High-resolution three-dimensional simulations of gas removal from ultrafaint dwarf galaxies I. Stellar feedback

Context. The faintest Local Group galaxies found lurking in and around the Milky Way halo provide a unique test bed for theories of structure formation and evolution on small scales. Deep Subaru and Hubble Space Telescope photometry demonstrates that the stellar populations of these galaxies are old...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 630; p. A140
Main Authors Romano, Donatella, Calura, Francesco, D’Ercole, Annibale, Few, C. Gareth
Format Journal Article
LanguageEnglish
Published 01.10.2019
Online AccessGet full text

Cover

Loading…
Abstract Context. The faintest Local Group galaxies found lurking in and around the Milky Way halo provide a unique test bed for theories of structure formation and evolution on small scales. Deep Subaru and Hubble Space Telescope photometry demonstrates that the stellar populations of these galaxies are old and that the star formation activity did not last longer than 2 Gyr in these systems. A few mechanisms that may lead to such a rapid quenching have been investigated by means of hydrodynamic simulations, but these have not provided any final assessment so far. Aims. This is the first in a series of papers aimed at analyzing the roles of stellar feedback, ram pressure stripping, host-satellite tidal interactions, and reionization in cleaning the lowest mass Milky Way companions of their cold gas using high-resolution, three-dimensional hydrodynamic simulations. Methods. We simulated an isolated ultrafaint dwarf galaxy loosely modeled after Boötes I, and examined whether or not stellar feedback alone could drive a substantial fraction of the ambient gas out from the shallow potential well. Results. In contrast to simple analytical estimates, but in agreement with previous hydrodynamical studies, we find that most of the cold gas reservoir is retained. Conversely, a significant amount of the metal-enriched stellar ejecta crosses the boundaries of the computational box with velocities exceeding the local escape velocity and is, thus, likely lost from the system. Conclusions. Although the total energy output from multiple supernova explosions exceeds the binding energy of the gas, no galactic-scale outflow develops in our simulations and as such, most of the ambient medium remains trapped within the weak potential well of the model galaxy. It seems thus unavoidable that to explain the dearth of gas in ultrafaint dwarf galaxies, we will have to resort to environmental effects. This will be the subject of a forthcoming paper.
AbstractList Context. The faintest Local Group galaxies found lurking in and around the Milky Way halo provide a unique test bed for theories of structure formation and evolution on small scales. Deep Subaru and Hubble Space Telescope photometry demonstrates that the stellar populations of these galaxies are old and that the star formation activity did not last longer than 2 Gyr in these systems. A few mechanisms that may lead to such a rapid quenching have been investigated by means of hydrodynamic simulations, but these have not provided any final assessment so far. Aims. This is the first in a series of papers aimed at analyzing the roles of stellar feedback, ram pressure stripping, host-satellite tidal interactions, and reionization in cleaning the lowest mass Milky Way companions of their cold gas using high-resolution, three-dimensional hydrodynamic simulations. Methods. We simulated an isolated ultrafaint dwarf galaxy loosely modeled after Boötes I, and examined whether or not stellar feedback alone could drive a substantial fraction of the ambient gas out from the shallow potential well. Results. In contrast to simple analytical estimates, but in agreement with previous hydrodynamical studies, we find that most of the cold gas reservoir is retained. Conversely, a significant amount of the metal-enriched stellar ejecta crosses the boundaries of the computational box with velocities exceeding the local escape velocity and is, thus, likely lost from the system. Conclusions. Although the total energy output from multiple supernova explosions exceeds the binding energy of the gas, no galactic-scale outflow develops in our simulations and as such, most of the ambient medium remains trapped within the weak potential well of the model galaxy. It seems thus unavoidable that to explain the dearth of gas in ultrafaint dwarf galaxies, we will have to resort to environmental effects. This will be the subject of a forthcoming paper.
Author Few, C. Gareth
Calura, Francesco
D’Ercole, Annibale
Romano, Donatella
Author_xml – sequence: 1
  givenname: Donatella
  orcidid: 0000-0002-0845-6171
  surname: Romano
  fullname: Romano, Donatella
– sequence: 2
  givenname: Francesco
  surname: Calura
  fullname: Calura, Francesco
– sequence: 3
  givenname: Annibale
  surname: D’Ercole
  fullname: D’Ercole, Annibale
– sequence: 4
  givenname: C. Gareth
  surname: Few
  fullname: Few, C. Gareth
BookMark eNp9kM1OwzAQhC1UJNrCE3DxC4Suf-I4R1QBRarEBU4cIidZt0ZOjOyUn7cnAdQDB06r0cys9M2CzPrQIyGXDK4Y5GwFADJTQrEVB1aKXHB9QuZMCp5BIdWMzI-JM7JI6WWUnGkxJ88bt9tnEVPwh8GFng77iJi1rsM-jdp4mlx38GYyEw2W7kyiEbvwNlo2ho4e_BCNNa4faPtu4pTw5sNhOien1viEF793SZ5ubx7Xm2z7cHe_vt5mDVNyyGojoGhyAMTaCou5LFUhc9B5W5cl55IJqRXoRhoD2pq6YFxiqYxssIVWiyURP3-bGFKKaKvX6DoTPysG1bRPNdFXE3113GdslX9ajRu-MUcc5__tfgFkom1U
CitedBy_id crossref_primary_10_1093_mnras_stab3682
crossref_primary_10_3847_1538_4357_abc875
crossref_primary_10_1093_mnras_stac2897
crossref_primary_10_1093_mnras_stac3315
crossref_primary_10_1093_mnras_staa585
crossref_primary_10_1093_mnras_stae2622
crossref_primary_10_3847_1538_4357_abf6d2
crossref_primary_10_1051_0004_6361_202450230
crossref_primary_10_1051_0004_6361_202451189
crossref_primary_10_1093_mnras_stac1958
crossref_primary_10_1093_mnras_stab2061
crossref_primary_10_1093_mnras_staa3507
crossref_primary_10_1093_mnras_stad2394
crossref_primary_10_1093_mnras_staa3133
crossref_primary_10_1093_mnras_stad1312
crossref_primary_10_3847_1538_4357_abddbe
crossref_primary_10_1007_s00159_022_00144_z
crossref_primary_10_1038_s41550_021_01575_x
crossref_primary_10_1093_mnras_staa1256
crossref_primary_10_1051_0004_6361_202037567
crossref_primary_10_1093_mnras_stae073
crossref_primary_10_3847_2041_8213_acc7a4
crossref_primary_10_1093_mnras_stab3629
crossref_primary_10_3847_1538_4357_ac0253
Cites_doi 10.3847/0004-637X/832/1/21
10.1051/0004-6361/201526685
10.1111/j.1745-3933.2009.00627.x
10.1093/mnras/sty467
10.1051/0004-6361/201220845
10.1093/mnras/183.3.341
10.1086/127013
10.1093/mnras/stu2427
10.1086/164162
10.1086/309560
10.1093/mnras/stw713
10.1086/301513
10.1093/mnras/sty2616
10.1086/146614
10.1086/165936
10.1111/j.1365-2966.2012.21809.x
10.1086/509718
10.1016/S1384-1076(01)00042-2
10.1088/0004-637X/807/2/154
10.1088/0004-637X/809/1/69
10.1007/s10509-010-0336-8
10.1086/320455
10.1088/0004-637X/770/1/25
10.1046/j.1365-8711.2001.04022.x
10.1088/0004-637X/807/1/50
10.1086/306832
10.1093/pasj/psx066
10.1093/mnras/stv1130
10.1086/164281
10.1088/0067-0049/212/1/14
10.1093/mnras/stw2522
10.1093/mnras/sts563
10.1093/mnras/stv562
10.1086/317828
10.1086/430214
10.1007/BF01208252
10.1111/j.1365-2966.2007.12811.x
10.1093/pasj/psx050
10.1093/mnras/stu626
10.3847/1538-4357/aa8c80
10.1088/0004-637X/802/2/99
10.1086/500532
10.1088/2041-8205/799/2/L21
10.1146/annurev.astro.41.011802.094844
10.1146/annurev-astro-091918-104453
10.1086/592102
10.1038/s41550-018-0427-y
10.1093/mnras/sty2689
10.1093/mnras/stv1691
10.1093/mnras/stw641
10.1088/0067-0049/180/2/330
10.1051/0004-6361/201730987
10.3847/0004-637X/826/2/148
10.1051/0004-6361/201833055
10.1086/307122
10.1093/mnras/169.2.229
10.1086/191823
10.1093/mnras/71.5.460
10.1086/309295
10.1093/mnras/stv2597
10.1088/2041-8205/814/1/L14
10.1093/mnras/stu710
10.1086/339913
10.1093/mnras/stw2051
10.1088/0004-637X/744/2/96
10.3847/1538-4357/aafa82
10.1086/312287
10.1051/0004-6361/201425587
10.1093/mnras/sty064
10.1088/0004-637X/813/1/44
10.1111/j.1365-2966.2006.10671.x
10.1086/171366
10.1086/507324
10.1086/303587
10.1088/0004-637X/805/2/109
10.3847/1538-4357/835/2/136
10.1051/0004-6361:20011817
10.1088/0004-637X/796/2/91
10.1086/175303
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1051/0004-6361/201935328
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID 10_1051_0004_6361_201935328
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOGA
AAOTM
AAYXX
ABDNZ
ABDPE
ABNSH
ABPPZ
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACRPL
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
ADNMO
AEILP
AENEX
AGQPQ
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
CITATION
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNS
SDH
SJN
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
ID FETCH-LOGICAL-c164t-ba307c500eebf3fe5496745085db992241348608c4aa08fab7124e96a4ced0d83
ISSN 0004-6361
IngestDate Tue Jul 01 03:59:22 EDT 2025
Thu Apr 24 23:05:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://www.edpsciences.org/en/authors/copyright-and-licensing
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c164t-ba307c500eebf3fe5496745085db992241348608c4aa08fab7124e96a4ced0d83
ORCID 0000-0002-0845-6171
ParticipantIDs crossref_primary_10_1051_0004_6361_201935328
crossref_citationtrail_10_1051_0004_6361_201935328
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-00
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-00
PublicationDecade 2010
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2019
References Jeřábková (R27) 2018; 620
Recchi (R49) 2013; 551
Salvadori (R54) 2009; 395
Kim (R29) 2015; 802
Belokurov (R8) 2007; 654
Emerick (R21) 2019; 482
de los Reyes (R17) 2019; 872
Springel (R62) 2001; 6
Calura (R13) 2015; 814
Caproni (R14) 2015; 805
Webster (R74) 2015; 799
Simon (R60) 2019; 57
Sutherland (R64) 1993; 88
Jeon (R26) 2017; 848
Robles-Valdez (R51) 2017; 835
Dopita (R19) 1986; 304
Lada (R34) 2003; 41
Ni (R45) 2018; 481
Teyssier (R66) 2013; 429
Wolf (R80) 2010; 406
Kroupa (R33) 2001; 322
Baumgardt (R4) 2008; 384
DES Collaboration (R18) 2016; 460
Rosen (R53) 1995; 440
Laevens (R35) 2015; 813
Faucher-Giguère (R22) 2018; 2
Teyssier (R65) 2002; 385
Plummer (R47) 1911; 71
Moore (R43) 1999; 524
Vader (R71) 1986; 305
R76
Bellazzini (R6) 2018; 476
Burkert (R12) 1995; 447
Emerick (R20) 2016; 826
McKee (R42) 1997; 476
Yan (R82) 2017; 607
Townsley (R70) 2006; 131
Vorobyov (R73) 2015; 579
Yadav (R81) 2017; 465
Corlies (R16) 2018; 475
Simpson (R61) 2015; 809
Wheeler (R75) 2015; 453
Wise (R79) 2012; 427
Ferguson (R23) 1994; 6
Mori (R44) 2002; 571
Bland-Hawthorn (R10) 2015; 807
Katz (R28) 1992; 391
Read (R48) 2016; 459
Mac Low (R39) 1988; 324
Klypin (R30) 1999; 516
Martizzi (R41) 2015; 450
Marcolini (R40) 2006; 371
Scannapieco (R56) 2010; 405
Mac Low (R38) 1999; 513
Leitherer (R37) 2014; 212
Aihara (R3) 2018; 70
Vincenzo (R72) 2014; 441
Abel (R1) 2000; 540
Krause (R32) 2016; 587
Schmidt (R57) 1959; 129
Homma (R25) 2018; 70
Sawala (R55) 2016; 456
Roberts (R50) 1957; 69
Komatsu (R31) 2009; 180
Shanks (R58) 2015; 451
Thacker (R67) 2000; 545
Sutherland (R63) 2010; 327
York (R83) 2000; 120
Willman (R78) 2005; 129
Silich (R59) 2001; 552
Larson (R36) 1974; 169
Tollerud (R68) 2008; 688
Belokurov (R7) 2006; 647
Romano (R52) 2015; 446
Torrealba (R69) 2016; 463
Brown (R11) 2014; 796
Belokurov (R9) 2014; 441
R15
Bechtol (R5) 2015; 807
Agertz (R2) 2013; 770
Homma (R24) 2016; 832
Okamoto (R46) 2012; 744
White (R77) 1978; 183
References_xml – volume: 832
  start-page: 21
  year: 2016
  ident: R24
  publication-title: ApJ
  doi: 10.3847/0004-637X/832/1/21
– volume: 587
  start-page: A53
  year: 2016
  ident: R32
  publication-title: A&A
  doi: 10.1051/0004-6361/201526685
– volume: 395
  start-page: L6
  year: 2009
  ident: R54
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2009.00627.x
– volume: 476
  start-page: 4565
  year: 2018
  ident: R6
  publication-title: MNRAS
  doi: 10.1093/mnras/sty467
– volume: 551
  start-page: A41
  year: 2013
  ident: R49
  publication-title: A&A
  doi: 10.1051/0004-6361/201220845
– volume: 183
  start-page: 341
  year: 1978
  ident: R77
  publication-title: MNRAS
  doi: 10.1093/mnras/183.3.341
– volume: 69
  start-page: 59
  year: 1957
  ident: R50
  publication-title: PASP
  doi: 10.1086/127013
– volume: 446
  start-page: 4220
  year: 2015
  ident: R52
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2427
– volume: 304
  start-page: 283
  year: 1986
  ident: R19
  publication-title: ApJ
  doi: 10.1086/164162
– volume: 447
  start-page: L25
  year: 1995
  ident: R12
  publication-title: ApJ
  doi: 10.1086/309560
– volume: 459
  start-page: 2573
  year: 2016
  ident: R48
  publication-title: MNRAS
  doi: 10.1093/mnras/stw713
– volume: 120
  start-page: 1579
  year: 2000
  ident: R83
  publication-title: AJ
  doi: 10.1086/301513
– volume: 481
  start-page: 4877
  year: 2018
  ident: R45
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2616
– volume: 129
  start-page: 243
  year: 1959
  ident: R57
  publication-title: ApJ
  doi: 10.1086/146614
– volume: 324
  start-page: 776
  year: 1988
  ident: R39
  publication-title: ApJ
  doi: 10.1086/165936
– volume: 427
  start-page: 311
  year: 2012
  ident: R79
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21809.x
– volume: 654
  start-page: 897
  year: 2007
  ident: R8
  publication-title: ApJ
  doi: 10.1086/509718
– volume: 6
  start-page: 79
  year: 2001
  ident: R62
  publication-title: New Astron.
  doi: 10.1016/S1384-1076(01)00042-2
– volume: 807
  start-page: 154
  year: 2015
  ident: R10
  publication-title: ApJ
  doi: 10.1088/0004-637X/807/2/154
– volume: 809
  start-page: 69
  year: 2015
  ident: R61
  publication-title: ApJ
  doi: 10.1088/0004-637X/809/1/69
– volume: 327
  start-page: 173
  year: 2010
  ident: R63
  publication-title: Ap&SS
  doi: 10.1007/s10509-010-0336-8
– volume: 552
  start-page: 91
  year: 2001
  ident: R59
  publication-title: ApJ
  doi: 10.1086/320455
– volume: 770
  start-page: 25
  year: 2013
  ident: R2
  publication-title: ApJ
  doi: 10.1088/0004-637X/770/1/25
– volume: 322
  start-page: 231
  year: 2001
  ident: R33
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.04022.x
– volume: 807
  start-page: 50
  year: 2015
  ident: R5
  publication-title: ApJ
  doi: 10.1088/0004-637X/807/1/50
– volume: 513
  start-page: 142
  year: 1999
  ident: R38
  publication-title: ApJ
  doi: 10.1086/306832
– volume: 70
  start-page: S4
  year: 2018
  ident: R3
  publication-title: PASJ
  doi: 10.1093/pasj/psx066
– volume: 451
  start-page: 4238
  year: 2015
  ident: R58
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1130
– volume: 305
  start-page: 669
  year: 1986
  ident: R71
  publication-title: ApJ
  doi: 10.1086/164281
– volume: 212
  start-page: 14
  year: 2014
  ident: R37
  publication-title: ApJS
  doi: 10.1088/0067-0049/212/1/14
– volume: 465
  start-page: 1720
  year: 2017
  ident: R81
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2522
– volume: 429
  start-page: 3068
  year: 2013
  ident: R66
  publication-title: MNRAS
  doi: 10.1093/mnras/sts563
– volume: 450
  start-page: 504
  year: 2015
  ident: R41
  publication-title: MNRAS
  doi: 10.1093/mnras/stv562
– volume: 545
  start-page: 728
  year: 2000
  ident: R67
  publication-title: ApJ
  doi: 10.1086/317828
– volume: 129
  start-page: 2692
  year: 2005
  ident: R78
  publication-title: AJ
  doi: 10.1086/430214
– volume: 6
  start-page: 67
  year: 1994
  ident: R23
  publication-title: A&ARv
  doi: 10.1007/BF01208252
– volume: 384
  start-page: 1231
  year: 2008
  ident: R4
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.12811.x
– volume: 70
  start-page: S18
  year: 2018
  ident: R25
  publication-title: PASJ
  doi: 10.1093/pasj/psx050
– volume: 441
  start-page: 2124
  year: 2014
  ident: R9
  publication-title: MNRAS
  doi: 10.1093/mnras/stu626
– ident: R15
– volume: 848
  start-page: 85
  year: 2017
  ident: R26
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa8c80
– volume: 802
  start-page: 99
  year: 2015
  ident: R29
  publication-title: ApJ
  doi: 10.1088/0004-637X/802/2/99
– volume: 131
  start-page: 2140
  year: 2006
  ident: R70
  publication-title: AJ
  doi: 10.1086/500532
– volume: 799
  start-page: L21
  year: 2015
  ident: R74
  publication-title: ApJ
  doi: 10.1088/2041-8205/799/2/L21
– volume: 406
  start-page: 1220
  year: 2010
  ident: R80
  publication-title: MNRAS
– volume: 41
  start-page: 57
  year: 2003
  ident: R34
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.41.011802.094844
– volume: 57
  start-page: 375
  year: 2019
  ident: R60
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-091918-104453
– volume: 688
  start-page: 277
  year: 2008
  ident: R68
  publication-title: ApJ
  doi: 10.1086/592102
– volume: 2
  start-page: 368
  year: 2018
  ident: R22
  publication-title: Nat. Astron.
  doi: 10.1038/s41550-018-0427-y
– volume: 482
  start-page: 1304
  year: 2019
  ident: R21
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2689
– volume: 453
  start-page: 1305
  year: 2015
  ident: R75
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1691
– volume: 460
  start-page: 1270
  year: 2016
  ident: R18
  publication-title: MNRAS
  doi: 10.1093/mnras/stw641
– volume: 180
  start-page: 330
  year: 2009
  ident: R31
  publication-title: ApJS
  doi: 10.1088/0067-0049/180/2/330
– volume: 607
  start-page: A126
  year: 2017
  ident: R82
  publication-title: A&A
  doi: 10.1051/0004-6361/201730987
– volume: 826
  start-page: 148
  year: 2016
  ident: R20
  publication-title: ApJ
  doi: 10.3847/0004-637X/826/2/148
– volume: 620
  start-page: A39
  year: 2018
  ident: R27
  publication-title: A&A
  doi: 10.1051/0004-6361/201833055
– volume: 516
  start-page: 530
  year: 1999
  ident: R30
  publication-title: ApJ
  doi: 10.1086/307122
– volume: 169
  start-page: 229
  year: 1974
  ident: R36
  publication-title: MNRAS
  doi: 10.1093/mnras/169.2.229
– volume: 88
  start-page: 253
  year: 1993
  ident: R64
  publication-title: ApJS
  doi: 10.1086/191823
– volume: 71
  start-page: 460
  year: 1911
  ident: R47
  publication-title: MNRAS
  doi: 10.1093/mnras/71.5.460
– volume: 540
  start-page: 39
  year: 2000
  ident: R1
  publication-title: ApJ
  doi: 10.1086/309295
– volume: 456
  start-page: 85
  year: 2016
  ident: R55
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2597
– volume: 814
  start-page: L14
  year: 2015
  ident: R13
  publication-title: ApJ
  doi: 10.1088/2041-8205/814/1/L14
– volume: 441
  start-page: 2815
  year: 2014
  ident: R72
  publication-title: MNRAS
  doi: 10.1093/mnras/stu710
– volume: 571
  start-page: 40
  year: 2002
  ident: R44
  publication-title: ApJ
  doi: 10.1086/339913
– volume: 463
  start-page: 712
  year: 2016
  ident: R69
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2051
– volume: 744
  start-page: 96
  year: 2012
  ident: R46
  publication-title: ApJ
  doi: 10.1088/0004-637X/744/2/96
– volume: 872
  start-page: 16
  year: 2019
  ident: R17
  publication-title: ApJ
  doi: 10.3847/1538-4357/aafa82
– volume: 524
  start-page: L19
  year: 1999
  ident: R43
  publication-title: ApJ
  doi: 10.1086/312287
– volume: 579
  start-page: A9
  year: 2015
  ident: R73
  publication-title: A&A
  doi: 10.1051/0004-6361/201425587
– ident: R76
– volume: 475
  start-page: 4868
  year: 2018
  ident: R16
  publication-title: MNRAS
  doi: 10.1093/mnras/sty064
– volume: 813
  start-page: 44
  year: 2015
  ident: R35
  publication-title: ApJ
  doi: 10.1088/0004-637X/813/1/44
– volume: 371
  start-page: 643
  year: 2006
  ident: R40
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10671.x
– volume: 391
  start-page: 502
  year: 1992
  ident: R28
  publication-title: ApJ
  doi: 10.1086/171366
– volume: 647
  start-page: L111
  year: 2006
  ident: R7
  publication-title: ApJ
  doi: 10.1086/507324
– volume: 476
  start-page: 144
  year: 1997
  ident: R42
  publication-title: ApJ
  doi: 10.1086/303587
– volume: 805
  start-page: 109
  year: 2015
  ident: R14
  publication-title: ApJ
  doi: 10.1088/0004-637X/805/2/109
– volume: 835
  start-page: 136
  year: 2017
  ident: R51
  publication-title: ApJ
  doi: 10.3847/1538-4357/835/2/136
– volume: 405
  start-page: 1634
  year: 2010
  ident: R56
  publication-title: MNRAS
– volume: 385
  start-page: 337
  year: 2002
  ident: R65
  publication-title: A&A
  doi: 10.1051/0004-6361:20011817
– volume: 796
  start-page: 91
  year: 2014
  ident: R11
  publication-title: ApJ
  doi: 10.1088/0004-637X/796/2/91
– volume: 440
  start-page: 634
  year: 1995
  ident: R53
  publication-title: ApJ
  doi: 10.1086/175303
SSID ssj0002183
Score 2.486724
Snippet Context. The faintest Local Group galaxies found lurking in and around the Milky Way halo provide a unique test bed for theories of structure formation and...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage A140
Subtitle I. Stellar feedback
Title High-resolution three-dimensional simulations of gas removal from ultrafaint dwarf galaxies
Volume 630
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF7OiuCLaFVaf7EP4suZ6yXZ3Usej9JaBUWkhYIPx-xmYw9yidwlIj74n_i_OpNN9mIrxfoScsveLmQ-ZmdmZ75h7GWYWJVLkwcSNDookc6DxGgdaAt4GEdZrtouEe8_qJMz8e5cno9GvwZZS02tJ-bHX-tK_keqOIZypSrZG0jWL4oD-I7yxSdKGJ__JGNK0gjQX-42oaY71gYZEfY7so3xZrlqBtluX4BuCVbVNypbpMKSpqjXkMOyrMfUvZlmFPC9Tyzs2Wk3FC-vVo6qCeiXC4i0EVtHmDWIKHyqVtA29B5T4JmqVLbZQFA0bWMj19DDbkzlLek-7SI9WiM4XZy1LJcaCo-9Y9teRB1Oxm-oOe_FMGQRpj75bauGRaBix8I-sU7zipjSYLt4ZKeaVXdn45TrPHTMTle0PioWlybpVqUiF9w1lnFXd_4Hy_al08_nJLa38TKk23ixoGUWfpFb7HaEXkhbS_72pz_oybp03pXbtye1kuGBHzvwiwwMn4EFc3qf3etcDz53OHrARrbcZXteuPwVnw9Eu8vufHRvD9nnS0DjV4DGB0DjVc4RaLwDGieg8S3QeAs03gPtETs7Pjo9PAm6rhyBQde6DjTgsWDkdGqtzuPcSpGqmUA7X2aaSI7RKqLGZokRANMkBz1DE9KmCoSx2TRL4sdsp6xKu8e4DsPYKIDQgBYmmqVZOAOVGBUDVUyn-yzqP9nCdJT11DmlWFwjrH322v_pq2NsuW76k5tNf8rubhH9jO3U68Y-R7O01i9acPwGuiCHkA
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-resolution+three-dimensional+simulations+of+gas+removal+from+ultrafaint+dwarf+galaxies&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Romano%2C+Donatella&rft.au=Calura%2C+Francesco&rft.au=D%E2%80%99Ercole%2C+Annibale&rft.au=Few%2C+C.+Gareth&rft.date=2019-10-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=630&rft.spage=A140&rft_id=info:doi/10.1051%2F0004-6361%2F201935328&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_201935328
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon