OOD-CV-v2 : An Extended Benchmark for Robustness to Out-of-Distribution Shifts of Individual Nuisances in Natural Images

Enhancing the robustness of vision algorithms in real-world scenarios is challenging. One reason is that existing robustness benchmarks are limited, as they either rely on synthetic data or ignore the effects of individual nuisance factors. We introduce OOD-CV-v2, a benchmark dataset that includes o...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 46; no. 12; pp. 11104 - 11118
Main Authors Zhao, Bingchen, Wang, Jiahao, Ma, Wufei, Jesslen, Artur, Yang, Siwei, Yu, Shaozuo, Zendel, Oliver, Theobalt, Christian, Yuille, Alan L., Kortylewski, Adam
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Enhancing the robustness of vision algorithms in real-world scenarios is challenging. One reason is that existing robustness benchmarks are limited, as they either rely on synthetic data or ignore the effects of individual nuisance factors. We introduce OOD-CV-v2, a benchmark dataset that includes out-of-distribution examples of 10 object categories in terms of pose, shape, texture, context and the weather conditions, and enables benchmarking of models for image classification, object detection, and 3D pose estimation. In addition to this novel dataset, we contribute extensive experiments using popular baseline methods, which reveal that: 1) Some nuisance factors have a much stronger negative effect on the performance compared to others, also depending on the vision task. 2) Current approaches to enhance robustness have only marginal effects, and can even reduce robustness. 3) We do not observe significant differences between convolutional and transformer architectures. We believe our dataset provides a rich test bed to study robustness and will help push forward research in this area.
AbstractList Enhancing the robustness of vision algorithms in real-world scenarios is challenging. One reason is that existing robustness benchmarks are limited, as they either rely on synthetic data or ignore the effects of individual nuisance factors. We introduce OOD-CV-v2, a benchmark dataset that includes out-of-distribution examples of 10 object categories in terms of pose, shape, texture, context and the weather conditions, and enables benchmarking of models for image classification, object detection, and 3D pose estimation. In addition to this novel dataset, we contribute extensive experiments using popular baseline methods, which reveal that: 1) Some nuisance factors have a much stronger negative effect on the performance compared to others, also depending on the vision task. 2) Current approaches to enhance robustness have only marginal effects, and can even reduce robustness. 3) We do not observe significant differences between convolutional and transformer architectures. We believe our dataset provides a rich test bed to study robustness and will help push forward research in this area.Enhancing the robustness of vision algorithms in real-world scenarios is challenging. One reason is that existing robustness benchmarks are limited, as they either rely on synthetic data or ignore the effects of individual nuisance factors. We introduce OOD-CV-v2, a benchmark dataset that includes out-of-distribution examples of 10 object categories in terms of pose, shape, texture, context and the weather conditions, and enables benchmarking of models for image classification, object detection, and 3D pose estimation. In addition to this novel dataset, we contribute extensive experiments using popular baseline methods, which reveal that: 1) Some nuisance factors have a much stronger negative effect on the performance compared to others, also depending on the vision task. 2) Current approaches to enhance robustness have only marginal effects, and can even reduce robustness. 3) We do not observe significant differences between convolutional and transformer architectures. We believe our dataset provides a rich test bed to study robustness and will help push forward research in this area.
Enhancing the robustness of vision algorithms in real-world scenarios is challenging. One reason is that existing robustness benchmarks are limited, as they either rely on synthetic data or ignore the effects of individual nuisance factors. We introduce OOD-CV-v2, a benchmark dataset that includes out-of-distribution examples of 10 object categories in terms of pose, shape, texture, context and the weather conditions, and enables benchmarking of models for image classification, object detection, and 3D pose estimation. In addition to this novel dataset, we contribute extensive experiments using popular baseline methods, which reveal that: 1) Some nuisance factors have a much stronger negative effect on the performance compared to others, also depending on the vision task. 2) Current approaches to enhance robustness have only marginal effects, and can even reduce robustness. 3) We do not observe significant differences between convolutional and transformer architectures. We believe our dataset provides a rich test bed to study robustness and will help push forward research in this area.
Enhancing the robustness of vision algorithms in real-world scenarios is challenging. One reason is that existing robustness benchmarks are limited, as they either rely on synthetic data or ignore the effects of individual nuisance factors. We introduce OOD-CV-v2, a benchmark dataset that includes out-of-distribution examples of 10 object categories in terms of pose, shape, texture, context and the weather conditions, and enables benchmarking of models for image classification, object detection, and 3D pose estimation. In addition to this novel dataset, we contribute extensive experiments using popular baseline methods, which reveal that: 1) Some nuisance factors have a much stronger negative effect on the performance compared to others, also depending on the vision task. 2) Current approaches to enhance robustness have only marginal effects, and can even reduce robustness. 3) We do not observe significant differences between convolutional and transformer architectures. We believe our dataset provides a rich test bed to study robustness and will help push forward research in this area. Our dataset is publically available online, https://genintel.mpi-inf.mpg.de/ood-cv-v2.html.
Author Ma, Wufei
Yu, Shaozuo
Yuille, Alan L.
Yang, Siwei
Zendel, Oliver
Jesslen, Artur
Zhao, Bingchen
Theobalt, Christian
Wang, Jiahao
Kortylewski, Adam
Author_xml – sequence: 1
  givenname: Bingchen
  orcidid: 0000-0001-8385-2310
  surname: Zhao
  fullname: Zhao, Bingchen
  email: bingchen.zhao@ed.ac.uk, zhaobc.gm@gmail.com
  organization: University of Edinburgh, Edinburgh, U.K
– sequence: 2
  givenname: Jiahao
  orcidid: 0000-0002-8768-4913
  surname: Wang
  fullname: Wang, Jiahao
  organization: Johns Hopkins University, Baltimore, MD, USA
– sequence: 3
  givenname: Wufei
  surname: Ma
  fullname: Ma, Wufei
  organization: Johns Hopkins University, Baltimore, MD, USA
– sequence: 4
  givenname: Artur
  orcidid: 0000-0002-4837-8163
  surname: Jesslen
  fullname: Jesslen, Artur
  organization: University of Freiburg, Freiburg im Breisgau, Germany
– sequence: 5
  givenname: Siwei
  surname: Yang
  fullname: Yang, Siwei
  organization: University of California Santa Cruz, Santa Cruz, CA, USA
– sequence: 6
  givenname: Shaozuo
  orcidid: 0009-0001-9603-4947
  surname: Yu
  fullname: Yu, Shaozuo
  organization: The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong
– sequence: 7
  givenname: Oliver
  orcidid: 0000-0001-8097-1226
  surname: Zendel
  fullname: Zendel, Oliver
  organization: Austrian Institute of Technology, Seibersdorf, Austria
– sequence: 8
  givenname: Christian
  orcidid: 0000-0001-6104-6625
  surname: Theobalt
  fullname: Theobalt, Christian
  organization: MPII, Saarbrücken, Germany
– sequence: 9
  givenname: Alan L.
  surname: Yuille
  fullname: Yuille, Alan L.
  organization: Johns Hopkins University, Baltimore, MD, USA
– sequence: 10
  givenname: Adam
  orcidid: 0000-0002-9146-4403
  surname: Kortylewski
  fullname: Kortylewski, Adam
  organization: MPII, Saarbrücken, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39288047$$D View this record in MEDLINE/PubMed
BookMark eNpNkE1PGzEURa0KVAL0D1RV5WU3Dv4aj91dCLSNBKRqge3IGT8Xt4lNxzai_74DCVVXT_fp3Ls4h2gvpggIvWV0yhg1J9dfZ5eLKadcToVUnBvxCk2YEYaIRpg9NKFMcaI11wfoMOeflDLZUPEaHQjDtaaynaDH5fKMzG_JA8cf8Szi88cC0YHDpxD7u40dfmGfBvwtrWouEXLGJeFlLSR5chZyGcKqlpAi_n4XfMk4ebyILjwEV-0aX9WQbewh4xDxlS11GJ-Ljf0B-Rjte7vO8GZ3j9DNp_Pr-Rdysfy8mM8uSM-UFER53UjWW08VBd-AdG0DFpz20kuuDVWOjQEMB8Ws9Zyr1ot2RS2AdS0TR-jDdvd-SL8r5NJtQu5hvbYRUs2dYFTJxsi2HVG-Rfsh5TyA7-6HMCr40zHaPRnvno13T8a7nfGx9H63X1cbcP8qL4pH4N0WCADw36LSnCol_gLLm4dh
CODEN ITPIDJ
ContentType Journal Article
DBID 97E
RIA
RIE
NPM
AAYXX
CITATION
7X8
DOI 10.1109/TPAMI.2024.3462293
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1939-3539
2160-9292
EndPage 11118
ExternalDocumentID 10_1109_TPAMI_2024_3462293
39288047
10682066
Genre orig-research
Journal Article
GrantInformation_xml – fundername: ONR
  grantid: N00014-20-1-2206
  funderid: 10.13039/100000006
– fundername: Emmy Noether Research Group
– fundername: ONR
  grantid: N00014-21-1-2812
  funderid: 10.13039/100000006
– fundername: German Science Foundation
  grantid: 468670075
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AASAJ
AAYOK
ABFSI
ABQJQ
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIC
RIE
RIG
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c1643-6f8541caf060ef5e4d75eaed8f4f428906d1d8fe92e61aaf2267f37b0aeead713
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Fri Nov 08 20:27:59 EST 2024
Wed Nov 13 12:51:33 EST 2024
Sat Nov 02 12:21:58 EDT 2024
Wed Nov 13 06:11:43 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1643-6f8541caf060ef5e4d75eaed8f4f428906d1d8fe92e61aaf2267f37b0aeead713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4837-8163
0000-0001-6104-6625
0000-0001-8097-1226
0000-0001-8385-2310
0000-0002-9146-4403
0009-0001-9603-4947
0000-0002-8768-4913
OpenAccessLink https://arxiv.org/pdf/2304.10266
PMID 39288047
PQID 3106459477
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_3106459477
crossref_primary_10_1109_TPAMI_2024_3462293
pubmed_primary_39288047
ieee_primary_10682066
PublicationCentury 2000
PublicationDate 20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241201
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0014503
Score 2.5121675
Snippet Enhancing the robustness of vision algorithms in real-world scenarios is challenging. One reason is that existing robustness benchmarks are limited, as they...
SourceID proquest
crossref
pubmed
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 11104
SubjectTerms 3D pose estimation
6D pose estimation
Benchmark testing
image classification
Meteorology
Noise
Out-of-distribution generalization
Pose estimation
Robustness
Shape
Three-dimensional displays
Title OOD-CV-v2 : An Extended Benchmark for Robustness to Out-of-Distribution Shifts of Individual Nuisances in Natural Images
URI https://ieeexplore.ieee.org/document/10682066
https://www.ncbi.nlm.nih.gov/pubmed/39288047
https://www.proquest.com/docview/3106459477
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6aHEp6aNo0TbcvVOitaGtbsmz3ts2DbCG7pU1KbkayR2QJsUNsh9Jf35FsL0sh0JsNsmxrvpG-0WhmAD4mAlNhVMhDnZKBEpWCp5lCXhZJbAtNjMKHi50t1OmF_HYZXw7B6j4WBhH94TOcukvvyy_ronNbZaThyqcf34KtJMv6YK21y0DGvgwyURhScbIjxgiZIPt8_n12NidbMJJTIVVEK9wOPCZiQNh1ZVU2FiRfYeVhsukXnZNdWIyf2581uZ52rZkWf_7J5Pjf__MMng70k816vDyHR1jtwe5Y2oENmr4HTzbyFL6A38vlET_8xe8j9oXNKnY87Jyzr9T66kbfXTPivuxHbbqmdXMna2u27FpeW37kMvMORbXYz6uVbRtWWzZfB4KxRbdqHPYatqrYQvtEIGx-QxNdsw8XJ8fnh6d8KNnAC7K7BFc2jWVYaBuoAG2Mskxi1FimVlrpfJqqDOkGswhVqLUl8pdYkZhAI0GaDOaXsF3VFb4CZjIdaVOENkUhDUFJk2VE3YhMCGtQT-DTKLf8ts_MkXuLJshyL_DcCTwfBD6BfTf-Gy37oZ_Ah1HWOSmW85boCuuuyYn3ukQ7MkkmcNCDYP30iJ3XD_T6Bnbcy_tjL29hu73r8B2Rl9a896D9C5s06O0
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BkGA8MBgDyqeReEMuSew4CW9lH2phbRF0aG-Rk5y1alqClgQh_nrOTlJVSJN4SyTHcny_s3_n890BvIsExiJTPvd1TAZKUAgeJwp5kUehyTUxChcuNl-o6Zn8fB6e98HqLhYGEd3lMxzbR-fLL6q8tUdlpOHKpR-_DXeIWMeqC9faOA1k6AohE4khJSdLYoiR8ZIPq6-T-YyswUCOhVQB7XG7cJeoAaHXFlbZ2pJcjZWb6abbdk72YDEMuLttcjlum2yc__knl-N__9FDeNATUDbpEPMIbmG5D3tDcQfW6_o-3N_KVPgYfi-XR_zwB_8VsI9sUrLj_uycfaLWF1f6-pIR-2XfqqytG7t6sqZiy7bhleFHNjdvX1aLfb9Ym6ZmlWGzTSgYW7Tr2qKvZuuSLbRLBcJmV7TU1QdwdnK8OpzyvmgDz8nyElyZOJR-ro2nPDQhyiIKUWMRG2mk9WqqwqcXTAJUvtaG6F9kRJR5GgnUZDI_gZ2yKvEZsCzRgc5y38QoZEZg0mQbUTciEcJkqEfwfpBb-rPLzZE6m8ZLUifw1Ao87QU-ggM7_1stu6kfwdtB1implvWX6BKrtk6J-dpUOzKKRvC0A8Hm6wE7z2_o9Q3cm67mp-npbPHlBezagXSXYF7CTnPd4iuiMk322gH4L-7I7Dg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OOD-CV-v2+%3A+An+Extended+Benchmark+for+Robustness+to+Out-of-Distribution+Shifts+of+Individual+Nuisances+in+Natural+Images&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Zhao%2C+Bingchen&rft.au=Wang%2C+Jiahao&rft.au=Ma%2C+Wufei&rft.au=Jesslen%2C+Artur&rft.date=2024-12-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=46&rft.issue=12&rft.spage=11104&rft.epage=11118&rft_id=info:doi/10.1109%2FTPAMI.2024.3462293&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2024_3462293
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon