Prediction of cognitive states using MEG and Blind Source Separation

The present study investigates the predictability of a subject's state based on the classification of the underlying brain activity recorded via magnetoencephalography (MEG). We use Second Order Blind Identification (SOBI) to reduce the high dimensionality of MEG sensors into a smaller number o...

Full description

Saved in:
Bibliographic Details
Published inInternational Congress series Vol. 1300; pp. 205 - 208
Main Authors Besserve, M., Jerbi, K., Garnero, L., Martinerie, J.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2007
Subjects
Online AccessGet full text
ISSN0531-5131
1873-6157
DOI10.1016/j.ics.2007.02.032

Cover

Abstract The present study investigates the predictability of a subject's state based on the classification of the underlying brain activity recorded via magnetoencephalography (MEG). We use Second Order Blind Identification (SOBI) to reduce the high dimensionality of MEG sensors into a smaller number of task-related components. A classification of distinct cognitive states is then achieved by feeding the spectral power of these components into a Support Vector Machine (SVM). We tested this approach on data from one subject during a visuomotor control experiment and found that our method outperforms classification based on the spectral powers computed directly from the MEG sensor array. Our findings suggest that combining SOBI and SVM may provide a reliable classifier for the prediction of cognitive states in MEG.
AbstractList The present study investigates the predictability of a subject's state based on the classification of the underlying brain activity recorded via magnetoencephalography (MEG). We use Second Order Blind Identification (SOBI) to reduce the high dimensionality of MEG sensors into a smaller number of task-related components. A classification of distinct cognitive states is then achieved by feeding the spectral power of these components into a Support Vector Machine (SVM). We tested this approach on data from one subject during a visuomotor control experiment and found that our method outperforms classification based on the spectral powers computed directly from the MEG sensor array. Our findings suggest that combining SOBI and SVM may provide a reliable classifier for the prediction of cognitive states in MEG.
Author Martinerie, J.
Garnero, L.
Jerbi, K.
Besserve, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Besserve
  fullname: Besserve, M.
  email: michel.besserve@chups.jussieu.fr
  organization: CNRS UPR 640-LENA Cognitive Neuroscience and Brain Imaging Lab, Paris, France
– sequence: 2
  givenname: K.
  surname: Jerbi
  fullname: Jerbi, K.
  organization: CNRS UPR 640-LENA Cognitive Neuroscience and Brain Imaging Lab, Paris, France
– sequence: 3
  givenname: L.
  surname: Garnero
  fullname: Garnero, L.
  organization: CNRS UPR 640-LENA Cognitive Neuroscience and Brain Imaging Lab, Paris, France
– sequence: 4
  givenname: J.
  surname: Martinerie
  fullname: Martinerie, J.
  organization: CNRS UPR 640-LENA Cognitive Neuroscience and Brain Imaging Lab, Paris, France
BookMark eNp9kEFOwzAQRS1UJNrCAdj5AgkzdhKnYgWlFKQikApry5lMKlclqey0ErcnVVmz-X_1RvPfRIzarmUhbhFSBCzutqmnmCoAk4JKQasLMcbS6KTA3IzEGHKNSY4ar8Qkxi0AGtBmLJ4-Ateeet-1smskdZvW9_7IMvau5ygP0bcb-bZYStfW8nHnh1x3h0As17x3wZ3Ia3HZuF3km7-eiq_nxef8JVm9L1_nD6uEsMj6xGhFKs9Lwqx0RFQ1oGfoaKaqMgMo69INndWGuSBFUMzQGFVRVhWzgjOjpwLPdyl0MQZu7D74bxd-LII9abBbO2iwJw0WlB00DMz9meHhsaPnYCN5bmlYHZh6W3f-H_oXkzlmdA
Cites_doi 10.1016/j.neuroimage.2004.11.027
10.1109/78.554307
ContentType Journal Article
Copyright 2007 Elsevier B.V.
Copyright_xml – notice: 2007 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.ics.2007.02.032
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-6157
EndPage 208
ExternalDocumentID 10_1016_j_ics_2007_02_032
S0531513107001781
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
4G.
5GY
5VS
7-5
71M
8P~
AAAJQ
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AATCM
AAXEL
AAXUO
ABBQC
ABCQJ
ABGSF
ABLVK
ABMAC
ABUDA
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEKER
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
HVGLF
HZ~
IHE
KOM
LCYCR
LUGTX
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OGGZJ
OZT
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SSH
SSI
SSN
SSP
SSU
SSZ
T5K
UHS
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
ID FETCH-LOGICAL-c164t-732c2558c148acccbf0391ac92b84008d8a8404d7ee6c2c0691772bc4b696e473
IEDL.DBID .~1
ISSN 0531-5131
IngestDate Tue Jul 01 02:24:57 EDT 2025
Fri Feb 23 02:23:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Magnetoencephalography (MEG)
Blind Source Separation (BSS)
Second Order Blind Identification (SOBI)
Support Vector Machine (SVM)
Visuomotor control
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c164t-732c2558c148acccbf0391ac92b84008d8a8404d7ee6c2c0691772bc4b696e473
PageCount 4
ParticipantIDs crossref_primary_10_1016_j_ics_2007_02_032
elsevier_sciencedirect_doi_10_1016_j_ics_2007_02_032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-06-00
PublicationDateYYYYMMDD 2007-06-01
PublicationDate_xml – month: 06
  year: 2007
  text: 2007-06-00
PublicationDecade 2000
PublicationTitle International Congress series
PublicationYear 2007
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Belchourani (bib1) Feb 1997; 42
Tang, Sutherland, McKinney (bib2) 2005; 25
Jerbi (bib3) 2004
Tang (10.1016/j.ics.2007.02.032_bib2) 2005; 25
Jerbi (10.1016/j.ics.2007.02.032_bib3) 2004
Belchourani (10.1016/j.ics.2007.02.032_bib1) 1997; 42
References_xml – volume: 25
  start-page: 539
  year: 2005
  end-page: 553
  ident: bib2
  article-title: Validation of SOBI components from high-density EEG
  publication-title: Neuroimage
– volume: 42
  start-page: 434
  year: Feb 1997
  end-page: 444
  ident: bib1
  article-title: A blind source separation technique using second order statistics
  publication-title: IEEE Trans. Signal. Process.
– start-page: 380
  year: 2004
  end-page: 383
  ident: bib3
  article-title: Imaging cortical oscillations during sustained visuomotor coordination in MEG
  publication-title: Proc. IEEE ISBI
– volume: 25
  start-page: 539
  issue: 2
  year: 2005
  ident: 10.1016/j.ics.2007.02.032_bib2
  article-title: Validation of SOBI components from high-density EEG
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.11.027
– start-page: 380
  year: 2004
  ident: 10.1016/j.ics.2007.02.032_bib3
  article-title: Imaging cortical oscillations during sustained visuomotor coordination in MEG
  publication-title: Proc. IEEE ISBI
– volume: 42
  start-page: 434
  issue: 2
  year: 1997
  ident: 10.1016/j.ics.2007.02.032_bib1
  article-title: A blind source separation technique using second order statistics
  publication-title: IEEE Trans. Signal. Process.
  doi: 10.1109/78.554307
SSID ssj0017037
Score 1.6441603
Snippet The present study investigates the predictability of a subject's state based on the classification of the underlying brain activity recorded via...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 205
SubjectTerms Blind Source Separation (BSS)
Magnetoencephalography (MEG)
Second Order Blind Identification (SOBI)
Support Vector Machine (SVM)
Visuomotor control
Title Prediction of cognitive states using MEG and Blind Source Separation
URI https://dx.doi.org/10.1016/j.ics.2007.02.032
Volume 1300
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KBfEiPrE-yh48CdtuNmmSHmutVqVFqIXewj6lHtLS1qu_3dlNUhT04ilL2IHw7TCP7DczANepxLQnCASVmhsa6SCkkllNRRhaKVCG-aF9o3E8nEZPs86sBv2qFsbRKkvbX9h0b63LN-0SzfZyPm9PnPp0AgxPEj9j3lewR4nT9dbnluYRoEb7kmncTN3u6mbTc7zmal12MeQtFvLffdM3f3N_APtloEh6xbccQs3kR7A7Kq_Cj-HuZeXWDleysGRLAyK-RGhNHKH9jYwGD0TkmtxiNKnJxP-pJxNTNPxe5CcwvR-89oe0HIlAFeY1G5qEXGESkCrMYoRSSlrX4V2oLpeYqbFUpwKfkU6MiRVXLMZsLOFSRTLuxgbROYV6vsjNGZAI0WA6DoR1btpdAMbahgrjI20x6rANuKnAyJZF54usooS9Z4icm2CZZIxniFwDogqu7MfxZWiZ_xY7_5_YBexVtD0WXEJ9s_owVxgbbGTTH34TdnqPz8PxF-Y_to4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KC-pFfGJ97sGTELvZbJP0WGtrah8IbaG3sE-ph7S09f87m2yKgl48JYQMhG-HmfkyL4TuYwG0x_e5JxTVHlN-4AlilMeDwAgOMiRf2jcah8mMvc6b8wrqlL0wtqzS2f7CpufW2j1pODQbq8WiMbHq0_QhPInyHfNAgWqsCWyvimrt_iAZ75IJoNR51zS871mBMrmZl3kt5MYNMqSPJKC_u6dvLqd3hA5drIjbxecco4rOTtDeyGXDT9Hz29reW2jx0uBdJRDOu4Q22Na0v-NR9wXzTOEnCCgVnuQ_6_FEFzO_l9kZmvW6007iua0IngRqs_WigErgAbEEIsOllMLYIe9ctqgAskZiFXO4MhVpHUoqSQiELKJCMhG2Qs2i4BxVs2WmLxBmgAZRoc-N9dQ2BxgqE0gIkZSBwMPU0UMJRroqhl-kZVXYRwrI2SWWUUpoCsjVESvhSn-cYArG-W-xy_-J3aH9ZDoapsP-eHCFDsoqPuJfo-p2_alvIFTYilunCl9X1blF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+cognitive+states+using+MEG+and+Blind+Source+Separation&rft.jtitle=International+Congress+series&rft.au=Besserve%2C+M.&rft.au=Jerbi%2C+K.&rft.au=Garnero%2C+L.&rft.au=Martinerie%2C+J.&rft.date=2007-06-01&rft.issn=0531-5131&rft.volume=1300&rft.spage=205&rft.epage=208&rft_id=info:doi/10.1016%2Fj.ics.2007.02.032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ics_2007_02_032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0531-5131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0531-5131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0531-5131&client=summon