Dog-bone Samples may not Provide Direct Access to the Longitudinal Tensile Strength of Clear-wood
Background: Testing standards prescribe dog-bone samples for the determination of clear-wood longitudinal tensile strength. However, the literature reports a high number of invalid tests due to the unexpected failure of the sample outside the gauge length. Motivation: The paper aims at understanding...
Saved in:
Published in | The open civil engineering journal Vol. 15; no. 1; pp. 1 - 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
22.02.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | Background:
Testing standards prescribe dog-bone samples for the determination of clear-wood longitudinal tensile strength. However, the literature reports a high number of invalid tests due to the unexpected failure of the sample outside the gauge length.
Motivation:
The paper aims at understanding the reason for the premature failure of dog-bone samples and suggesting possible strategies for improving testing protocols.
Methods:
The paper starts with a comparative review of standards for different orthotropic materials. Thereafter, it analyzes the stress distribution in a clear-wood dog-bone sample using a recently proposed stress-recovery procedure and Finite Elements. Finally, the sample failure is considered applying Tsai-Wu and SIA criteria.
Results:
Comparative review highlights the controversy on the choice of the sample geometry. Both analytical and numerical results confirm the presence of shear and transversal stresses in necking regions, overlapping with axial stress greater (up to 2%) than the one in the gauge region. As a consequence, clear-wood dog-bone samples fail not due to a pure axial stress state in the gauge region (as expected), but due to complex stress state in necking region, where failure index is 4 ~ 5% greater than the one in gauge region.
Conclusion:
Assuming that dog-bone samples fail in the gauge region due to pure axial stress is simplistic, as demonstrated by analytical and numerical evidence. As a consequence, interpretations of experimental results based on this belief are misleading and testing protocols should be refined. Indeed, the presence of spurious stresses interfering with expected pure axial stress seems unavoidable. Therefore, clear-wood testing standards should allow to use prismatic samples or, alternatively, to consider as valid also tests on samples breaking outside the gauge region. Both the proposed solutions apparently reduce the accuracy of the experiments, while in contrast, they provide the best achievable results, speeding up the testing procedure and reducing the testing costs. |
---|---|
AbstractList | Background:
Testing standards prescribe dog-bone samples for the determination of clear-wood longitudinal tensile strength. However, the literature reports a high number of invalid tests due to the unexpected failure of the sample outside the gauge length.
Motivation:
The paper aims at understanding the reason for the premature failure of dog-bone samples and suggesting possible strategies for improving testing protocols.
Methods:
The paper starts with a comparative review of standards for different orthotropic materials. Thereafter, it analyzes the stress distribution in a clear-wood dog-bone sample using a recently proposed stress-recovery procedure and Finite Elements. Finally, the sample failure is considered applying Tsai-Wu and SIA criteria.
Results:
Comparative review highlights the controversy on the choice of the sample geometry. Both analytical and numerical results confirm the presence of shear and transversal stresses in necking regions, overlapping with axial stress greater (up to 2%) than the one in the gauge region. As a consequence, clear-wood dog-bone samples fail not due to a pure axial stress state in the gauge region (as expected), but due to complex stress state in necking region, where failure index is 4 ~ 5% greater than the one in gauge region.
Conclusion:
Assuming that dog-bone samples fail in the gauge region due to pure axial stress is simplistic, as demonstrated by analytical and numerical evidence. As a consequence, interpretations of experimental results based on this belief are misleading and testing protocols should be refined. Indeed, the presence of spurious stresses interfering with expected pure axial stress seems unavoidable. Therefore, clear-wood testing standards should allow to use prismatic samples or, alternatively, to consider as valid also tests on samples breaking outside the gauge region. Both the proposed solutions apparently reduce the accuracy of the experiments, while in contrast, they provide the best achievable results, speeding up the testing procedure and reducing the testing costs. |
Author | Balduzzi, Giuseppe Hellmich, Christian Zelaya-Lainez, Luis Hochreiner, Georg |
Author_xml | – sequence: 1 givenname: Giuseppe surname: Balduzzi fullname: Balduzzi, Giuseppe – sequence: 2 givenname: Luis surname: Zelaya-Lainez fullname: Zelaya-Lainez, Luis – sequence: 3 givenname: Georg surname: Hochreiner fullname: Hochreiner, Georg – sequence: 4 givenname: Christian surname: Hellmich fullname: Hellmich, Christian |
BookMark | eNptkL1OwzAcxC1UJNrCE7D4BQJ2HNvJWLV8SZFAosyRY_-TGiV2ZRtQ355EMDAw3emG3-luhRbOO0DompKbnMrilpayoEXFSU4pJ5QQQs_Qck6zOV788RdoFeM7IYKVuVgitfN91k40_KrG4wARj-qEnU_4JfhPawDvbACd8EZriBEnj9MBcO1db9OHsU4NeA8u2mEipACuTwfsO7wdQIXsy3tzic47NUS4-tU1eru_228fs_r54Wm7qTNNRZEy0RU5Iark0yCQhJesEiCNNJpxwdXUzk2rZGsAaJWraYAoGJclk0aIipZsjdgPVwcfY4CuOQY7qnBqKGnml5p_XmLfozlbTQ |
CitedBy_id | crossref_primary_10_1007_s00226_024_01558_x |
Cites_doi | 10.1016/j.ijsolstr.2016.02.017 10.1002/pse.185 10.1016/j.tws.2019.01.008 10.1177/002199837100500106 10.1590/s1517-707620180004.0584 10.1007/978-1-4899-3124-5 10.4067/S0718-221X2017005000014 10.1016/j.engstruct.2020.110252 10.1108/13552540210441166 10.1016/j.compstruc.2020.106339 10.3390/ma13010028 10.1115/1.3424095 10.1007/s00419-015-1112-6 10.1016/j.compositesb.2017.01.019 10.5552/drind.2017.1639 10.1016/j.euromechsol.2020.103969 10.2174/1874149500903010028 10.1007/s00107-012-0638-3 10.1016/j.cma.2016.05.026 10.2140/jomms.2010.5.963 10.13073/0015-7473-62.3.167 10.1007/978-3-642-15337-2_3 10.1007/978-3-7091-6111-1 10.1016/j.compositesb.2017.05.013 10.2140/jomms.2010.5.771 10.1016/B978-0-12-803581-8.10172-9 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.2174/1874149502115010001 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1874-1495 |
EndPage | 12 |
ExternalDocumentID | 10_2174_1874149502115010001 |
GroupedDBID | 123 29N 2WC 5VS AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION CS3 E3Z GROUPED_DOAJ JBO KQ8 M~E OK1 RNS |
ID | FETCH-LOGICAL-c164t-6f4200a85217e7058396e7d7dc3565acce5dba7bdee192a00664357837d669183 |
ISSN | 1874-1495 |
IngestDate | Fri Aug 23 01:47:37 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c164t-6f4200a85217e7058396e7d7dc3565acce5dba7bdee192a00664357837d669183 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_2174_1874149502115010001 |
PublicationCentury | 2000 |
PublicationDate | 2021-02-22 |
PublicationDateYYYYMMDD | 2021-02-22 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | The open civil engineering journal |
PublicationYear | 2021 |
References | Paglietti A. (ref10) 2009; 3 Hodges D. (ref26) 2011; 5 Ferreira R.T.L. (ref45) 2017; 124 Bonizzoni F. (ref51) 2016; 308 Riberholt H. (ref25) 1979 Kasal B. (ref31) 2005; 7 (ref28) 2003 Mercuri V. (ref12) 2020; 213 (ref22) 2002 Patni M. (ref13) 2020; 240 ref50 Gašparík M. (ref35) 2017; 62 ref48 ref44 Banjanin B. (ref42) 2018; 23 Alaimo G. (ref41) 2017; 113 García-Domínguez A. (ref43) 2019; 13 Choi I. (ref47) 1977; 44 Kohan N. (ref7) 2012; 62 ref9 Füssl J. (ref49) 2016; 86 ref4 ref3 ref6 ref5 Ahn S.H. (ref40) 2002; 8 Cabrero J.M. (ref32) 2012; 70 Auricchio F. (ref46) 2010; 5 ref34 Karwat Z. (ref8) 2018; 11 ref33 Büyüksari Ü. (ref37) 2017; 19 (ref23) 1997 ref2 ref1 (ref30) 2003 (ref17) 2004 Büyüksarı Ü. (ref39) 2017; 68 Morais J.L. (ref36) 2001 ref24 Büyüksarı Ü. (ref38) 2017; 19 Tsai S.W. (ref29) 1971; 5 Balduzzi G. (ref11) 2016; 90 (ref18) 1979 (ref19) 2000 ref27 Bertolini P. (ref15) 2020; 81 (ref20) 2014 Bertolini P. (ref14) 2019; 137 (ref16) 2004 (ref21) 2009 |
References_xml | – year: 2014 ident: ref20 publication-title: ISO – ident: ref1 – ident: ref5 – volume: 90 start-page: 236 year: 2016 ident: ref11 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2016.02.017 contributor: fullname: Balduzzi G. – start-page: 355 year: 2001 ident: ref36 publication-title: Proceedings of the 1st international conference of the European society for wood mechanics, Building Materials Laboratory, Materials Science and Engineering Department contributor: fullname: Morais J.L. – ident: ref24 – volume: 7 start-page: 3 year: 2005 ident: ref31 publication-title: Prog. Struct. Eng. Mater. doi: 10.1002/pse.185 contributor: fullname: Kasal B. – ident: ref27 – volume: 137 start-page: 527 year: 2019 ident: ref14 publication-title: Thin-walled Struct. doi: 10.1016/j.tws.2019.01.008 contributor: fullname: Bertolini P. – year: 2004 ident: ref16 publication-title: DIN – ident: ref34 – ident: ref2 – ident: ref6 – ident: ref44 – volume: 5 start-page: 58 year: 1971 ident: ref29 publication-title: J. Compos. Mater. doi: 10.1177/002199837100500106 contributor: fullname: Tsai S.W. – year: 2009 ident: ref21 publication-title: CEN - European committee for standardization – volume: 23 year: 2018 ident: ref42 publication-title: Materia (Rio J.) doi: 10.1590/s1517-707620180004.0584 contributor: fullname: Banjanin B. – ident: ref4 doi: 10.1007/978-1-4899-3124-5 – volume: 19 start-page: 163 year: 2017 ident: ref37 publication-title: Maderas Cienc. Tecnol. doi: 10.4067/S0718-221X2017005000014 contributor: fullname: Büyüksari Ü. – volume: 213 year: 2020 ident: ref12 publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.110252 contributor: fullname: Mercuri V. – year: 2003 ident: ref28 publication-title: Österreichisches Normungsinstitut – volume: 11 start-page: 73 year: 2018 ident: ref8 publication-title: Chip and chipless woodworking processes Chip and chipless woodworking processes contributor: fullname: Karwat Z. – volume: 8 start-page: 248 year: 2002 ident: ref40 publication-title: Rapid Prototyping J. doi: 10.1108/13552540210441166 contributor: fullname: Ahn S.H. – volume: 240 year: 2020 ident: ref13 publication-title: Comput. Struc. doi: 10.1016/j.compstruc.2020.106339 contributor: fullname: Patni M. – volume: 62 start-page: 517 year: 2017 ident: ref35 publication-title: Wood Res. contributor: fullname: Gašparík M. – volume: 13 start-page: 28 year: 2019 ident: ref43 publication-title: Materials (Basel) doi: 10.3390/ma13010028 contributor: fullname: García-Domínguez A. – ident: ref33 – volume: 44 start-page: 424 year: 1977 ident: ref47 publication-title: J. Appl. Mech. doi: 10.1115/1.3424095 contributor: fullname: Choi I. – volume: 86 start-page: 89 year: 2016 ident: ref49 publication-title: Arch. Appl. Mech. doi: 10.1007/s00419-015-1112-6 contributor: fullname: Füssl J. – year: 2003 ident: ref30 publication-title: Swiss Society of Engineers and Architects – volume: 113 start-page: 371 year: 2017 ident: ref41 publication-title: Compos., Part B Eng. doi: 10.1016/j.compositesb.2017.01.019 contributor: fullname: Alaimo G. – ident: ref3 – volume: 68 start-page: 129 year: 2017 ident: ref39 publication-title: Drvna industrija: Znanstveni časopis za pitanja drvne tehnologije doi: 10.5552/drind.2017.1639 contributor: fullname: Büyüksarı Ü. – volume: 81 start-page: 103969 year: 2020 ident: ref15 publication-title: Eur. J. Mechanics-A/Solids. doi: 10.1016/j.euromechsol.2020.103969 contributor: fullname: Bertolini P. – volume: 3 start-page: 28 year: 2009 ident: ref10 publication-title: Open Civ. Eng. J. doi: 10.2174/1874149500903010028 contributor: fullname: Paglietti A. – volume: 70 start-page: 871 year: 2012 ident: ref32 publication-title: Eur. J. Wood Wood Prod doi: 10.1007/s00107-012-0638-3 contributor: fullname: Cabrero J.M. – year: 2000 ident: ref19 publication-title: ASTM – volume: 308 start-page: 349 year: 2016 ident: ref51 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2016.05.026 contributor: fullname: Bonizzoni F. – volume: 5 start-page: 963 year: 2011 ident: ref26 publication-title: J. Mech. Mater. Struct. doi: 10.2140/jomms.2010.5.963 contributor: fullname: Hodges D. – year: 2002 ident: ref22 publication-title: ASTM – year: 2004 ident: ref17 publication-title: EN – volume: 62 start-page: 167 year: 2012 ident: ref7 publication-title: For. Prod. J. doi: 10.13073/0015-7473-62.3.167 contributor: fullname: Kohan N. – ident: ref50 doi: 10.1007/978-3-642-15337-2_3 – year: 1997 ident: ref23 publication-title: ISO – ident: ref9 doi: 10.1007/978-3-7091-6111-1 – volume: 124 start-page: 88 year: 2017 ident: ref45 publication-title: Compos., Part B Eng. doi: 10.1016/j.compositesb.2017.05.013 contributor: fullname: Ferreira R.T.L. – volume: 5 start-page: 771 year: 2010 ident: ref46 publication-title: J. Mech. Mater. Structures. doi: 10.2140/jomms.2010.5.771 contributor: fullname: Auricchio F. – year: 1979 ident: ref18 publication-title: DIN – volume: 19 start-page: 481 year: 2017 ident: ref38 publication-title: Maderas Cienc. Tecnol. contributor: fullname: Büyüksarı Ü. – ident: ref48 doi: 10.1016/B978-0-12-803581-8.10172-9 – start-page: 1 year: 1979 ident: ref25 publication-title: Proceedings of the CIB-W18, Meeting 11, number CIB-w18/11-10-1 contributor: fullname: Riberholt H. |
SSID | ssj0063826 |
Score | 2.2332766 |
Snippet | Background:
Testing standards prescribe dog-bone samples for the determination of clear-wood longitudinal tensile strength. However, the literature reports a... |
SourceID | crossref |
SourceType | Aggregation Database |
StartPage | 1 |
Title | Dog-bone Samples may not Provide Direct Access to the Longitudinal Tensile Strength of Clear-wood |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9gIHBAVEy0N76M1sycPPI4JChFIupFLVS7Tr3RRLbhy1Nqg58Jv4iXyzXj9UIkS5WNEqmWw8X2a-Gc_OMHZojFKAjhFBnAyFb5JEyDjSAq5tmKZLBR9uC2S_hNNT__NZcDYY_OpVLVWlOko3W8-V_I9WsQa90inZO2i2FYoFvIZ-cYWGcf0nHX8oLoQqQBO_Smrye-1dyhtvVZRU_k_n65xBo5EQZNAczZwVNKOo0nYe1pwK2G094ZVZXZTfbHkGjZIQP9wY-Ya6EqBo1paXZt-z3DNdI0Ovv1mbFc11tdnYOoFPWXVt1usWPucmlzdSzCQ-bHPXsypraf20SAGtzJ3Bsen6Lleb55QX7RoiNLh2KYvxyB4B72UxaQ6goNCsdkJb1hrTHPwBwdrOjnoOuy7Dvu0KKNSirATEklTsAtSXHmaMOs_XPO2_5RDbMkUESCRmsUXIPbY7hmkjm3ry87jx_TBmdsBf-2PqPlck5O0WIT0u1CM180fsoYtG-LsaWo_ZwKz22INej8onTDYg4w5kHCDjABl3IOM1yHgNMl4WHCDjfZBxBzLegIwXS96B7Ck7_Xg8fz8Vbi6HSBFclyJc-vgXyhjMLzLRMADHDk2kI51OEB5IfFuglYyUNgbxgyRW61NTpUmkwzCBD3nGdlbY93PGY2l0rLUORgpCl7ij8Vin0sSJr8OJjPbZm-YOLdZ1-5XFX7RycLe3v2D3O3i-ZDvlVWVegWOW6rVV62-5lnfl |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dog-bone+Samples+may+not+Provide+Direct+Access+to+the+Longitudinal+Tensile+Strength+of+Clear-wood&rft.jtitle=The+open+civil+engineering+journal&rft.au=Balduzzi%2C+Giuseppe&rft.au=Zelaya-Lainez%2C+Luis&rft.au=Hochreiner%2C+Georg&rft.au=Hellmich%2C+Christian&rft.date=2021-02-22&rft.issn=1874-1495&rft.eissn=1874-1495&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.2174%2F1874149502115010001&rft.externalDBID=n%2Fa&rft.externalDocID=10_2174_1874149502115010001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1874-1495&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1874-1495&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1874-1495&client=summon |