Differentially private data release via statistical election to partition sequentially Statistical election to partition sequentially
Differential Privacy (DP) formalizes privacy in mathematical terms and provides a robust concept for privacy protection. DIfferentially Private Data Synthesis (DIPS) techniques produce and release synthetic individual-level data in the DP framework. One key challenge to develop DIPS methods is the p...
Saved in:
Published in | Metron (Rome) Vol. 79; no. 1; pp. 1 - 31 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Milan
Springer Milan
2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Differential Privacy (DP) formalizes privacy in mathematical terms and provides a robust concept for privacy protection. DIfferentially Private Data Synthesis (DIPS) techniques produce and release synthetic individual-level data in the DP framework. One key challenge to develop DIPS methods is the preservation of the statistical utility of synthetic data, especially in high-dimensional settings. We propose a new DIPS approach, STatistical Election to Partition Sequentially (STEPS) that partitions data by attributes according to their importance ranks according to either a practical or statistical importance measure. STEPS aims to achieve better original information preservation for the attributes with higher importance ranks and produce thus more useful synthetic data overall. We present an algorithm to implement the STEPS procedure and employ the privacy budget composability to ensure the overall privacy cost is controlled at the pre-specified value. We apply the STEPS procedure to both simulated data and the 2000–2012 Current Population Survey youth voter data. The results suggest STEPS can better preserve the population-level information and the original information for some analyses compared to PrivBayes, a modified Uniform histogram approach, and the flat Laplace sanitizer. |
---|---|
AbstractList | Differential Privacy (DP) formalizes privacy in mathematical terms and provides a robust concept for privacy protection. DIfferentially Private Data Synthesis (DIPS) techniques produce and release synthetic individual-level data in the DP framework. One key challenge to develop DIPS methods is the preservation of the statistical utility of synthetic data, especially in high-dimensional settings. We propose a new DIPS approach, STatistical Election to Partition Sequentially (STEPS) that partitions data by attributes according to their importance ranks according to either a practical or statistical importance measure. STEPS aims to achieve better original information preservation for the attributes with higher importance ranks and produce thus more useful synthetic data overall. We present an algorithm to implement the STEPS procedure and employ the privacy budget composability to ensure the overall privacy cost is controlled at the pre-specified value. We apply the STEPS procedure to both simulated data and the 2000–2012 Current Population Survey youth voter data. The results suggest STEPS can better preserve the population-level information and the original information for some analyses compared to PrivBayes, a modified Uniform histogram approach, and the flat Laplace sanitizer. |
Author | Bowen, Claire McKay Su, Bingyue Liu, Fang |
Author_xml | – sequence: 1 givenname: Claire McKay orcidid: 0000-0002-1020-3181 surname: Bowen fullname: Bowen, Claire McKay email: cbowen@urban.org organization: Technology and Data Science, Urban Institute – sequence: 2 givenname: Fang orcidid: 0000-0003-3028-5927 surname: Liu fullname: Liu, Fang organization: Applied and Computational Mathematics and Statistics, University of Notre Dame – sequence: 3 givenname: Bingyue surname: Su fullname: Su, Bingyue organization: Applied and Computational Mathematics and Statistics, University of Notre Dame |
BookMark | eNp9UE1PwzAMjdCQGGN_gFMkzgXH6Ud6RONTmsQFELfIbROUqbQjySbt3xM2EDd8sGX7vWf5nbLJMA6GsXMBlwKgugo5SIAMUGQACCkfsSmiEllZF28TNk3TMhM55idsHsIKUigs6rycstcbZ63xZoiO-n7H195tKRreUSTuTW8oGL51xEOk6EJ0LfU8jdvoxoHHka_JR7dvgvnc_OqcsWNLfTDznzpjL3e3z4uHbPl0_7i4XmatKHPIsG66zpZS5UXbdJY6mRPVFarakjCVFSJtSxStkaqmtuuwkQ2CbU2JRmAlZ-zioLv2Y7oeol6NGz-kkxoLUAKVVCKh8IBq_RiCN1anNz_I77QA_W2hPliok4V6b6GGRJIHUkjg4d34P-l_WF_S63dC |
CitedBy_id | crossref_primary_10_1214_24_STS927 crossref_primary_10_2139_ssrn_4569904 crossref_primary_10_1080_01621459_2023_2270795 crossref_primary_10_1186_s12874_023_01927_3 crossref_primary_10_1002_wics_1636 |
Cites_doi | 10.1145/3134428 10.1198/000313006X124640 10.1007/978-3-540-79228-4_1 10.5281/zenodo.345385 10.1007/978-3-319-57454-7_48 10.1111/rssa.12358 10.1145/1559845.1559850 10.29012/jpc.748 10.1109/ICDE.2013.6544872 10.14778/1920841.1920970 10.29012/jpc.v1i1.568 10.1109/TKDE.2018.2845388 10.1109/ICDE.2008.4497436 10.1007/11681878_14 10.1111/ajps.12177 10.1007/978-3-642-15838-4_15 10.1145/3085504.3091117 10.1198/jasa.2009.tm08651 10.1136/amiajnl-2012-001032 10.1007/978-3-642-15546-8_11 10.1145/1989323.1989347 10.1111/j.1751-5823.2009.00083.x 10.1145/2882903.2882931 10.1214/19-STS742 10.14778/2732269.2732271 10.1137/1.9781611975994.32 10.1007/978-1-4614-0326-5 10.1109/ICDE.2012.135 10.14778/2556549.2556576 |
ContentType | Journal Article |
Copyright | Sapienza Università di Roma 2021 Sapienza Università di Roma 2021. |
Copyright_xml | – notice: Sapienza Università di Roma 2021 – notice: Sapienza Università di Roma 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s40300-021-00201-0 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 2281-695X |
EndPage | 31 |
ExternalDocumentID | 10_1007_s40300_021_00201_0 |
GrantInformation_xml | – fundername: National Science Foundation grantid: 1717417 funderid: http://dx.doi.org/10.13039/100000001 – fundername: National Science Foundation grantid: DGE-1313583; 1546373 funderid: http://dx.doi.org/10.13039/100000001 |
GroupedDBID | -EM 06D 0R~ 199 203 2KM 30V 4.4 406 96X AAAVM AABCJ AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZMS ABDZT ABECU ABFGW ABFTV ABJNI ABJOX ABKAS ABKCH ABMNI ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABXPI ACBMV ACBRV ACBYP ACCUX ACGFS ACHSB ACIGE ACIPQ ACIWK ACKNC ACMLO ACOKC ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEOHA AEPYU AESKC AESTI AETCA AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKLTO AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVWKF AXYYD AYJHY BAPOH BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9G O9J PT4 RIG RLLFE RSV SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 ZMTXR AACDK AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION LPU ROL SJYHP |
ID | FETCH-LOGICAL-c1640-29bddf63845cbdfad34aa97289fa1e7f11df6621ce389acdd2b3b20fce62e1273 |
IEDL.DBID | AGYKE |
ISSN | 0026-1424 |
IngestDate | Thu Oct 10 16:10:31 EDT 2024 Thu Sep 12 22:18:40 EDT 2024 Sat Dec 16 12:10:18 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Universal histogram Propensity score DIfferentially Private Data Synthesis (DIPS) Privacy budget General utility |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1640-29bddf63845cbdfad34aa97289fa1e7f11df6621ce389acdd2b3b20fce62e1273 |
ORCID | 0000-0002-1020-3181 0000-0003-3028-5927 |
PQID | 2508128381 |
PQPubID | 2043664 |
PageCount | 31 |
ParticipantIDs | proquest_journals_2508128381 crossref_primary_10_1007_s40300_021_00201_0 springer_journals_10_1007_s40300_021_00201_0 |
PublicationCentury | 2000 |
PublicationDate | 4-2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 4-2021 |
PublicationDecade | 2020 |
PublicationPlace | Milan |
PublicationPlace_xml | – name: Milan – name: Heidelberg |
PublicationTitle | Metron (Rome) |
PublicationTitleAbbrev | METRON |
PublicationYear | 2021 |
Publisher | Springer Milan Springer Nature B.V |
Publisher_xml | – name: Springer Milan – name: Springer Nature B.V |
References | Flamisch, S.: Voter turnout surging among people with disabilitie (2019). https://www.newswise.com/articles/voter-turnout-surging-among-people-with-disabilities QardajiWYangWLiNUnderstanding hierarchical methods for differentially private histogramsProc. VLDB Endow.20136141954196510.14778/2556549.2556576 RaghunathanTEReiterJPRubinDBMultiple imputation for statistical disclosure limitationJ. Off. Stat.2003191116 KarrAFKohnenCNOganianAReiterJPSanilAPA framework for evaluating the utility of data altered to protect confidentialityAm. Stat.2006603224232224675510.1198/000313006X124640 Dwork, C., Rothblum, G.N.: Concentrated differential privacy (2016). arXiv:1603.01887 LiuFGeneralized gaussian mechanism for differential privacyIEEE Trans. Knowl. Data Eng.201931474775610.1109/TKDE.2018.2845388 LiKHMengXLRaghunathanTERubinDBSignificance levels from repeated p-values with multiply-imputed dataStat. Sin.19911659211013160823.62009 SnokeJRaabGMNowokBDibbenCSlavkovicAGeneral and specific utility measures for synthetic dataJ. R. Stat. Soc. Ser. A (Stat. Soc.)20181813663688380750310.1111/rssa.12358 Cummings, R., Durfee, D.: Individual sensitivity preprocessing for data privacy. In: Proceedings of the Fourteen Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 528–547. Society for Industrial and Applied Mathematics (2020) Li, H., Xiong, L., Ji, Z., Jiang, X.: Partitioning-based mechanisms under personalized differential privacy. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 615–627. Springer (2017) WassermanLZhouSA statistical framework for differential privacyJ. Am. Stat. Assoc.2010105489375389265605710.1198/jasa.2009.tm08651 RosenstoneSJHansenJMobilization, Participation, and Democracy in America1993New YorkMacmillan Publishing Company XiaoYXiongLYuanCDifferentially private data release through multidimensional partitioningSecure Data Manag.2010635815016810.1007/978-3-642-15546-8_11 Li, H., Xiong, L., Jiang, X.: Differentially private synthesization of multi-dimensional data using copula functions. In: Proceedings of 17th International Conference on Extending Database Technology (EDBT), pp. 475–486 (2014) Zhang, J., Cormode, G., Procopiuc, C.M., Srivastava, D., Xiao, X.: Privbayes: Private data release via bayesian networks. ACM Transactions on Database Systems (TODS)—Invited Paper from SIGMOD 2016 24 (2017) RubinDBDiscussion statistical disclosure limitationJ. Off. Stat.199392461 Abrams, A.: Voter turnout surged among people with disabilities last year. Activists want to make sure that continues in 2020 (2019). https://time.com/5622652/disability-voter-turnout-2020 Hay, M., Machanavajjhala, A., Miklau, G., Chen, Y., Zhang, D.: Principled evaluation of differentially private algorithms using dpbench. In: Proceedings of the 2016 International Conference on Management of Data, pp. 139–154. ACM (2016) Qardaji, W., Yang, W., Li, N.: Differentially private grids for geospatial data. In: Proceedings of 2013 IEEE 29th International Conference on Data Engineering (ICDE), pp. 757–768 (2013) MalchowHPredicting turnout in a presidential electionCampaigns Elections20042583841 Eugenio, E.C., Liu, F.: Cipher: construction of differentially private microdata from low-dimensional histograms via solving linear equations with Tikhonov regularization (2018). arXiv:1812.05671 Xiao, Y., Gardner, J., Xiong, L.: Dpcube: releasing differentially private data cubes for health information. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1305–1308. IEEE (2012) Abowd, J.M., Schmutte, I.M.: Revisiting the economics of privacy: population statistics and confidentiality protection as public goods (2015). https://doi.org/10.5281/zenodo.345385 Sakshaug, J.W., Raghunathan, T.E.: Synthetic data for small area estimation. In: International Conference on Privacy in Statistical Databases, pp. 162–173. Springer (2010) Bowen, C.M., Snoke, J.: Comparative study of differentially private synthetic data algorithms from the NI PSCR differential privacy synthetic data challenge. J Priv. Confid. 11(1), (2021). https://doi.org/10.29012/jpc.748 Hardt, M., Ligett, K., McSherry, F.: A simple and practical algorithm for differentially private data release. In: Advances in Neural Information Processing Systems, pp. 2339–2347 (2012) BowenCMLiuFComparative study of differentially private data synthesis methodsStat. Sci.2020352280307410660610.1214/19-STS742 Liu, F., Little, R.: Smike vs. data swapping and pram for statistical disclosure limitation in microdata: a simulation study. In: Proceedings of 2003 American Statistical Association Joint Statistical Meeting (2003) WolfingerRERosenstoneSJRosenstoneSJWho Votes?1980LondonYale University Press Hill, C., Grumbach, J.: An excitingly simple solution to youth turnout, for the primaries and beyond (2019). https://www.nytimes.com/2019/06/26/opinion/graphics-an-excitingly-simple-solution-to-youth-turnout-for-the-primaries-and-beyond.html Ping, H., Stoyanovich, J., Howe, B.: Datasynthesizer: privacy-preserving synthetic datasets. In: SSDBM ’17: Proceedings of the 29th International Conference on Scientific and Statistical Database Management June 2017, vol. 42, pp. 1–5 (2017) ReiterJPUsing multiple imputation to integrate and disseminate confidential microdataInt. Stat. Rev.200977217919510.1111/j.1751-5823.2009.00083.x DrechslerJSynthetic Datasets for Statistical Disclosure Control2011New YorkSpringer10.1007/978-1-4614-0326-5 Ding, B., Winslett, M., Han, J., Li, Z.: Differentially private data cubes: optimizing noise sources and consistency. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD 2011), ACM SIGMOD, pp. 217–228 (2011) HolbeinJBHillygusDSMaking young voters: the impact of preregistration on youth turnoutAm. J. Polit. Sci.201660236438210.1111/ajps.12177 Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J., Vilhuber, L.: Privacy: theory meets practice on the map. In: IEEE ICDE IEEE 24th International Conference, pp. 277–286 (2008) DworkCRothAThe algorithmic foundations of differential privacyTheor. Comput. Sci.201393–421140732540201302.68109 Li, C., Hay, M., Miklau, G., Wang, Y.: A data- and workload-aware algorithm for range queries under differential privacy. In: Proceedings of International Conference on Very Large Data Bases (PVLDB), vol. 7, pp. 341–352 (2014) LittleRLiuFRaghunathanTGelmanAMengXLStatistical disclosure techniques based on multiple imputationApplied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives An essential journey with Donald Rubin’s statistical family2004New YorkWileyp Chapter II.13 ReiterJPInference for partially synthetic, public use microdata setsSurv. Methodol.2003292181188 McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th Annual IEEE Symposium on Foundations of Computer Science, 2007. FOCS’07. IEEE, pp. 94–103 (2007) Liu, F.: Model-based differentially private data synthesis (2016). arXiv:1606.08052 Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Theory of Cryptography, pp. 265–284. Springer (2006) HayMRastogiVMiklauGSuciuDBoosting the accuracy of differentially private histograms through consistencyProc. VLDB Endow.201031–21021103210.14778/1920841.1920970 Kifer, D., Messing, S., Roth, A., Thakurta, A., Zhang, D.: Guidelines for implementing and auditing differentially private systems (2020). arXiv:2002.04049 Ping, H.: Datasynthesizer (2018). https://github.com/DataResponsibly/DataSynthesizer (accessed online 14 March 2020) GardnerJXiongLXiaoYGaoJPostARJiangXOhno-MachadoLShare: system design and case studies for statistical health information releaseJ. Am. Med. Inform. Assoc.201320110911610.1136/amiajnl-2012-001032 Ping, H., Stoyanovich, J.: Datasynthesizer: privacy-preserving synthetic datasets. In: Proceedings of the 29th International Conference on Scientific and Statistical Database Management (2017) McDonaldMPThornburgMRegistering the youth through voter preregistrationNYUJ Legis Pub Pol’y201013551 Eversley, M.: Black women voters will be central to the 2020 presidential election, experts predict (2019). https://fortune.com/2019/06/20/black-women-voters-2020-election CampbellAConversePEMillerWEStokesDEThe American Voter1980ChicagoUniversity of Chicago Press LittleRStatistical analysis of masked dataJ. Off. Stat.19939407 Woo, M.J., Reiter, J.P., Oganian, A., Karr, A.F.: Global measures of data utility for microdata masked for disclosure limitation. J. Priv. Confid. 1(1) (2009) McSherry, F.: Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of data, pp. 19–30. ACM (2009) Dwork, C.: Differential privacy: a survey of results. In: TAMC 2008, LNCS 4978, pp. 1–19. Springer, Berlin (2008) 201_CR37 201_CR36 CM Bowen (201_CR3) 2020; 35 201_CR30 201_CR33 201_CR32 R Little (201_CR28) 1993; 9 J Gardner (201_CR16) 2013; 20 201_CR9 201_CR7 201_CR48 201_CR6 201_CR41 201_CR4 201_CR1 201_CR2 KH Li (201_CR27) 1991; 1 201_CR40 Y Xiao (201_CR53) 2010; 6358 TE Raghunathan (201_CR43) 2003; 19 L Wasserman (201_CR50) 2010; 105 RE Wolfinger (201_CR51) 1980 R Little (201_CR29) 2004 F Liu (201_CR31) 2019; 31 MP McDonald (201_CR35) 2010; 13 JP Reiter (201_CR44) 2003; 29 201_CR39 201_CR38 201_CR13 201_CR12 201_CR15 JP Reiter (201_CR45) 2009; 77 201_CR14 201_CR52 201_CR11 201_CR55 201_CR54 A Campbell (201_CR5) 1980 SJ Rosenstone (201_CR46) 1993 M Hay (201_CR18) 2010; 3 JB Holbein (201_CR21) 2016; 60 W Qardaji (201_CR42) 2013; 6 201_CR24 201_CR23 201_CR26 201_CR25 201_CR20 C Dwork (201_CR10) 2013; 9 J Drechsler (201_CR8) 2011 DB Rubin (201_CR47) 1993; 9 AF Karr (201_CR22) 2006; 60 H Malchow (201_CR34) 2004; 25 201_CR17 J Snoke (201_CR49) 2018; 181 201_CR19 |
References_xml | – ident: 201_CR55 doi: 10.1145/3134428 – volume: 60 start-page: 224 issue: 3 year: 2006 ident: 201_CR22 publication-title: Am. Stat. doi: 10.1198/000313006X124640 contributor: fullname: AF Karr – ident: 201_CR25 – volume: 9 start-page: 211 issue: 3–4 year: 2013 ident: 201_CR10 publication-title: Theor. Comput. Sci. contributor: fullname: C Dwork – ident: 201_CR9 doi: 10.1007/978-3-540-79228-4_1 – ident: 201_CR1 doi: 10.5281/zenodo.345385 – ident: 201_CR26 doi: 10.1007/978-3-319-57454-7_48 – volume: 181 start-page: 663 issue: 3 year: 2018 ident: 201_CR49 publication-title: J. R. Stat. Soc. Ser. A (Stat. Soc.) doi: 10.1111/rssa.12358 contributor: fullname: J Snoke – ident: 201_CR36 doi: 10.1145/1559845.1559850 – volume: 1 start-page: 65 year: 1991 ident: 201_CR27 publication-title: Stat. Sin. contributor: fullname: KH Li – ident: 201_CR4 doi: 10.29012/jpc.748 – volume: 19 start-page: 1 issue: 1 year: 2003 ident: 201_CR43 publication-title: J. Off. Stat. contributor: fullname: TE Raghunathan – ident: 201_CR41 doi: 10.1109/ICDE.2013.6544872 – volume-title: Mobilization, Participation, and Democracy in America year: 1993 ident: 201_CR46 contributor: fullname: SJ Rosenstone – volume: 3 start-page: 1021 issue: 1–2 year: 2010 ident: 201_CR18 publication-title: Proc. VLDB Endow. doi: 10.14778/1920841.1920970 contributor: fullname: M Hay – ident: 201_CR52 doi: 10.29012/jpc.v1i1.568 – ident: 201_CR11 – volume: 31 start-page: 747 issue: 4 year: 2019 ident: 201_CR31 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2845388 contributor: fullname: F Liu – ident: 201_CR32 – volume: 9 start-page: 407 year: 1993 ident: 201_CR28 publication-title: J. Off. Stat. contributor: fullname: R Little – ident: 201_CR33 doi: 10.1109/ICDE.2008.4497436 – ident: 201_CR15 – volume: 9 start-page: 461 issue: 2 year: 1993 ident: 201_CR47 publication-title: J. Off. Stat. contributor: fullname: DB Rubin – ident: 201_CR12 doi: 10.1007/11681878_14 – volume: 60 start-page: 364 issue: 2 year: 2016 ident: 201_CR21 publication-title: Am. J. Polit. Sci. doi: 10.1111/ajps.12177 contributor: fullname: JB Holbein – ident: 201_CR48 doi: 10.1007/978-3-642-15838-4_15 – ident: 201_CR38 doi: 10.1145/3085504.3091117 – ident: 201_CR39 doi: 10.1145/3085504.3091117 – volume: 105 start-page: 375 issue: 489 year: 2010 ident: 201_CR50 publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2009.tm08651 contributor: fullname: L Wasserman – volume-title: The American Voter year: 1980 ident: 201_CR5 contributor: fullname: A Campbell – volume: 20 start-page: 109 issue: 1 year: 2013 ident: 201_CR16 publication-title: J. Am. Med. Inform. Assoc. doi: 10.1136/amiajnl-2012-001032 contributor: fullname: J Gardner – volume: 6358 start-page: 150 year: 2010 ident: 201_CR53 publication-title: Secure Data Manag. doi: 10.1007/978-3-642-15546-8_11 contributor: fullname: Y Xiao – ident: 201_CR7 doi: 10.1145/1989323.1989347 – ident: 201_CR14 – volume: 77 start-page: 179 issue: 2 year: 2009 ident: 201_CR45 publication-title: Int. Stat. Rev. doi: 10.1111/j.1751-5823.2009.00083.x contributor: fullname: JP Reiter – ident: 201_CR19 doi: 10.1145/2882903.2882931 – ident: 201_CR37 – ident: 201_CR23 – ident: 201_CR40 doi: 10.1145/3085504.3091117 – volume: 25 start-page: 38 issue: 8 year: 2004 ident: 201_CR34 publication-title: Campaigns Elections contributor: fullname: H Malchow – volume-title: Who Votes? year: 1980 ident: 201_CR51 contributor: fullname: RE Wolfinger – volume: 35 start-page: 280 issue: 2 year: 2020 ident: 201_CR3 publication-title: Stat. Sci. doi: 10.1214/19-STS742 contributor: fullname: CM Bowen – ident: 201_CR30 – volume: 29 start-page: 181 issue: 2 year: 2003 ident: 201_CR44 publication-title: Surv. Methodol. contributor: fullname: JP Reiter – ident: 201_CR24 doi: 10.14778/2732269.2732271 – ident: 201_CR6 doi: 10.1137/1.9781611975994.32 – ident: 201_CR13 – ident: 201_CR17 – volume-title: Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives An essential journey with Donald Rubin’s statistical family year: 2004 ident: 201_CR29 contributor: fullname: R Little – ident: 201_CR2 – volume-title: Synthetic Datasets for Statistical Disclosure Control year: 2011 ident: 201_CR8 doi: 10.1007/978-1-4614-0326-5 contributor: fullname: J Drechsler – volume: 13 start-page: 551 year: 2010 ident: 201_CR35 publication-title: NYUJ Legis Pub Pol’y contributor: fullname: MP McDonald – ident: 201_CR54 doi: 10.1109/ICDE.2012.135 – ident: 201_CR20 – volume: 6 start-page: 1954 issue: 14 year: 2013 ident: 201_CR42 publication-title: Proc. VLDB Endow. doi: 10.14778/2556549.2556576 contributor: fullname: W Qardaji |
SSID | ssj0000825946 |
Score | 2.2204123 |
Snippet | Differential Privacy (DP) formalizes privacy in mathematical terms and provides a robust concept for privacy protection. DIfferentially Private Data Synthesis... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Elections Histograms Mathematics and Statistics Partitions Privacy Robustness (mathematics) Statistical Theory and Methods Statistics |
Subtitle | Statistical election to partition sequentially |
Title | Differentially private data release via statistical election to partition sequentially |
URI | https://link.springer.com/article/10.1007/s40300-021-00201-0 https://www.proquest.com/docview/2508128381 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oXLj4NqJI9uBNl3RLH_QIKhKNnMDgqdlXEyMBIoVEf72z25bG18GkadJsO03n0f2mnW8H4IJxvy0woKnQpoUZCwLa8WREeScJIxaFXLqGO_w4DAZj737iT0oety12L_5I2hf1huvmoTs61FQUGIiD-22o5sTTavfu-aH8tGKyniij6GCGQQ2XK6fL_C7o65RU4sxvv0btjNPfhVHB28kKTV5bq1S05MfPZRz_8zB7sJMjUNLNXGYftvTsAGoGdGZrNh_C003eNQWjfzp9Jyh7jZCUmGpSYpqs4MxH1i-cLIuLUJ7tp4NGJumcLIw_2oOsUjuTcwTj_u3oekDz_gtUYhLlUDcSSiUYoJ4vhUq4anucRyGmaAlnOkwYw9HAZVIj6uFSKVe0heskUgeuZoiLjqEym8_0CRBfMR6JUHhKIuBBWCHank6kCrjCuzhhHS4LE8SLbJmNeLOgslVWjMqKrbJipw6NwkpxHnLLGLEcgpUOIpA6XBVaL4f_lnb6v9PPoOZaw5mtAZX0baXPEZikoomO2O_1hs3cIT8Bzx3a3w |
link.rule.ids | 315,783,787,27936,27937,41093,42162,52123 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT8JAFH5ROMjF3YiizsGblnSmGz0SFVGWExg8NbM1MRIgUkj01_umi0SiB5KmSTPta_uWzvc6bwG4ptxzBBq0JbRpYUZ932q4MrR4Iw5CGgZcMpM73Ov77aH7PPJGeVLYvIh2L5Yk0y_1T7Kbi_poWyakwGAc3G9D2WXUZyUoNx9fO6t_K8btCbMcHXQxLJPMlefL_E3o95y0Appra6PplNPag2HxsFmkyXt9kYi6_Fqr47jp2-zDbo5BSTNTmgPY0pNDqBjYmVVtPoKX-7xvCtr_ePxJkPYSQSkx8aTEtFnBuY8s3ziZFxchvbSjDoqZJFMyMxqZHmSx2hmdYxi2HgZ3bSvvwGBJdKNsi4VCqRhN1PWkUDFXjst5GKCTFnOqg5hSHPUZlRpxD5dKMeEIZsdS-0xTREYnUJpMJ_oUiKcoD0UgXCUR8iCwEI6rY6l8rvAudlCFm0IG0SwrtBH9lFROmRUhs6KUWZFdhVohpig3unmEaA7hSgMxSBVuC66vhv-ndrbZ6Vew0x70ulH3qd85hwpLhWi2GpSSj4W-QJiSiMtcK78B22rdNw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60gvTiW6xW3YM3TZvNszkWa61Wiwcr9RT2FRBLWmxa0F_vbB6tFj2IEAJhk9lkZzb7TTLfDMAZZa7NcUIbXOkSZtTzjIYjAoM1Ij-ggc-EpbnD9z2v03duB-7gC4s_jXYvfklmnAadpSlO6mMZ1efENwdt0zR0eIHGO7hfhTVHZ0YqwVrz-rm7-M6iXaAg4-ugu2FoYlfOnflZ0Pf1aQE6l_6TpstPexNYceNZ1MlrbZrwmvhYyun4nyfbgo0cm5JmZkzbsKLiHShrOJplc96Fp1ZeTwXfC8PhO8F-ZghWiY4zJbr8Cq6JZPbCyKS4COWllXZQ_SQZkbG21PQgi-HO5OxBv331eNkx8soMhkD3yjSsgEsZ4dR1XMFlxKTtMBb46LxFjCo_ohRbPYsKhXiICSktbnPLjITyLEURMe1DKR7F6gCIKykLuM8dKRAKIeDgtqMiIT0msRfTr8B5oY9wnCXgCOepltPBCnGwwnSwQrMC1UJlYT4ZJyGiPIQxDcQmFbgoNLBo_l3a4d9OP4X1h1Y7vLvpdY-gbKU61FsVSsnbVB0jekn4SW6gn7A05hs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differentially+private+data+release+via+statistical+election+to+partition+sequentially&rft.jtitle=Metron+%28Rome%29&rft.au=Bowen%2C+Claire+McKay&rft.au=Liu%2C+Fang&rft.au=Su+Bingyue&rft.date=2021-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0026-1424&rft.eissn=2281-695X&rft.volume=79&rft.issue=1&rft.spage=1&rft.epage=31&rft_id=info:doi/10.1007%2Fs40300-021-00201-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-1424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-1424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-1424&client=summon |