Prediction of cognitive states using MEG and Blind Source Separation
The present study investigates the predictability of a subject's state based on the classification of the underlying brain activity recorded via magnetoencephalography (MEG). We use Second Order Blind Identification (SOBI) to reduce the high dimensionality of MEG sensors into a smaller number o...
Saved in:
Published in | International Congress series Vol. 1300; pp. 205 - 208 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2007
|
Subjects | |
Online Access | Get full text |
ISSN | 0531-5131 1873-6157 |
DOI | 10.1016/j.ics.2007.02.032 |
Cover
Abstract | The present study investigates the predictability of a subject's state based on the classification of the underlying brain activity recorded via magnetoencephalography (MEG). We use Second Order Blind Identification (SOBI) to reduce the high dimensionality of MEG sensors into a smaller number of task-related components. A classification of distinct cognitive states is then achieved by feeding the spectral power of these components into a Support Vector Machine (SVM). We tested this approach on data from one subject during a visuomotor control experiment and found that our method outperforms classification based on the spectral powers computed directly from the MEG sensor array. Our findings suggest that combining SOBI and SVM may provide a reliable classifier for the prediction of cognitive states in MEG. |
---|---|
AbstractList | The present study investigates the predictability of a subject's state based on the classification of the underlying brain activity recorded via magnetoencephalography (MEG). We use Second Order Blind Identification (SOBI) to reduce the high dimensionality of MEG sensors into a smaller number of task-related components. A classification of distinct cognitive states is then achieved by feeding the spectral power of these components into a Support Vector Machine (SVM). We tested this approach on data from one subject during a visuomotor control experiment and found that our method outperforms classification based on the spectral powers computed directly from the MEG sensor array. Our findings suggest that combining SOBI and SVM may provide a reliable classifier for the prediction of cognitive states in MEG. |
Author | Martinerie, J. Garnero, L. Jerbi, K. Besserve, M. |
Author_xml | – sequence: 1 givenname: M. surname: Besserve fullname: Besserve, M. email: michel.besserve@chups.jussieu.fr organization: CNRS UPR 640-LENA Cognitive Neuroscience and Brain Imaging Lab, Paris, France – sequence: 2 givenname: K. surname: Jerbi fullname: Jerbi, K. organization: CNRS UPR 640-LENA Cognitive Neuroscience and Brain Imaging Lab, Paris, France – sequence: 3 givenname: L. surname: Garnero fullname: Garnero, L. organization: CNRS UPR 640-LENA Cognitive Neuroscience and Brain Imaging Lab, Paris, France – sequence: 4 givenname: J. surname: Martinerie fullname: Martinerie, J. organization: CNRS UPR 640-LENA Cognitive Neuroscience and Brain Imaging Lab, Paris, France |
BookMark | eNp9kEFOwzAQRS1UJNrCAdj5AgkzdhKnYgWlFKQikApry5lMKlclqey0ErcnVVmz-X_1RvPfRIzarmUhbhFSBCzutqmnmCoAk4JKQasLMcbS6KTA3IzEGHKNSY4ar8Qkxi0AGtBmLJ4-Ateeet-1smskdZvW9_7IMvau5ygP0bcb-bZYStfW8nHnh1x3h0As17x3wZ3Ia3HZuF3km7-eiq_nxef8JVm9L1_nD6uEsMj6xGhFKs9Lwqx0RFQ1oGfoaKaqMgMo69INndWGuSBFUMzQGFVRVhWzgjOjpwLPdyl0MQZu7D74bxd-LII9abBbO2iwJw0WlB00DMz9meHhsaPnYCN5bmlYHZh6W3f-H_oXkzlmdA |
Cites_doi | 10.1016/j.neuroimage.2004.11.027 10.1109/78.554307 |
ContentType | Journal Article |
Copyright | 2007 Elsevier B.V. |
Copyright_xml | – notice: 2007 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ics.2007.02.032 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1873-6157 |
EndPage | 208 |
ExternalDocumentID | 10_1016_j_ics_2007_02_032 S0531513107001781 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 4G. 5GY 5VS 7-5 71M 8P~ AAAJQ AABNK AACTN AADPK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATCM AAXEL AAXUO ABBQC ABCQJ ABGSF ABLVK ABMAC ABUDA ABXDB ABYKQ ABZDS ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEKER AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q HVGLF HZ~ IHE KOM LCYCR LUGTX M41 MO0 MOBAO N9A O-L O9- OAUVE OGGZJ OZT P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SSH SSI SSN SSP SSU SSZ T5K UHS AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION |
ID | FETCH-LOGICAL-c164t-732c2558c148acccbf0391ac92b84008d8a8404d7ee6c2c0691772bc4b696e473 |
IEDL.DBID | .~1 |
ISSN | 0531-5131 |
IngestDate | Tue Jul 01 02:24:57 EDT 2025 Fri Feb 23 02:23:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Magnetoencephalography (MEG) Blind Source Separation (BSS) Second Order Blind Identification (SOBI) Support Vector Machine (SVM) Visuomotor control |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c164t-732c2558c148acccbf0391ac92b84008d8a8404d7ee6c2c0691772bc4b696e473 |
PageCount | 4 |
ParticipantIDs | crossref_primary_10_1016_j_ics_2007_02_032 elsevier_sciencedirect_doi_10_1016_j_ics_2007_02_032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-06-00 |
PublicationDateYYYYMMDD | 2007-06-01 |
PublicationDate_xml | – month: 06 year: 2007 text: 2007-06-00 |
PublicationDecade | 2000 |
PublicationTitle | International Congress series |
PublicationYear | 2007 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Belchourani (bib1) Feb 1997; 42 Tang, Sutherland, McKinney (bib2) 2005; 25 Jerbi (bib3) 2004 Tang (10.1016/j.ics.2007.02.032_bib2) 2005; 25 Jerbi (10.1016/j.ics.2007.02.032_bib3) 2004 Belchourani (10.1016/j.ics.2007.02.032_bib1) 1997; 42 |
References_xml | – volume: 25 start-page: 539 year: 2005 end-page: 553 ident: bib2 article-title: Validation of SOBI components from high-density EEG publication-title: Neuroimage – volume: 42 start-page: 434 year: Feb 1997 end-page: 444 ident: bib1 article-title: A blind source separation technique using second order statistics publication-title: IEEE Trans. Signal. Process. – start-page: 380 year: 2004 end-page: 383 ident: bib3 article-title: Imaging cortical oscillations during sustained visuomotor coordination in MEG publication-title: Proc. IEEE ISBI – volume: 25 start-page: 539 issue: 2 year: 2005 ident: 10.1016/j.ics.2007.02.032_bib2 article-title: Validation of SOBI components from high-density EEG publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.11.027 – start-page: 380 year: 2004 ident: 10.1016/j.ics.2007.02.032_bib3 article-title: Imaging cortical oscillations during sustained visuomotor coordination in MEG publication-title: Proc. IEEE ISBI – volume: 42 start-page: 434 issue: 2 year: 1997 ident: 10.1016/j.ics.2007.02.032_bib1 article-title: A blind source separation technique using second order statistics publication-title: IEEE Trans. Signal. Process. doi: 10.1109/78.554307 |
SSID | ssj0017037 |
Score | 1.6441603 |
Snippet | The present study investigates the predictability of a subject's state based on the classification of the underlying brain activity recorded via... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 205 |
SubjectTerms | Blind Source Separation (BSS) Magnetoencephalography (MEG) Second Order Blind Identification (SOBI) Support Vector Machine (SVM) Visuomotor control |
Title | Prediction of cognitive states using MEG and Blind Source Separation |
URI | https://dx.doi.org/10.1016/j.ics.2007.02.032 |
Volume | 1300 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KBfEiPrE-yh48CdtuNmmSHmutVqVFqIXewj6lHtLS1qu_3dlNUhT04ilL2IHw7TCP7DczANepxLQnCASVmhsa6SCkkllNRRhaKVCG-aF9o3E8nEZPs86sBv2qFsbRKkvbX9h0b63LN-0SzfZyPm9PnPp0AgxPEj9j3lewR4nT9dbnluYRoEb7kmncTN3u6mbTc7zmal12MeQtFvLffdM3f3N_APtloEh6xbccQs3kR7A7Kq_Cj-HuZeXWDleysGRLAyK-RGhNHKH9jYwGD0TkmtxiNKnJxP-pJxNTNPxe5CcwvR-89oe0HIlAFeY1G5qEXGESkCrMYoRSSlrX4V2oLpeYqbFUpwKfkU6MiRVXLMZsLOFSRTLuxgbROYV6vsjNGZAI0WA6DoR1btpdAMbahgrjI20x6rANuKnAyJZF54usooS9Z4icm2CZZIxniFwDogqu7MfxZWiZ_xY7_5_YBexVtD0WXEJ9s_owVxgbbGTTH34TdnqPz8PxF-Y_to4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KC-pFfGJ97sGTELvZbJP0WGtrah8IbaG3sE-ph7S09f87m2yKgl48JYQMhG-HmfkyL4TuYwG0x_e5JxTVHlN-4AlilMeDwAgOMiRf2jcah8mMvc6b8wrqlL0wtqzS2f7CpufW2j1pODQbq8WiMbHq0_QhPInyHfNAgWqsCWyvimrt_iAZ75IJoNR51zS871mBMrmZl3kt5MYNMqSPJKC_u6dvLqd3hA5drIjbxecco4rOTtDeyGXDT9Hz29reW2jx0uBdJRDOu4Q22Na0v-NR9wXzTOEnCCgVnuQ_6_FEFzO_l9kZmvW6007iua0IngRqs_WigErgAbEEIsOllMLYIe9ctqgAskZiFXO4MhVpHUoqSQiELKJCMhG2Qs2i4BxVs2WmLxBmgAZRoc-N9dQ2BxgqE0gIkZSBwMPU0UMJRroqhl-kZVXYRwrI2SWWUUpoCsjVESvhSn-cYArG-W-xy_-J3aH9ZDoapsP-eHCFDsoqPuJfo-p2_alvIFTYilunCl9X1blF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+cognitive+states+using+MEG+and+Blind+Source+Separation&rft.jtitle=International+Congress+series&rft.au=Besserve%2C+M.&rft.au=Jerbi%2C+K.&rft.au=Garnero%2C+L.&rft.au=Martinerie%2C+J.&rft.date=2007-06-01&rft.issn=0531-5131&rft.volume=1300&rft.spage=205&rft.epage=208&rft_id=info:doi/10.1016%2Fj.ics.2007.02.032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ics_2007_02_032 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0531-5131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0531-5131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0531-5131&client=summon |