (1274_CR16) 2014; 1
P Rithwik (1274_CR31) 2022; 72
L Wang (1274_CR3) 2013; 8
L Huang (1274_CR29) 2004; 2
AR Sereshkeh (1274_CR21) 2017; 25
DW McAdam (1274_CR5) 1971; 172
S Chengaiyan (1274_CR20) 2020; 14
CS DaSalla (1274_CR10) 2009; 22
BA Shenoi (1274_CR26) 2005
S Phadikar (1274_CR28) 2020; 25
A Craik (1274_CR33) 2019; 16
References_xml – ident: CR14
– volume: 23
  start-page: 237
  issue: 3
  year: 1978
  end-page: 243
  ident: CR6
  article-title: Left and right hemisphere involvement in speech perception: Electrophysiological correlates
  publication-title: Percept Psychophys
  doi: 10.3758/BF03204132
– volume: 22
  start-page: 1334
  issue: 9
  year: 2009
  end-page: 1339
  ident: CR10
  article-title: Single-trial classification of vowel speech imagery using common spatial patterns
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2009.05.008
– ident: CR12
– volume: 20
  start-page: 95
  year: 2014
  end-page: 102
  ident: CR34
  article-title: Classification of silent speech using support vector machine and relevance vector machine
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2013.10.023
– volume: 35
  start-page: 1501
  issue: 2
  year: 2018
  end-page: 1510
  ident: CR4
  article-title: Motor imagery task classification using intelligent algorithm with prominent trial selection
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/JIFS-169690
– volume: 29
  start-page: 306
  issue: 3
  year: 1970
  end-page: 310
  ident: CR30
  article-title: EEG analysis based on time domain properties
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(70)90143-4
– volume: 25
  start-page: 475
  issue: 2
  year: 2020
  end-page: 484
  ident: CR28
  article-title: Automatic eyeblink artifact removal from EEG signal using wavelet transform with heuristically optimized threshold
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2020.2995235
– start-page: 802
  year: 2016
  end-page: 810
  ident: CR24
  article-title: Classification of epileptic EEG signals with stacked sparse autoencoder based on deep learning
  publication-title: International conference on intelligent computing
– volume: 11
  start-page: 3371
  issue: 12
  year: 2010
  end-page: 3408
  ident: CR25
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: CR8
– volume: 8
  start-page: 190
  issue: 2
  year: 2000
  end-page: 193
  ident: CR2
  article-title: The thought translation device (TTD) for completely paralyzed patients
  publication-title: IEEE Trans Rehabil Eng
  doi: 10.1109/86.847812
– volume: 72
  year: 2022
  ident: CR31
  article-title: High accuracy decoding of motor imagery directions from EEG-based brain computer interface using filter bank spatially regularised common spatial pattern method
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.103241
– volume: 14
  start-page: 1
  issue: 1
  year: 2020
  end-page: 19
  ident: CR20
  article-title: Identification of vowels in consonant–vowel–consonant words from speech imagery based EEG signals
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-019-09558-5
– volume: 94
  start-page: 14965
  issue: 26
  year: 1997
  end-page: 14969
  ident: CR7
  article-title: Brain wave recognition of words
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.94.26.14965
– year: 2009
  ident: CR11
  article-title: Toward EEG sensing of imagined speech
  publication-title: Human-computer interaction. New Trends. HCI 2009 Lecture notes in computer science
– volume: 13
  start-page: 141
  issue: 2
  year: 2019
  end-page: 148
  ident: CR27
  article-title: Automated eye blink artefact removal from EEG using support vector machine and autoencoder
  publication-title: IET Signal Proc
  doi: 10.1049/iet-spr.2018.5111
– volume: 19
  start-page: 1
  issue: 3
  year: 2019
  end-page: 16
  ident: CR23
  article-title: EEG classification of motor imagery using a novel deep learning framework
  publication-title: Sensors
  doi: 10.3390/s19030551
– volume: 15
  start-page: 1
  issue: 021004
  year: 2018
  end-page: 15
  ident: CR1
  article-title: Brain–machine interfaces for controlling lower-limb powered robotic systems
  publication-title: J Neural Eng
– volume: 8
  start-page: 901
  issue: 6
  year: 2013
  end-page: 908
  ident: CR3
  article-title: Analysis and classification of speech imagery EEG for BCI
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2013.07.011
– volume: 4
  start-page: 765
  year: 2007
  end-page: 768
  ident: CR9
  article-title: Representation of phonemes in primary auditory cortex: how the brain analyzes speech
  publication-title: IEEE Int Conf Acoust Speech Signal Process
– ident: CR15
– volume: 147
  start-page: 1
  issue: 106842
  year: 2019
  end-page: 12
  ident: CR19
  article-title: Analysis and classification of hybrid BCI based on motor imagery and speech imagery
  publication-title: Measurement
– volume: 59
  start-page: 1
  year: 2016
  end-page: 12
  ident: CR18
  article-title: Implementing a fuzzy inference system in a multi-objective EEG channel selection model for imagined speech classification
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.04.011
– ident: CR17
– year: 2005
  ident: CR26
  publication-title: Introduction to digital signal processing and filter design
  doi: 10.1002/0471656372
– volume: 13
  start-page: 201
  issue: 4
  year: 2011
  end-page: 206
  ident: CR13
  article-title: EEG-based discrimination of imagined speech phonemes
  publication-title: Int J Bioelectromagn
– volume: 25
  start-page: 2292
  issue: 12
  year: 2017
  end-page: 2300
  ident: CR21
  article-title: EEG classification of covert speech using regularized neural networks
  publication-title: IEEE/ACM Trans Audio Speech Lang Process
  doi: 10.1109/TASLP.2017.2758164
– volume: 1
  start-page: 21
  issue: 2
  year: 2007
  end-page: 25
  ident: CR32
  article-title: EEG feature extraction for classifying emotions using FCM and FKM
  publication-title: Int J Comput Commun
– volume: 1
  start-page: 20
  issue: 2
  year: 2014
  end-page: 32
  ident: CR16
  article-title: Imagined speech classification using EEG
  publication-title: Adv Biomed Sci Eng
– volume: 172
  start-page: 499
  issue: 3982
  year: 1971
  end-page: 502
  ident: CR5
  article-title: Language production: Electroencephalographic localization in the normal human brain
  publication-title: Science
  doi: 10.1126/science.172.3982.499
– volume: 16
  start-page: 1
  issue: 031001
  year: 2019
  end-page: 28
  ident: CR33
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review
  publication-title: J Neural Eng
– volume: 15
  start-page: 1
  issue: 1
  year: 2017
  end-page: 16
  ident: CR22
  article-title: Inferring imagined speech using EEG signals: a new approach using Riemannian manifold features
  publication-title: J Neural Eng
– volume: 2
  start-page: 4537
  year: 2004
  end-page: 4539
  ident: CR29
  article-title: Approximate entropy of EEG as a measure of cerebral ischemic injury
  publication-title: Annl Int Conf IEEE Eng Med Biol Soc
  doi: 10.1109/IEMBS.2004.1404259
– volume: 23
  start-page: 237
  issue: 3
  year: 1978
  ident: 1274_CR6
  publication-title: Percept Psychophys
  doi: 10.3758/BF03204132
– volume: 8
  start-page: 190
  issue: 2
  year: 2000
  ident: 1274_CR2
  publication-title: IEEE Trans Rehabil Eng
  doi: 10.1109/86.847812
– volume: 16
  start-page: 1
  issue: 031001
  year: 2019
  ident: 1274_CR33
  publication-title: J Neural Eng
– ident: 1274_CR17
  doi: 10.1109/NAECON.2015.7443095
– volume: 1
  start-page: 21
  issue: 2
  year: 2007
  ident: 1274_CR32
  publication-title: Int J Comput Commun
– volume: 94
  start-page: 14965
  issue: 26
  year: 1997
  ident: 1274_CR7
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.94.26.14965
– ident: 1274_CR12
  doi: 10.1109/ICBBE.2010.5515807
– volume: 25
  start-page: 2292
  issue: 12
  year: 2017
  ident: 1274_CR21
  publication-title: IEEE/ACM Trans Audio Speech Lang Process
  doi: 10.1109/TASLP.2017.2758164
– volume: 14
  start-page: 1
  issue: 1
  year: 2020
  ident: 1274_CR20
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-019-09558-5
– volume: 22
  start-page: 1334
  issue: 9
  year: 2009
  ident: 1274_CR10
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2009.05.008
– volume: 2
  start-page: 4537
  year: 2004
  ident: 1274_CR29
  publication-title: Annl Int Conf IEEE Eng Med Biol Soc
  doi: 10.1109/IEMBS.2004.1404259
– volume: 4
  start-page: 765
  year: 2007
  ident: 1274_CR9
  publication-title: IEEE Int Conf Acoust Speech Signal Process
– volume: 59
  start-page: 1
  year: 2016
  ident: 1274_CR18
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.04.011
– volume: 13
  start-page: 141
  issue: 2
  year: 2019
  ident: 1274_CR27
  publication-title: IET Signal Proc
  doi: 10.1049/iet-spr.2018.5111
– volume: 11
  start-page: 3371
  issue: 12
  year: 2010
  ident: 1274_CR25
  publication-title: J Mach Learn Res
– volume: 13
  start-page: 201
  issue: 4
  year: 2011
  ident: 1274_CR13
  publication-title: Int J Bioelectromagn
– ident: 1274_CR14
  doi: 10.1145/2559184.2559190
– volume-title: Introduction to digital signal processing and filter design
  year: 2005
  ident: 1274_CR26
  doi: 10.1002/0471656372
– volume: 15
  start-page: 1
  issue: 021004
  year: 2018
  ident: 1274_CR1
  publication-title: J Neural Eng
– volume: 35
  start-page: 1501
  issue: 2
  year: 2018
  ident: 1274_CR4
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/JIFS-169690
– volume: 172
  start-page: 499
  issue: 3982
  year: 1971
  ident: 1274_CR5
  publication-title: Science
  doi: 10.1126/science.172.3982.499
– volume: 1
  start-page: 20
  issue: 2
  year: 2014
  ident: 1274_CR16
  publication-title: Adv Biomed Sci Eng
– volume: 8
  start-page: 901
  issue: 6
  year: 2013
  ident: 1274_CR3
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2013.07.011
– ident: 1274_CR15
– volume: 15
  start-page: 1
  issue: 1
  year: 2017
  ident: 1274_CR22
  publication-title: J Neural Eng
– volume: 19
  start-page: 1
  issue: 3
  year: 2019
  ident: 1274_CR23
  publication-title: Sensors
  doi: 10.3390/s19030551
– volume: 147
  start-page: 1
  issue: 106842
  year: 2019
  ident: 1274_CR19
  publication-title: Measurement
– start-page: 802
  volume-title: International conference on intelligent computing
  year: 2016
  ident: 1274_CR24
– volume: 25
  start-page: 475
  issue: 2
  year: 2020
  ident: 1274_CR28
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2020.2995235
– volume: 20
  start-page: 95
  year: 2014
  ident: 1274_CR34
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2013.10.023
– volume: 72
  year: 2022
  ident: 1274_CR31
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.103241
– ident: 1274_CR8
– volume-title: Human-computer interaction. New Trends. HCI 2009 Lecture notes in computer science
  year: 2009
  ident: 1274_CR11
– volume: 29
  start-page: 306
  issue: 3
  year: 1970
  ident: 1274_CR30
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(70)90143-4
SSID ssj0002504465
Score 2.1897914
Snippet The purpose of a brain–computer interface (BCI) is to enhance or support the normal functions of disabled people, and as such, BCIs have been utilized for a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 389
SubjectTerms Accuracy
Brain research
Classification
Communication
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Discriminant analysis
Electroencephalography
English language
Fourier transforms
Human-computer interface
Imagination
Information Systems and Communication Service
Languages
Neural networks
Original Research
Pattern Recognition and Graphics
Principal components analysis
Prostheses
Signal processing
Software Engineering/Programming and Operating Systems
Speaking
Speech
Speech recognition
Support vector machines
Vision
Vowels
Title Classification of Silent Speech in English and Bengali Languages Using Stacked Autoencoder
URI https://link.springer.com/article/10.1007/s42979-022-01274-y
https://www.proquest.com/docview/2933169221
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LS8MwGA9uu3gRRcXpHDl402Cbpo-cZJXVITrEORheSl7FgbRzj8P-e5Ms3VDQc9Mcfl_y_b58TwCuQiVirfk9RBgPEKFFhDgXCgWBVCIKi0T5pt75eRgNxuRxEk6cw23h0iprnWgVtayE8ZHfaloK_Ihi7N_NvpCZGmWiq26ERgO0tApO9OOrlfaHL69bL4tp0EXsPElNRBhRGk5c5Yytn9PKOKbIJLSbCCxB65_stDM5f0VJLflkh-DAWY2wtxHzEdhT5TF4twMtTaqPRRdWBRxNDYnA0Uwp8QGnJXRVupCVEqaq1HQwhU_ORbmANl8AantTX2UJe6tlZdpaSjU_AeOs_3Y_QG5UAhL6vbNGKohMjM_zuOBEeAXGSoQ0UJZ-9BPQl4QnXPhMMMwTT8ZhQXlY4Ej5hMtEBqegWValOgNQGguEMa4ND0I4Z5QFhfS0QKWShZRRG_g1RLlwfcTNOIvPfNsB2cKaa1hzC2u-boPr7T-zTReNf1d3auRzd6MW-U7-bXBTS2P3-e_dzv_f7QLsY3sAYoRxBzSX85W61HbGkndBI8keuqDVy9J02HVH6xsqm9Hb
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB6VcoDLihWgLRTWBziBRWI7aXxAqLtQWvq4tJUqLtnYnohKKO32IdQ_xW_EdpNWINFbz3HmMP487wfAmwh1y0r-gIpMcSpkHlOlNFLODeo4yhMMXb_zcBR3p-LbLJrV4HfVC-PKKiuZ6AW1WWgXI_9g1RIPY8lY-Gl5T93WKJddrVZo7GHRx90v67KtP_Y-2_t9y1jny-S2S8utAlRb12BHkccuHRYESiuhg5wx1JHk6CW19ZZCI1SidJjpjKkkMK0olyrKWYyhUCYx3NJ9AA8F59K9qKTz9RDTcePAhN9eadUeo1JGs7JPx3frWdHfktSVz7t8r6C7v3Xh0cD9JyfrVV3nCVyUNipp70F1CTUsnsJ3vz7TFRb5uySLnIznTmWR8RJR_yDzgpQ9wSQrDLnBwiqfORmUAdE18dUJxFq3VnAY0t5uFm6IpsHVM5iehYXPoV4sCrwCYpy9k2XKmjlCKJXJjOcmsPAxaHJj4gaEFYtSXU4td8szfqaHecueralla-rZmu4a8O7wz3I_s-Pk6WbF-bR8v-v0iLYGvK9u4_j5_9RenKZ2DY-6k-EgHfRG_ZfwmHkwtChjTahvVlt8ZS2cjXrtYUXg7tw4_gMAFgsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Silent+Speech+in+English+and+Bengali+Languages+Using+Stacked+Autoencoder&rft.jtitle=SN+computer+science&rft.au=Ghosh%2C+Rajdeep&rft.au=Sinha%2C+Nidul&rft.au=Phadikar%2C+Souvik&rft.date=2022-07-22&rft.pub=Springer+Nature+B.V&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=3&rft.issue=5&rft.spage=389&rft_id=info:doi/10.1007%2Fs42979-022-01274-y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon