Differentially private data release via statistical election to partition sequentially Statistical election to partition sequentially

Differential Privacy (DP) formalizes privacy in mathematical terms and provides a robust concept for privacy protection. DIfferentially Private Data Synthesis (DIPS) techniques produce and release synthetic individual-level data in the DP framework. One key challenge to develop DIPS methods is the p...

Full description

Saved in:
Bibliographic Details
Published inMetron (Rome) Vol. 79; no. 1; pp. 1 - 31
Main Authors Bowen, Claire McKay, Liu, Fang, Su, Bingyue
Format Journal Article
LanguageEnglish
Published Milan Springer Milan 2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Differential Privacy (DP) formalizes privacy in mathematical terms and provides a robust concept for privacy protection. DIfferentially Private Data Synthesis (DIPS) techniques produce and release synthetic individual-level data in the DP framework. One key challenge to develop DIPS methods is the preservation of the statistical utility of synthetic data, especially in high-dimensional settings. We propose a new DIPS approach, STatistical Election to Partition Sequentially (STEPS) that partitions data by attributes according to their importance ranks according to either a practical or statistical importance measure. STEPS aims to achieve better original information preservation for the attributes with higher importance ranks and produce thus more useful synthetic data overall. We present an algorithm to implement the STEPS procedure and employ the privacy budget composability to ensure the overall privacy cost is controlled at the pre-specified value. We apply the STEPS procedure to both simulated data and the 2000–2012 Current Population Survey youth voter data. The results suggest STEPS can better preserve the population-level information and the original information for some analyses compared to PrivBayes, a modified Uniform histogram approach, and the flat Laplace sanitizer.
AbstractList Differential Privacy (DP) formalizes privacy in mathematical terms and provides a robust concept for privacy protection. DIfferentially Private Data Synthesis (DIPS) techniques produce and release synthetic individual-level data in the DP framework. One key challenge to develop DIPS methods is the preservation of the statistical utility of synthetic data, especially in high-dimensional settings. We propose a new DIPS approach, STatistical Election to Partition Sequentially (STEPS) that partitions data by attributes according to their importance ranks according to either a practical or statistical importance measure. STEPS aims to achieve better original information preservation for the attributes with higher importance ranks and produce thus more useful synthetic data overall. We present an algorithm to implement the STEPS procedure and employ the privacy budget composability to ensure the overall privacy cost is controlled at the pre-specified value. We apply the STEPS procedure to both simulated data and the 2000–2012 Current Population Survey youth voter data. The results suggest STEPS can better preserve the population-level information and the original information for some analyses compared to PrivBayes, a modified Uniform histogram approach, and the flat Laplace sanitizer.
Author Bowen, Claire McKay
Su, Bingyue
Liu, Fang
Author_xml – sequence: 1
  givenname: Claire McKay
  orcidid: 0000-0002-1020-3181
  surname: Bowen
  fullname: Bowen, Claire McKay
  email: cbowen@urban.org
  organization: Technology and Data Science, Urban Institute
– sequence: 2
  givenname: Fang
  orcidid: 0000-0003-3028-5927
  surname: Liu
  fullname: Liu, Fang
  organization: Applied and Computational Mathematics and Statistics, University of Notre Dame
– sequence: 3
  givenname: Bingyue
  surname: Su
  fullname: Su, Bingyue
  organization: Applied and Computational Mathematics and Statistics, University of Notre Dame
BookMark eNp9UE1PwzAMjdCQGGN_gFMkzgXH6Ud6RONTmsQFELfIbROUqbQjySbt3xM2EDd8sGX7vWf5nbLJMA6GsXMBlwKgugo5SIAMUGQACCkfsSmiEllZF28TNk3TMhM55idsHsIKUigs6rycstcbZ63xZoiO-n7H195tKRreUSTuTW8oGL51xEOk6EJ0LfU8jdvoxoHHka_JR7dvgvnc_OqcsWNLfTDznzpjL3e3z4uHbPl0_7i4XmatKHPIsG66zpZS5UXbdJY6mRPVFarakjCVFSJtSxStkaqmtuuwkQ2CbU2JRmAlZ-zioLv2Y7oeol6NGz-kkxoLUAKVVCKh8IBq_RiCN1anNz_I77QA_W2hPliok4V6b6GGRJIHUkjg4d34P-l_WF_S63dC
CitedBy_id crossref_primary_10_1214_24_STS927
crossref_primary_10_2139_ssrn_4569904
crossref_primary_10_1080_01621459_2023_2270795
crossref_primary_10_1186_s12874_023_01927_3
crossref_primary_10_1002_wics_1636
Cites_doi 10.1145/3134428
10.1198/000313006X124640
10.1007/978-3-540-79228-4_1
10.5281/zenodo.345385
10.1007/978-3-319-57454-7_48
10.1111/rssa.12358
10.1145/1559845.1559850
10.29012/jpc.748
10.1109/ICDE.2013.6544872
10.14778/1920841.1920970
10.29012/jpc.v1i1.568
10.1109/TKDE.2018.2845388
10.1109/ICDE.2008.4497436
10.1007/11681878_14
10.1111/ajps.12177
10.1007/978-3-642-15838-4_15
10.1145/3085504.3091117
10.1198/jasa.2009.tm08651
10.1136/amiajnl-2012-001032
10.1007/978-3-642-15546-8_11
10.1145/1989323.1989347
10.1111/j.1751-5823.2009.00083.x
10.1145/2882903.2882931
10.1214/19-STS742
10.14778/2732269.2732271
10.1137/1.9781611975994.32
10.1007/978-1-4614-0326-5
10.1109/ICDE.2012.135
10.14778/2556549.2556576
ContentType Journal Article
Copyright Sapienza Università di Roma 2021
Sapienza Università di Roma 2021.
Copyright_xml – notice: Sapienza Università di Roma 2021
– notice: Sapienza Università di Roma 2021.
DBID AAYXX
CITATION
DOI 10.1007/s40300-021-00201-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 2281-695X
EndPage 31
ExternalDocumentID 10_1007_s40300_021_00201_0
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1717417
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: National Science Foundation
  grantid: DGE-1313583; 1546373
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID -EM
06D
0R~
199
203
2KM
30V
4.4
406
96X
AAAVM
AABCJ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZMS
ABDZT
ABECU
ABFGW
ABFTV
ABJNI
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACBMV
ACBRV
ACBYP
ACCUX
ACGFS
ACHSB
ACIGE
ACIPQ
ACIWK
ACKNC
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEOHA
AEPYU
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKLTO
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
BAPOH
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
PT4
RIG
RLLFE
RSV
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
ZMTXR
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
LPU
ROL
SJYHP
ID FETCH-LOGICAL-c1640-29bddf63845cbdfad34aa97289fa1e7f11df6621ce389acdd2b3b20fce62e1273
IEDL.DBID AGYKE
ISSN 0026-1424
IngestDate Thu Oct 10 16:10:31 EDT 2024
Thu Sep 12 22:18:40 EDT 2024
Sat Dec 16 12:10:18 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Universal histogram
Propensity score
DIfferentially Private Data Synthesis (DIPS)
Privacy budget
General utility
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1640-29bddf63845cbdfad34aa97289fa1e7f11df6621ce389acdd2b3b20fce62e1273
ORCID 0000-0002-1020-3181
0000-0003-3028-5927
PQID 2508128381
PQPubID 2043664
PageCount 31
ParticipantIDs proquest_journals_2508128381
crossref_primary_10_1007_s40300_021_00201_0
springer_journals_10_1007_s40300_021_00201_0
PublicationCentury 2000
PublicationDate 4-2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 4-2021
PublicationDecade 2020
PublicationPlace Milan
PublicationPlace_xml – name: Milan
– name: Heidelberg
PublicationTitle Metron (Rome)
PublicationTitleAbbrev METRON
PublicationYear 2021
Publisher Springer Milan
Springer Nature B.V
Publisher_xml – name: Springer Milan
– name: Springer Nature B.V
References Flamisch, S.: Voter turnout surging among people with disabilitie (2019). https://www.newswise.com/articles/voter-turnout-surging-among-people-with-disabilities
QardajiWYangWLiNUnderstanding hierarchical methods for differentially private histogramsProc. VLDB Endow.20136141954196510.14778/2556549.2556576
RaghunathanTEReiterJPRubinDBMultiple imputation for statistical disclosure limitationJ. Off. Stat.2003191116
KarrAFKohnenCNOganianAReiterJPSanilAPA framework for evaluating the utility of data altered to protect confidentialityAm. Stat.2006603224232224675510.1198/000313006X124640
Dwork, C., Rothblum, G.N.: Concentrated differential privacy (2016). arXiv:1603.01887
LiuFGeneralized gaussian mechanism for differential privacyIEEE Trans. Knowl. Data Eng.201931474775610.1109/TKDE.2018.2845388
LiKHMengXLRaghunathanTERubinDBSignificance levels from repeated p-values with multiply-imputed dataStat. Sin.19911659211013160823.62009
SnokeJRaabGMNowokBDibbenCSlavkovicAGeneral and specific utility measures for synthetic dataJ. R. Stat. Soc. Ser. A (Stat. Soc.)20181813663688380750310.1111/rssa.12358
Cummings, R., Durfee, D.: Individual sensitivity preprocessing for data privacy. In: Proceedings of the Fourteen Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 528–547. Society for Industrial and Applied Mathematics (2020)
Li, H., Xiong, L., Ji, Z., Jiang, X.: Partitioning-based mechanisms under personalized differential privacy. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 615–627. Springer (2017)
WassermanLZhouSA statistical framework for differential privacyJ. Am. Stat. Assoc.2010105489375389265605710.1198/jasa.2009.tm08651
RosenstoneSJHansenJMobilization, Participation, and Democracy in America1993New YorkMacmillan Publishing Company
XiaoYXiongLYuanCDifferentially private data release through multidimensional partitioningSecure Data Manag.2010635815016810.1007/978-3-642-15546-8_11
Li, H., Xiong, L., Jiang, X.: Differentially private synthesization of multi-dimensional data using copula functions. In: Proceedings of 17th International Conference on Extending Database Technology (EDBT), pp. 475–486 (2014)
Zhang, J., Cormode, G., Procopiuc, C.M., Srivastava, D., Xiao, X.: Privbayes: Private data release via bayesian networks. ACM Transactions on Database Systems (TODS)—Invited Paper from SIGMOD 2016 24 (2017)
RubinDBDiscussion statistical disclosure limitationJ. Off. Stat.199392461
Abrams, A.: Voter turnout surged among people with disabilities last year. Activists want to make sure that continues in 2020 (2019). https://time.com/5622652/disability-voter-turnout-2020
Hay, M., Machanavajjhala, A., Miklau, G., Chen, Y., Zhang, D.: Principled evaluation of differentially private algorithms using dpbench. In: Proceedings of the 2016 International Conference on Management of Data, pp. 139–154. ACM (2016)
Qardaji, W., Yang, W., Li, N.: Differentially private grids for geospatial data. In: Proceedings of 2013 IEEE 29th International Conference on Data Engineering (ICDE), pp. 757–768 (2013)
MalchowHPredicting turnout in a presidential electionCampaigns Elections20042583841
Eugenio, E.C., Liu, F.: Cipher: construction of differentially private microdata from low-dimensional histograms via solving linear equations with Tikhonov regularization (2018). arXiv:1812.05671
Xiao, Y., Gardner, J., Xiong, L.: Dpcube: releasing differentially private data cubes for health information. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1305–1308. IEEE (2012)
Abowd, J.M., Schmutte, I.M.: Revisiting the economics of privacy: population statistics and confidentiality protection as public goods (2015). https://doi.org/10.5281/zenodo.345385
Sakshaug, J.W., Raghunathan, T.E.: Synthetic data for small area estimation. In: International Conference on Privacy in Statistical Databases, pp. 162–173. Springer (2010)
Bowen, C.M., Snoke, J.: Comparative study of differentially private synthetic data algorithms from the NI PSCR differential privacy synthetic data challenge. J Priv. Confid. 11(1), (2021). https://doi.org/10.29012/jpc.748
Hardt, M., Ligett, K., McSherry, F.: A simple and practical algorithm for differentially private data release. In: Advances in Neural Information Processing Systems, pp. 2339–2347 (2012)
BowenCMLiuFComparative study of differentially private data synthesis methodsStat. Sci.2020352280307410660610.1214/19-STS742
Liu, F., Little, R.: Smike vs. data swapping and pram for statistical disclosure limitation in microdata: a simulation study. In: Proceedings of 2003 American Statistical Association Joint Statistical Meeting (2003)
WolfingerRERosenstoneSJRosenstoneSJWho Votes?1980LondonYale University Press
Hill, C., Grumbach, J.: An excitingly simple solution to youth turnout, for the primaries and beyond (2019). https://www.nytimes.com/2019/06/26/opinion/graphics-an-excitingly-simple-solution-to-youth-turnout-for-the-primaries-and-beyond.html
Ping, H., Stoyanovich, J., Howe, B.: Datasynthesizer: privacy-preserving synthetic datasets. In: SSDBM ’17: Proceedings of the 29th International Conference on Scientific and Statistical Database Management June 2017, vol. 42, pp. 1–5 (2017)
ReiterJPUsing multiple imputation to integrate and disseminate confidential microdataInt. Stat. Rev.200977217919510.1111/j.1751-5823.2009.00083.x
DrechslerJSynthetic Datasets for Statistical Disclosure Control2011New YorkSpringer10.1007/978-1-4614-0326-5
Ding, B., Winslett, M., Han, J., Li, Z.: Differentially private data cubes: optimizing noise sources and consistency. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD 2011), ACM SIGMOD, pp. 217–228 (2011)
HolbeinJBHillygusDSMaking young voters: the impact of preregistration on youth turnoutAm. J. Polit. Sci.201660236438210.1111/ajps.12177
Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J., Vilhuber, L.: Privacy: theory meets practice on the map. In: IEEE ICDE IEEE 24th International Conference, pp. 277–286 (2008)
DworkCRothAThe algorithmic foundations of differential privacyTheor. Comput. Sci.201393–421140732540201302.68109
Li, C., Hay, M., Miklau, G., Wang, Y.: A data- and workload-aware algorithm for range queries under differential privacy. In: Proceedings of International Conference on Very Large Data Bases (PVLDB), vol. 7, pp. 341–352 (2014)
LittleRLiuFRaghunathanTGelmanAMengXLStatistical disclosure techniques based on multiple imputationApplied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives An essential journey with Donald Rubin’s statistical family2004New YorkWileyp Chapter II.13
ReiterJPInference for partially synthetic, public use microdata setsSurv. Methodol.2003292181188
McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th Annual IEEE Symposium on Foundations of Computer Science, 2007. FOCS’07. IEEE, pp. 94–103 (2007)
Liu, F.: Model-based differentially private data synthesis (2016). arXiv:1606.08052
Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Theory of Cryptography, pp. 265–284. Springer (2006)
HayMRastogiVMiklauGSuciuDBoosting the accuracy of differentially private histograms through consistencyProc. VLDB Endow.201031–21021103210.14778/1920841.1920970
Kifer, D., Messing, S., Roth, A., Thakurta, A., Zhang, D.: Guidelines for implementing and auditing differentially private systems (2020). arXiv:2002.04049
Ping, H.: Datasynthesizer (2018). https://github.com/DataResponsibly/DataSynthesizer (accessed online 14 March 2020)
GardnerJXiongLXiaoYGaoJPostARJiangXOhno-MachadoLShare: system design and case studies for statistical health information releaseJ. Am. Med. Inform. Assoc.201320110911610.1136/amiajnl-2012-001032
Ping, H., Stoyanovich, J.: Datasynthesizer: privacy-preserving synthetic datasets. In: Proceedings of the 29th International Conference on Scientific and Statistical Database Management (2017)
McDonaldMPThornburgMRegistering the youth through voter preregistrationNYUJ Legis Pub Pol’y201013551
Eversley, M.: Black women voters will be central to the 2020 presidential election, experts predict (2019). https://fortune.com/2019/06/20/black-women-voters-2020-election
CampbellAConversePEMillerWEStokesDEThe American Voter1980ChicagoUniversity of Chicago Press
LittleRStatistical analysis of masked dataJ. Off. Stat.19939407
Woo, M.J., Reiter, J.P., Oganian, A., Karr, A.F.: Global measures of data utility for microdata masked for disclosure limitation. J. Priv. Confid. 1(1) (2009)
McSherry, F.: Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of data, pp. 19–30. ACM (2009)
Dwork, C.: Differential privacy: a survey of results. In: TAMC 2008, LNCS 4978, pp. 1–19. Springer, Berlin (2008)
201_CR37
201_CR36
CM Bowen (201_CR3) 2020; 35
201_CR30
201_CR33
201_CR32
R Little (201_CR28) 1993; 9
J Gardner (201_CR16) 2013; 20
201_CR9
201_CR7
201_CR48
201_CR6
201_CR41
201_CR4
201_CR1
201_CR2
KH Li (201_CR27) 1991; 1
201_CR40
Y Xiao (201_CR53) 2010; 6358
TE Raghunathan (201_CR43) 2003; 19
L Wasserman (201_CR50) 2010; 105
RE Wolfinger (201_CR51) 1980
R Little (201_CR29) 2004
F Liu (201_CR31) 2019; 31
MP McDonald (201_CR35) 2010; 13
JP Reiter (201_CR44) 2003; 29
201_CR39
201_CR38
201_CR13
201_CR12
201_CR15
JP Reiter (201_CR45) 2009; 77
201_CR14
201_CR52
201_CR11
201_CR55
201_CR54
A Campbell (201_CR5) 1980
SJ Rosenstone (201_CR46) 1993
M Hay (201_CR18) 2010; 3
JB Holbein (201_CR21) 2016; 60
W Qardaji (201_CR42) 2013; 6
201_CR24
201_CR23
201_CR26
201_CR25
201_CR20
C Dwork (201_CR10) 2013; 9
J Drechsler (201_CR8) 2011
DB Rubin (201_CR47) 1993; 9
AF Karr (201_CR22) 2006; 60
H Malchow (201_CR34) 2004; 25
201_CR17
J Snoke (201_CR49) 2018; 181
201_CR19
References_xml – ident: 201_CR55
  doi: 10.1145/3134428
– volume: 60
  start-page: 224
  issue: 3
  year: 2006
  ident: 201_CR22
  publication-title: Am. Stat.
  doi: 10.1198/000313006X124640
  contributor:
    fullname: AF Karr
– ident: 201_CR25
– volume: 9
  start-page: 211
  issue: 3–4
  year: 2013
  ident: 201_CR10
  publication-title: Theor. Comput. Sci.
  contributor:
    fullname: C Dwork
– ident: 201_CR9
  doi: 10.1007/978-3-540-79228-4_1
– ident: 201_CR1
  doi: 10.5281/zenodo.345385
– ident: 201_CR26
  doi: 10.1007/978-3-319-57454-7_48
– volume: 181
  start-page: 663
  issue: 3
  year: 2018
  ident: 201_CR49
  publication-title: J. R. Stat. Soc. Ser. A (Stat. Soc.)
  doi: 10.1111/rssa.12358
  contributor:
    fullname: J Snoke
– ident: 201_CR36
  doi: 10.1145/1559845.1559850
– volume: 1
  start-page: 65
  year: 1991
  ident: 201_CR27
  publication-title: Stat. Sin.
  contributor:
    fullname: KH Li
– ident: 201_CR4
  doi: 10.29012/jpc.748
– volume: 19
  start-page: 1
  issue: 1
  year: 2003
  ident: 201_CR43
  publication-title: J. Off. Stat.
  contributor:
    fullname: TE Raghunathan
– ident: 201_CR41
  doi: 10.1109/ICDE.2013.6544872
– volume-title: Mobilization, Participation, and Democracy in America
  year: 1993
  ident: 201_CR46
  contributor:
    fullname: SJ Rosenstone
– volume: 3
  start-page: 1021
  issue: 1–2
  year: 2010
  ident: 201_CR18
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/1920841.1920970
  contributor:
    fullname: M Hay
– ident: 201_CR52
  doi: 10.29012/jpc.v1i1.568
– ident: 201_CR11
– volume: 31
  start-page: 747
  issue: 4
  year: 2019
  ident: 201_CR31
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2845388
  contributor:
    fullname: F Liu
– ident: 201_CR32
– volume: 9
  start-page: 407
  year: 1993
  ident: 201_CR28
  publication-title: J. Off. Stat.
  contributor:
    fullname: R Little
– ident: 201_CR33
  doi: 10.1109/ICDE.2008.4497436
– ident: 201_CR15
– volume: 9
  start-page: 461
  issue: 2
  year: 1993
  ident: 201_CR47
  publication-title: J. Off. Stat.
  contributor:
    fullname: DB Rubin
– ident: 201_CR12
  doi: 10.1007/11681878_14
– volume: 60
  start-page: 364
  issue: 2
  year: 2016
  ident: 201_CR21
  publication-title: Am. J. Polit. Sci.
  doi: 10.1111/ajps.12177
  contributor:
    fullname: JB Holbein
– ident: 201_CR48
  doi: 10.1007/978-3-642-15838-4_15
– ident: 201_CR38
  doi: 10.1145/3085504.3091117
– ident: 201_CR39
  doi: 10.1145/3085504.3091117
– volume: 105
  start-page: 375
  issue: 489
  year: 2010
  ident: 201_CR50
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2009.tm08651
  contributor:
    fullname: L Wasserman
– volume-title: The American Voter
  year: 1980
  ident: 201_CR5
  contributor:
    fullname: A Campbell
– volume: 20
  start-page: 109
  issue: 1
  year: 2013
  ident: 201_CR16
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1136/amiajnl-2012-001032
  contributor:
    fullname: J Gardner
– volume: 6358
  start-page: 150
  year: 2010
  ident: 201_CR53
  publication-title: Secure Data Manag.
  doi: 10.1007/978-3-642-15546-8_11
  contributor:
    fullname: Y Xiao
– ident: 201_CR7
  doi: 10.1145/1989323.1989347
– ident: 201_CR14
– volume: 77
  start-page: 179
  issue: 2
  year: 2009
  ident: 201_CR45
  publication-title: Int. Stat. Rev.
  doi: 10.1111/j.1751-5823.2009.00083.x
  contributor:
    fullname: JP Reiter
– ident: 201_CR19
  doi: 10.1145/2882903.2882931
– ident: 201_CR37
– ident: 201_CR23
– ident: 201_CR40
  doi: 10.1145/3085504.3091117
– volume: 25
  start-page: 38
  issue: 8
  year: 2004
  ident: 201_CR34
  publication-title: Campaigns Elections
  contributor:
    fullname: H Malchow
– volume-title: Who Votes?
  year: 1980
  ident: 201_CR51
  contributor:
    fullname: RE Wolfinger
– volume: 35
  start-page: 280
  issue: 2
  year: 2020
  ident: 201_CR3
  publication-title: Stat. Sci.
  doi: 10.1214/19-STS742
  contributor:
    fullname: CM Bowen
– ident: 201_CR30
– volume: 29
  start-page: 181
  issue: 2
  year: 2003
  ident: 201_CR44
  publication-title: Surv. Methodol.
  contributor:
    fullname: JP Reiter
– ident: 201_CR24
  doi: 10.14778/2732269.2732271
– ident: 201_CR6
  doi: 10.1137/1.9781611975994.32
– ident: 201_CR13
– ident: 201_CR17
– volume-title: Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives An essential journey with Donald Rubin’s statistical family
  year: 2004
  ident: 201_CR29
  contributor:
    fullname: R Little
– ident: 201_CR2
– volume-title: Synthetic Datasets for Statistical Disclosure Control
  year: 2011
  ident: 201_CR8
  doi: 10.1007/978-1-4614-0326-5
  contributor:
    fullname: J Drechsler
– volume: 13
  start-page: 551
  year: 2010
  ident: 201_CR35
  publication-title: NYUJ Legis Pub Pol’y
  contributor:
    fullname: MP McDonald
– ident: 201_CR54
  doi: 10.1109/ICDE.2012.135
– ident: 201_CR20
– volume: 6
  start-page: 1954
  issue: 14
  year: 2013
  ident: 201_CR42
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2556549.2556576
  contributor:
    fullname: W Qardaji
SSID ssj0000825946
Score 2.2204123
Snippet Differential Privacy (DP) formalizes privacy in mathematical terms and provides a robust concept for privacy protection. DIfferentially Private Data Synthesis...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Algorithms
Elections
Histograms
Mathematics and Statistics
Partitions
Privacy
Robustness (mathematics)
Statistical Theory and Methods
Statistics
Subtitle Statistical election to partition sequentially
Title Differentially private data release via statistical election to partition sequentially
URI https://link.springer.com/article/10.1007/s40300-021-00201-0
https://www.proquest.com/docview/2508128381
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oXLj4NqJI9uBNl3RLH_QIKhKNnMDgqdlXEyMBIoVEf72z25bG18GkadJsO03n0f2mnW8H4IJxvy0woKnQpoUZCwLa8WREeScJIxaFXLqGO_w4DAZj737iT0oety12L_5I2hf1huvmoTs61FQUGIiD-22o5sTTavfu-aH8tGKyniij6GCGQQ2XK6fL_C7o65RU4sxvv0btjNPfhVHB28kKTV5bq1S05MfPZRz_8zB7sJMjUNLNXGYftvTsAGoGdGZrNh_C003eNQWjfzp9Jyh7jZCUmGpSYpqs4MxH1i-cLIuLUJ7tp4NGJumcLIw_2oOsUjuTcwTj_u3oekDz_gtUYhLlUDcSSiUYoJ4vhUq4anucRyGmaAlnOkwYw9HAZVIj6uFSKVe0heskUgeuZoiLjqEym8_0CRBfMR6JUHhKIuBBWCHank6kCrjCuzhhHS4LE8SLbJmNeLOgslVWjMqKrbJipw6NwkpxHnLLGLEcgpUOIpA6XBVaL4f_lnb6v9PPoOZaw5mtAZX0baXPEZikoomO2O_1hs3cIT8Bzx3a3w
link.rule.ids 315,783,787,27936,27937,41093,42162,52123
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT8JAFH5ROMjF3YiizsGblnSmGz0SFVGWExg8NbM1MRIgUkj01_umi0SiB5KmSTPta_uWzvc6bwG4ptxzBBq0JbRpYUZ932q4MrR4Iw5CGgZcMpM73Ov77aH7PPJGeVLYvIh2L5Yk0y_1T7Kbi_poWyakwGAc3G9D2WXUZyUoNx9fO6t_K8btCbMcHXQxLJPMlefL_E3o95y0Appra6PplNPag2HxsFmkyXt9kYi6_Fqr47jp2-zDbo5BSTNTmgPY0pNDqBjYmVVtPoKX-7xvCtr_ePxJkPYSQSkx8aTEtFnBuY8s3ziZFxchvbSjDoqZJFMyMxqZHmSx2hmdYxi2HgZ3bSvvwGBJdKNsi4VCqRhN1PWkUDFXjst5GKCTFnOqg5hSHPUZlRpxD5dKMeEIZsdS-0xTREYnUJpMJ_oUiKcoD0UgXCUR8iCwEI6rY6l8rvAudlCFm0IG0SwrtBH9lFROmRUhs6KUWZFdhVohpig3unmEaA7hSgMxSBVuC66vhv-ndrbZ6Vew0x70ulH3qd85hwpLhWi2GpSSj4W-QJiSiMtcK78B22rdNw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60gvTiW6xW3YM3TZvNszkWa61Wiwcr9RT2FRBLWmxa0F_vbB6tFj2IEAJhk9lkZzb7TTLfDMAZZa7NcUIbXOkSZtTzjIYjAoM1Ij-ggc-EpbnD9z2v03duB-7gC4s_jXYvfklmnAadpSlO6mMZ1efENwdt0zR0eIHGO7hfhTVHZ0YqwVrz-rm7-M6iXaAg4-ugu2FoYlfOnflZ0Pf1aQE6l_6TpstPexNYceNZ1MlrbZrwmvhYyun4nyfbgo0cm5JmZkzbsKLiHShrOJplc96Fp1ZeTwXfC8PhO8F-ZghWiY4zJbr8Cq6JZPbCyKS4COWllXZQ_SQZkbG21PQgi-HO5OxBv331eNkx8soMhkD3yjSsgEsZ4dR1XMFlxKTtMBb46LxFjCo_ohRbPYsKhXiICSktbnPLjITyLEURMe1DKR7F6gCIKykLuM8dKRAKIeDgtqMiIT0msRfTr8B5oY9wnCXgCOepltPBCnGwwnSwQrMC1UJlYT4ZJyGiPIQxDcQmFbgoNLBo_l3a4d9OP4X1h1Y7vLvpdY-gbKU61FsVSsnbVB0jekn4SW6gn7A05hs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differentially+private+data+release+via+statistical+election+to+partition+sequentially&rft.jtitle=Metron+%28Rome%29&rft.au=Bowen%2C+Claire+McKay&rft.au=Liu%2C+Fang&rft.au=Su+Bingyue&rft.date=2021-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0026-1424&rft.eissn=2281-695X&rft.volume=79&rft.issue=1&rft.spage=1&rft.epage=31&rft_id=info:doi/10.1007%2Fs40300-021-00201-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-1424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-1424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-1424&client=summon