GHZ state, spin squeezed state, and spin coherent state for frequency estimation under general Gaussian noises

Exploring the quantum advantages of various non-classical quantum states in noisy environments is a central subject in quantum sensing. Here we provide a complete picture for the frequency estimation precision of three important states (the Greenberger–Horne–Zeilinger (GHZ) state, the maximal spin s...

Full description

Saved in:
Bibliographic Details
Published inCommunications in theoretical physics Vol. 77; no. 6; pp. 65106 - 65115
Main Authors Chai, Qi, Yang, Wen
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Exploring the quantum advantages of various non-classical quantum states in noisy environments is a central subject in quantum sensing. Here we provide a complete picture for the frequency estimation precision of three important states (the Greenberger–Horne–Zeilinger (GHZ) state, the maximal spin squeezed state, and the spin coherent state) of a spin- S under both individual dephasing and collective dephasing by general Gaussian noise, ranging from the Markovian limit to the extreme non-Markovian limit. Whether or not the noise is Markovian, the spin coherent state is always worse than the classical scheme under collective dephasing although it is equivalent to the classical scheme under individual dephasing. Moreover, the maximal spin squeezed state always give the best sensing precision (and outperforms the widely studied GHZ state) in all cases. This establishes the general advantage of the spin squeezed state for noisy frequency estimation in many quantum sensing platforms.
AbstractList Exploring the quantum advantages of various non-classical quantum states in noisy environments is a central subject in quantum sensing. Here we provide a complete picture for the frequency estimation precision of three important states (the Greenberger–Horne–Zeilinger (GHZ) state, the maximal spin squeezed state, and the spin coherent state) of a spin- S under both individual dephasing and collective dephasing by general Gaussian noise, ranging from the Markovian limit to the extreme non-Markovian limit. Whether or not the noise is Markovian, the spin coherent state is always worse than the classical scheme under collective dephasing although it is equivalent to the classical scheme under individual dephasing. Moreover, the maximal spin squeezed state always give the best sensing precision (and outperforms the widely studied GHZ state) in all cases. This establishes the general advantage of the spin squeezed state for noisy frequency estimation in many quantum sensing platforms.
Author Chai, Qi
Yang, Wen
Author_xml – sequence: 1
  givenname: Qi
  surname: Chai
  fullname: Chai, Qi
  organization: Beijing Computational Science Research Center , Beijing 100193, China
– sequence: 2
  givenname: Wen
  surname: Yang
  fullname: Yang, Wen
  organization: Beijing Computational Science Research Center , Beijing 100193, China
BookMark eNp1kLtOwzAUhi1UJNrCzugHaKidiy8jqqBFqsQCC0t07BxDqmIXOxnK05MqlI3pSP_l6Nc3IxMfPBJyy9kdZ0oteSXzTJe6XEIDhbQXZPonTciU5VWRCc7yKzJLaccYy6XgU-LXmzeaOuhwQdOh9TR99Yjf2JxF8M1o2PCBEX03GtSFSF3EIe3tkWLq2k_o2uBp7xuM9B09RtjTNfQpteCpD23CdE0uHewT3vzeOXl9fHhZbbLt8_ppdb_NLBdFl1VOMlNx1TgloBQVcwJAC6OVsaAlSCwQZS6NARSVlpYbKJwqS8V0YRpRzAkb_9oYUoro6kMcBsZjzVl94lWf4NQnOPXIa6gsxkobDvUu9NEPA_-P_wC8PHCr
Cites_doi 10.1103/PhysRevLett.96.010401
10.1103/PhysRevLett.116.230502
10.1142/S0219749909004839
10.1103/PhysRevLett.116.120801
10.1038/s41467-017-02510-3
10.1016/bs.po.2015.02.003
10.1103/PhysRevLett.132.200802
10.1103/PhysRevA.64.052106
10.1088/1751-8113/47/42/424006
10.1002/qute.202100080
10.1088/1367-2630/aadd5e
10.1103/PhysRevA.88.043832
10.1103/PhysRevLett.126.070503
10.1016/j.physleta.2014.06.043
10.1016/0375-9601(67)90366-0
10.1103/PhysRevA.84.012103
10.1038/nphoton.2011.35
10.1103/PRXQuantum.2.010343
10.1038/s41467-018-07433-1
10.1103/PhysRevLett.123.040402
10.1038/nphoton.2010.268
10.1103/PhysRevA.100.032104
10.1088/1367-2630/10/7/073033
10.1109/TIT.1968.1054108
10.1103/PhysRevA.54.R4649
10.1038/nphys1075
10.1038/ncomms2067
10.1126/science.1104149
10.1038/s41467-019-12290-7
10.1088/1367-2630/aa8b01
10.1103/PhysRevA.94.012339
10.1038/s41467-017-02487-z
10.1103/PhysRevA.33.4033
10.1038/nphys1958
10.1088/0022-3727/39/5/E01
10.1103/PhysRevA.84.022302
10.1103/PhysRevLett.109.233601
10.1103/PhysRevLett.79.3865
10.1103/PhysRevLett.122.040502
10.1103/PhysRevLett.123.040501
10.1063/1.1687553
10.1016/0047-259X(73)90028-6
10.1007/BF01007479
10.1103/PhysRevLett.131.050801
10.1103/PhysRevLett.112.150802
10.1103/PhysRevA.46.R6797
10.1103/PhysRevA.87.032102
10.1103/PhysRevLett.115.110401
10.1103/PhysRevA.47.5138
10.1103/RevModPhys.89.035002
10.1103/PhysRevA.91.033805
10.1063/5.0204102
10.1103/PhysRevLett.112.080801
10.1103/PhysRevLett.129.070502
10.1063/1.555544
ContentType Journal Article
Copyright 2025 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2025 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
DBID AAYXX
CITATION
DOI 10.1088/1572-9494/ada37c
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1572-9494
ExternalDocumentID 10_1088_1572_9494_ada37c
ctpada37c
GrantInformation_xml – fundername: NSAF Joint Fund
  grantid: No.U2230402
  funderid: https://doi.org/10.13039/501100010906
– fundername: National Natural Science Foundation of China
  grantid: No.12274019
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID -SA
-S~
1JI
4.4
5B3
5GY
5VR
5VS
7.M
AAGCD
AAJIO
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
CW9
DU5
E3Z
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
IJHAN
IOP
IZVLO
KOT
N5L
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
U1G
U5K
W28
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c163t-5f70b518df86a4650f6aa96b98bca97a7e3ee727bbae6597c1ba3f8448093bd63
IEDL.DBID IOP
ISSN 0253-6102
IngestDate Tue Jul 01 05:24:47 EDT 2025
Wed Mar 26 01:28:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c163t-5f70b518df86a4650f6aa96b98bca97a7e3ee727bbae6597c1ba3f8448093bd63
Notes CTP-241036.R2
PageCount 10
ParticipantIDs crossref_primary_10_1088_1572_9494_ada37c
iop_journals_10_1088_1572_9494_ada37c
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Communications in theoretical physics
PublicationTitleAbbrev CTP
PublicationTitleAlternate Commun. Theor. Phys
PublicationYear 2025
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Hou (ctpada37cbib22) 2021; 126
Tóth (ctpada37cbib50) 2014; 47
Benedetti (ctpada37cbib56) 2014; 378
Holevo (ctpada37cbib4) 1973; 3
Demkowicz-Dobrzanski (ctpada37cbib13) 2012; 3
Escher (ctpada37cbib11) 2011; 7
Bollinger (ctpada37cbib7) 1996; 54
Ma (ctpada37cbib14) 2011; 84
Giovannetti (ctpada37cbib8) 2006; 96
Kessler (ctpada37cbib30) 2014; 112
Bai (ctpada37cbib39) 2023; 131
Wu (ctpada37cbib25) 2024; 132
Hillebrands (ctpada37cbib47) 2006; 39
Huang (ctpada37cbib17) 2024; 11
Ulam-Orgikh (ctpada37cbib44) 2001; 64
Layden (ctpada37cbib35) 2019; 122
Taylor (ctpada37cbib23) 2008; 4
Dür (ctpada37cbib29) 2014; 112
Chen (ctpada37cbib20) 2018; 9
Giovannetti (ctpada37cbib6) 2004; 306
Wineland (ctpada37cbib43) 1992; 46
Cramér (ctpada37cbib51) 1999
Bai (ctpada37cbib38) 2019; 123
Smirne (ctpada37cbib32) 2016; 116
Okamoto (ctpada37cbib19) 2008; 10
Hou (ctpada37cbib21) 2019; 123
Chalopin (ctpada37cbib24) 2018; 9
Degen (ctpada37cbib16) 2017; 89
Wang (ctpada37cbib33) 2017; 19
Kitagawa (ctpada37cbib55) 1993; 47
Zhang (ctpada37cbib49) 2018; 20
Nagao (ctpada37cbib48) 2004; 95
Helstrom (ctpada37cbib2) 1968; 14
Zhang (ctpada37cbib15) 2013; 88
Xiang (ctpada37cbib18) 2011; 5
Matsuzaki (ctpada37cbib26) 2011; 84
Zheng (ctpada37cbib28) 2015; 91
Zhou (ctpada37cbib34) 2018; 9
Huelga (ctpada37cbib45) 1997; 79
Augusiak (ctpada37cbib5) 2016; 94
Liu (ctpada37cbib42) 2022; 5
Wang (ctpada37cbib10) 2019; 10
Helstrom (ctpada37cbib3) 1969; 1
Yang (ctpada37cbib53) 2019; 100
Yuan (ctpada37cbib9) 2015; 115
Yurke (ctpada37cbib54) 1986; 33
Paris (ctpada37cbib52) 2009; 7
Helstrom (ctpada37cbib1) 1967; 25
Giovannetti (ctpada37cbib40) 2011; 5
Long (ctpada37cbib37) 2022; 129
Tan (ctpada37cbib27) 2013; 87
Zhou (ctpada37cbib36) 2021; 2
Demkowicz-Dobrzanski (ctpada37cbib41) 2015; 60
Chin (ctpada37cbib12) 2012; 109
Unden (ctpada37cbib31) 2016; 116
Fuller (ctpada37cbib46) 1976; 5
References_xml – volume: 96
  year: 2006
  ident: ctpada37cbib8
  article-title: Quantum metrology
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.010401
– volume: 116
  year: 2016
  ident: ctpada37cbib31
  article-title: Quantum metrology enhanced by repetitive quantum error correction
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.230502
– volume: 7
  start-page: 125
  year: 2009
  ident: ctpada37cbib52
  article-title: Quantum estimation for quantum technology
  publication-title: Int. J. Quantum Inf.
  doi: 10.1142/S0219749909004839
– volume: 116
  year: 2016
  ident: ctpada37cbib32
  article-title: Ultimate precision limits for noisy frequency estimation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.120801
– volume: 9
  start-page: 78
  year: 2018
  ident: ctpada37cbib34
  article-title: Achieving the heisenberg limit in quantum metrology using quantum error correction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02510-3
– volume: 60
  start-page: 345
  year: 2015
  ident: ctpada37cbib41
  article-title: Chapter Four - Quantum Limits in Optical Interferometry
  publication-title: Prog. Opt.
  doi: 10.1016/bs.po.2015.02.003
– volume: 132
  year: 2024
  ident: ctpada37cbib25
  article-title: Selective detection of dynamics-complete set of correlations via quantum channels
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.132.200802
– volume: 64
  year: 2001
  ident: ctpada37cbib44
  article-title: Spin squeezing and decoherence limit in ramsey spectroscopy
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.64.052106
– volume: 47
  start-page: 424006
  year: 2014
  ident: ctpada37cbib50
  article-title: Quantum metrology from a quantum information science perspective
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/47/42/424006
– volume: 5
  year: 2022
  ident: ctpada37cbib42
  article-title: Optimal scheme for quantum metrology
  publication-title: Adv. Quantum Technol.
  doi: 10.1002/qute.202100080
– volume: 20
  start-page: 093011
  year: 2018
  ident: ctpada37cbib49
  article-title: Improving spin-based noise sensing by adaptive measurements
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aadd5e
– volume: 88
  year: 2013
  ident: ctpada37cbib15
  article-title: Quantum fisher information of entangled coherent states in the presence of photon loss
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.043832
– volume: 126
  year: 2021
  ident: ctpada37cbib22
  article-title: ‘Super-Heisenberg’ and Heisenberg scalings achieved simultaneously in the estimation of a rotating field
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.070503
– volume: 378
  start-page: 2495
  year: 2014
  ident: ctpada37cbib56
  article-title: Characterization of classical gaussian processes using quantum probes
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2014.06.043
– volume: 25
  start-page: 101
  year: 1967
  ident: ctpada37cbib1
  article-title: Minimum mean-squared error of estimates in quantum statistics
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(67)90366-0
– volume: 84
  year: 2011
  ident: ctpada37cbib26
  article-title: Magnetic field sensing beyond the standard quantum limit under the effect of decoherence
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.84.012103
– volume: 5
  start-page: 222
  year: 2011
  ident: ctpada37cbib40
  article-title: Advances in quantum metrology
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2011.35
– volume: 2
  year: 2021
  ident: ctpada37cbib36
  article-title: Asymptotic theory of quantum channel estimation
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.2.010343
– volume: 9
  start-page: 4955
  year: 2018
  ident: ctpada37cbib24
  article-title: Quantum-enhanced sensing using non-classical spin states of a highly magnetic atom
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07433-1
– volume: 123
  year: 2019
  ident: ctpada37cbib38
  article-title: Retrieving ideal precision in noisy quantum optical metrology
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.040402
– volume: 5
  start-page: 43 47
  year: 2011
  ident: ctpada37cbib18
  article-title: Entanglement-enhanced measurement of a completely unknown optical phase
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2010.268
– volume: 100
  year: 2019
  ident: ctpada37cbib53
  article-title: Optimal measurements for quantum multiparameter estimation with general states
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.100.032104
– volume: 10
  start-page: 073033
  year: 2008
  ident: ctpada37cbib19
  article-title: Beating the standard quantum limit: phase super-sensitivity of n-photon interferometers
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/10/7/073033
– volume: 14
  start-page: 234
  year: 1968
  ident: ctpada37cbib2
  article-title: The minimum variance of estimates in quantum signal detection
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1968.1054108
– volume: 54
  start-page: R4649
  year: 1996
  ident: ctpada37cbib7
  article-title: Optimal frequency measurements with maximally correlated states
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.54.R4649
– volume: 4
  start-page: 810
  year: 2008
  ident: ctpada37cbib23
  article-title: High-sensitivity diamond magnetometer with nanoscale resolution
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1075
– volume: 3
  start-page: 1063
  year: 2012
  ident: ctpada37cbib13
  article-title: The elusive Heisenberg limit in quantum-enhanced metrology
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2067
– volume: 306
  start-page: 1330
  year: 2004
  ident: ctpada37cbib6
  article-title: Quantum-enhanced measurements: Beating the standard quantum limit
  publication-title: Science
  doi: 10.1126/science.1104149
– volume: 10
  start-page: 4382
  year: 2019
  ident: ctpada37cbib10
  article-title: Heisenberg-limited single-mode quantum metrology in a superconducting circuit
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12290-7
– volume: 19
  start-page: 113019
  year: 2017
  ident: ctpada37cbib33
  article-title: Quantum metrology in local dissipative environments
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aa8b01
– volume: 94
  year: 2016
  ident: ctpada37cbib5
  article-title: Asymptotic role of entanglement in quantum metrology
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.94.012339
– volume: 9
  start-page: 93
  year: 2018
  ident: ctpada37cbib20
  article-title: Heisenberg-scaling measurement of the single-photon kerr non-linearity using mixed states
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02487-z
– volume: 33
  start-page: 4033
  year: 1986
  ident: ctpada37cbib54
  article-title: SU(2) and SU(1,1) interferometers
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.33.4033
– year: 1999
  ident: ctpada37cbib51
  article-title: Mathematical Methods of Statistics
– volume: 7
  start-page: 406
  year: 2011
  ident: ctpada37cbib11
  article-title: General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1958
– volume: 39
  year: 2006
  ident: ctpada37cbib47
  article-title: High-spin polarization of Heusler alloys
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/39/5/E01
– volume: 84
  year: 2011
  ident: ctpada37cbib14
  article-title: Quantum fisher information of the Greenberger–Horne–Zeilinger state in decoherence channels
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.84.022302
– volume: 109
  year: 2012
  ident: ctpada37cbib12
  article-title: Quantum metrology in non-Markovian environments
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.233601
– volume: 79
  start-page: 3865
  year: 1997
  ident: ctpada37cbib45
  article-title: Improvement of frequency standards with quantum entanglement
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.3865
– volume: 122
  year: 2019
  ident: ctpada37cbib35
  article-title: Ancilla-free quantum error correction codes for quantum metrology
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.040502
– volume: 123
  year: 2019
  ident: ctpada37cbib21
  article-title: Control-enhanced sequential scheme for general quantum parameter estimation at the Heisenberg limit
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.040501
– volume: 95
  start-page: 6518
  year: 2004
  ident: ctpada37cbib48
  article-title: Ab initio calculations of zinc-blende CrAs/GaAs superlattices
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1687553
– volume: 3
  start-page: 337
  year: 1973
  ident: ctpada37cbib4
  article-title: Statistical decision theory for quantum systems
  publication-title: J. Multivariate Anal.
  doi: 10.1016/0047-259X(73)90028-6
– volume: 1
  start-page: 231
  year: 1969
  ident: ctpada37cbib3
  article-title: Quantum detection and estimation theory
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01007479
– volume: 131
  year: 2023
  ident: ctpada37cbib39
  article-title: Floquet engineering to overcome no-go theorem of noisy quantum metrology
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.131.050801
– volume: 112
  year: 2014
  ident: ctpada37cbib30
  article-title: Quantum error correction for metrology
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.150802
– volume: 46
  start-page: R6797
  year: 1992
  ident: ctpada37cbib43
  article-title: Spin squeezing and reduced quantum noise in spectroscopy
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.46.R6797
– volume: 87
  year: 2013
  ident: ctpada37cbib27
  article-title: Enhancement of parameter-estimation precision in noisy systems by dynamical decoupling pulses
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.87.032102
– volume: 115
  year: 2015
  ident: ctpada37cbib9
  article-title: Optimal feedback scheme and universal time scaling for Hamiltonian parameter estimation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.110401
– volume: 47
  start-page: 5138
  year: 1993
  ident: ctpada37cbib55
  article-title: Squeezed spin states
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.47.5138
– volume: 89
  year: 2017
  ident: ctpada37cbib16
  article-title: Quantum sensing
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.89.035002
– volume: 91
  year: 2015
  ident: ctpada37cbib28
  article-title: Enhancing parameter precision of optimal quantum estimation by direct quantum feedback
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.91.033805
– volume: 11
  start-page: 031302
  year: 2024
  ident: ctpada37cbib17
  article-title: Entanglement-enhanced quantum metrology: From standard quantum limit to Heisenberg limit
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/5.0204102
– volume: 112
  year: 2014
  ident: ctpada37cbib29
  article-title: Improved quantum metrology using quantum error correction
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.080801
– volume: 129
  year: 2022
  ident: ctpada37cbib37
  article-title: Entanglement-enhanced quantum metrology in colored noise by quantum zeno effect
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.129.070502
– volume: 5
  start-page: 835
  year: 1976
  ident: ctpada37cbib46
  article-title: Nuclear spins and moments
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.555544
SSID ssj0002761
Score 2.3739734
Snippet Exploring the quantum advantages of various non-classical quantum states in noisy environments is a central subject in quantum sensing. Here we provide a...
SourceID crossref
iop
SourceType Index Database
Publisher
StartPage 65106
SubjectTerms cat state
quantum sensing
spin coherent state
spin squeezed state
Title GHZ state, spin squeezed state, and spin coherent state for frequency estimation under general Gaussian noises
URI https://iopscience.iop.org/article/10.1088/1572-9494/ada37c
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7oRPDidCqbv8hBD4KdrmnTBE8iuulBPTgYIpQkTXUI3Vi7g_vrfWm6oYIg3krzSMOXJu977fdeAI6iUOhQ-KHHFU28wOqoeMcknlDURNoXSerUFves1w_uBuFgCS4WuTCjcbX1t_HSFQp2EFaCOH7WCSPfE4EIzmQiaaSXYYVyxuzxBbcPj4tt2I_KYqno0ynGR1bG0_yth28-aRmf-8XF3NThZT44pyx5b08L1dazH3Ub_zn6DVivqCe5dKabsGSyBtQrGkqqRZ43YLVUhep8C7Ju75mUKUenJB8PM5LbuHeG1tVNmSWuQY_ebN5g4RoIMmGSTpxK-4PYQh4uQ5LYlLUJeXW1rklXTnObxEmy0TA3-Tb0b66frnpedUCDp5HGFV6IE6nCDk9SzmSAXC9lUgqmBFdaikhGhhqDBEkpaRhGLrqjJE05RoTngqqE0R2oZaPMNIEIEyXYmU4NckjESCBxYoHWjCJKNA1bcDKfonjs6nDE5f9zzmMLaWwhjR2kLThG9ONqMea_2u3-0W4P1nx76m_57WUfasVkag6QihTqsHzlPgE8Kdhg
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB11twJxoaWAuhRaH9pDJbJL4tixjxV0P0rV9kClFZfgr0CFlF1tsgf66xnHLqJIlZB6i-KRk8zE9pvkzTPAYcGkYTJjidDUJrnnUYnU2URq6gqTSVsFtsUFn17nZ3M2j_ucdrUwi2Wc-od4GISCgwsjIU6MUlZkicxlPlJW0cKMlrbqwSajnHrx_Nnl1Z-pOCs6wVRc1ynmSJ7Ks_tQL_fWpR5e-69lZrwF3-5uMLBLfg7XrR6a23-0Gx_xBNvwPEJQchLMX8CGq3dgK8JREgd7swNPOnaoaV5CPZl-JV3p0XvSLG9q0vj89xat40lV29BgFj98_WAbGggiYlKtAlv7F_GCHqFSkvjStRX5HjSvyUStG1_MSerFTeOaV3A9Pv3ycZrEjRoSg3CuTRgGVLNU2EpwlSPmq7hSkmsptFGyUIWjziFQ0lo5jhmMSbWilcDM8IOk2nL6Gvr1ona7QKQrLHZmKodYEv0kEUDx3BhO0VO0YgM4vgtTuQx6HGX3H12I0ru19G4tg1sHcIQRKOOgbB60e_Ofdgfw9OrTuDyfXXzeg2eZ3wi4-xzzFvrtau3eITpp9X73Bv4GlxXdxA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GHZ+state%2C+spin+squeezed+state%2C+and+spin+coherent+state+for+frequency+estimation+under+general+Gaussian+noises&rft.jtitle=Communications+in+theoretical+physics&rft.au=Chai%2C+Qi&rft.au=Yang%2C+Wen&rft.date=2025-06-01&rft.pub=IOP+Publishing&rft.issn=0253-6102&rft.eissn=1572-9494&rft.volume=77&rft.issue=6&rft_id=info:doi/10.1088%2F1572-9494%2Fada37c&rft.externalDocID=ctpada37c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0253-6102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0253-6102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0253-6102&client=summon