Coherence-protected operations in hybrid superconducting circuit-magnon system

Hybrid systems consisting of superconducting circuits and magnon systems are a promising platform for quantum technology. However, realizing high-fidelity magnon state preparation and manipulation remains an outstanding challenge due to the complexity of interactions and noise sources in hybrid syst...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 34; no. 3; pp. 30302 - 30308
Main Authors Zhu, Le-Tian, Zhu, Xing-Yu, Yue, Zhu-Cheng, Tu, Tao, Li, Chuan-Feng
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.03.2025
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/ada550

Cover

Abstract Hybrid systems consisting of superconducting circuits and magnon systems are a promising platform for quantum technology. However, realizing high-fidelity magnon state preparation and manipulation remains an outstanding challenge due to the complexity of interactions and noise sources in hybrid systems. Here, we propose a coherence-preserving magnon state manipulation scheme. By engineering a superconducting-magnon coupling pulse and combining it with dynamical decoupling pulses, we design a composite pulse sequence. We demonstrate the manipulation and preparation of non-classical states of magnons with a fidelity of up to 98% under realistic conditions. These designs significantly improve the fidelity of manipulation and robustness to noise in hybrid systems compared to existing schemes. These results pave the way for practical applications of quantum magnonics platforms.
AbstractList Hybrid systems consisting of superconducting circuits and magnon systems are a promising platform for quantum technology. However, realizing high-fidelity magnon state preparation and manipulation remains an outstanding challenge due to the complexity of interactions and noise sources in hybrid systems. Here, we propose a coherence-preserving magnon state manipulation scheme. By engineering a superconducting-magnon coupling pulse and combining it with dynamical decoupling pulses, we design a composite pulse sequence. We demonstrate the manipulation and preparation of non-classical states of magnons with a fidelity of up to 98% under realistic conditions. These designs significantly improve the fidelity of manipulation and robustness to noise in hybrid systems compared to existing schemes. These results pave the way for practical applications of quantum magnonics platforms.
Author Zhu, Le-Tian
Zhu, Xing-Yu
Li, Chuan-Feng
Tu, Tao
Yue, Zhu-Cheng
Author_xml – sequence: 1
  givenname: Le-Tian
  surname: Zhu
  fullname: Zhu, Le-Tian
  organization: Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China , Hefei 230026, China
– sequence: 2
  givenname: Xing-Yu
  surname: Zhu
  fullname: Zhu, Xing-Yu
  organization: School of Mechanical and Electronic Engineering, Suzhou University , Suzhou 234000, China
– sequence: 3
  givenname: Zhu-Cheng
  surname: Yue
  fullname: Yue, Zhu-Cheng
  organization: Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China , Hefei 230026, China
– sequence: 4
  givenname: Tao
  surname: Tu
  fullname: Tu, Tao
  organization: Hefei National Laboratory, University of Science and Technology of China, Chinese Academy of Sciences , Hefei 230088, China
– sequence: 5
  givenname: Chuan-Feng
  surname: Li
  fullname: Li, Chuan-Feng
  organization: Hefei National Laboratory, University of Science and Technology of China, Chinese Academy of Sciences , Hefei 230088, China
BookMark eNp1UD1PwzAUtFCRaAs7Y34Aps_xR9wRVUCRKlhgthzbaV1RO7Kdof-eVEFsTE-6d3e6uwWahRgcQvcEHglIuSKiYZgAFyttNedwheY1cImppGyG5n_vG7TI-QggCNR0jt438eCSC8bhPsXiTHG2ir1LuvgYcuVDdTi3ydsqDyNqYrCDKT7sK-OTGXzBJ70fo1T5nIs73aLrTn9nd_d7l-jr5flzs8W7j9e3zdMOGyJowbSWHNZMEwesbiRfM9IIVtPOSA3Num062WqnmRWCCWFaS6TpgPCR6-qGW7pEMPmaFHNOrlN98iedzoqAuuyhLoXVpbCa9hglD5PEx14d45DCGPB_-g9VwmPv
Cites_doi 10.1126/science.aaa3693
10.1088/0256-307X/38/9/094203
10.1103/PhysRevLett.117.123605
10.1038/s41586-020-3038-6
10.1103/PhysRevLett.113.156401
10.1063/1.5089550
10.1126/sciadv.1501286
10.1088/1674-1056/ac8919
10.1103/PhysRevA.100.013810
10.1103/PhysRevLett.114.227201
10.1103/RevModPhys.93.025005
10.1038/nphys1994
10.1103/PRXQuantum.2.040344
10.1126/sciadv.1603150
10.1103/PhysRevA.107.012410
10.1103/PhysRevLett.83.4888
10.1126/science.1192739
10.1016/j.physrep.2022.03.002
10.1103/PhysRevB.100.134421
10.1103/RevModPhys.88.041001
10.1103/PhysRevLett.105.266808
10.1103/PhysRevA.105.022624
10.1002/qute.v3.1
10.1103/PhysRevLett.130.193603
10.7567/1882-0786/ab248d
10.1007/s11433-021-1880-7
10.1103/PRXQuantum.2.040314
10.1038/s41567-020-0797-9
10.1103/PhysRevLett.113.083603
10.1038/s41467-017-01634-w
10.1103/PhysRevA.84.012305
10.1088/1674-1056/ad1747
10.1103/PhysRevLett.105.230503
10.1038/nature07136
10.1103/PhysRevApplied.2.054002
10.1126/science.aaz9236
10.1016/j.physrep.2022.06.001
10.1103/PhysRevB.103.L100403
10.1038/nature08005
10.1103/PRXQuantum.3.010329
10.1103/PhysRevLett.129.123601
10.1103/PhysRevLett.111.127003
10.1073/pnas.1419326112
10.1103/PhysRevA.76.042319
10.1038/nature07951
10.1103/PhysRevLett.116.223601
10.1038/nphys1856
10.1088/2058-9565/ab8962
ContentType Journal Article
Copyright 2025 Chinese Physical Society and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2025 Chinese Physical Society and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
DBID AAYXX
CITATION
DOI 10.1088/1674-1056/ada550
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2058-3834
ExternalDocumentID 10_1088_1674_1056_ada550
cpb_34_3_030302
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAXDM
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
AVWKF
AZFZN
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
RIN
RNS
ROL
RPA
SY9
TCJ
TGP
U1G
U5K
W28
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c163t-3285094a1e04278594176423fc8a079b7f8baea4d66466cbd18cf015278e275d3
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Tue Jul 01 05:25:50 EDT 2025
Tue Mar 11 23:40:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c163t-3285094a1e04278594176423fc8a079b7f8baea4d66466cbd18cf015278e275d3
PageCount 7
ParticipantIDs crossref_primary_10_1088_1674_1056_ada550
iop_journals_10_1088_1674_1056_ada550
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250301
2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 20250301
  day: 01
PublicationDecade 2020
PublicationTitle Chinese physics B
PublicationTitleAlternate Chin. Phys. B
PublicationYear 2025
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
References Blais (cpb_34_3_030302bib30) 2021; 93
Wang (cpb_34_3_030302bib15) 2022; 65
Kurizki (cpb_34_3_030302bib46) 2015; 112
Chamberland (cpb_34_3_030302bib35) 2022; 3
Zhang (cpb_34_3_030302bib39) 2016; 2
Hofheinz (cpb_34_3_030302bib31) 2008; 454
Yuan (cpb_34_3_030302bib3) 2022; 965
Zhang (cpb_34_3_030302bib7) 2014; 113
Mirhosseini (cpb_34_3_030302bib42) 2020; 588
Bittencourt (cpb_34_3_030302bib33) 2019; 100
Lachance-Quirion (cpb_34_3_030302bib2) 2019; 12
Zhu (cpb_34_3_030302bib47) 2024; 33
Xu (cpb_34_3_030302bib14) 2023; 130
Biercuk (cpb_34_3_030302bib22) 2009; 458
Liu (cpb_34_3_030302bib16) 2019; 100
Huebl (cpb_34_3_030302bib6) 2013; 111
Bylander (cpb_34_3_030302bib23) 2011; 7
Tabuchi (cpb_34_3_030302bib11) 2015; 349
Osada (cpb_34_3_030302bib37) 2016; 116
Shen (cpb_34_3_030302bib45) 2022; 129
Zeuthen (cpb_34_3_030302bib40) 2020; 5
Lachance-Quirion (cpb_34_3_030302bib12) 2017; 3
Rameshti (cpb_34_3_030302bib4) 2022; 979
Bluhm (cpb_34_3_030302bib25) 2011; 7
Ng (cpb_34_3_030302bib21) 2011; 84
Fukami (cpb_34_3_030302bib44) 2021; 2
Tabuchi (cpb_34_3_030302bib5) 2014; 113
Lachance-Quirion (cpb_34_3_030302bib13) 2020; 367
Lange de (cpb_34_3_030302bib26) 2010; 330
Lambert (cpb_34_3_030302bib41) 2020; 3
Qi (cpb_34_3_030302bib17) 2022; 105
West (cpb_34_3_030302bib20) 2010; 105
Goryachev (cpb_34_3_030302bib8) 2014; 2
Sharma (cpb_34_3_030302bib34) 2021; 103
Barthel (cpb_34_3_030302bib24) 2010; 105
Koch (cpb_34_3_030302bib28) 2007; 76
Hofheinz (cpb_34_3_030302bib32) 2009; 459
Bai (cpb_34_3_030302bib9) 2015; 114
Zhang (cpb_34_3_030302bib10) 2017; 8
Li (cpb_34_3_030302bib43) 2021; 2
Krantz (cpb_34_3_030302bib29) 2019; 6
Guo (cpb_34_3_030302bib48) 2021; 38
Viola (cpb_34_3_030302bib19) 1999; 83
Nielsen (cpb_34_3_030302bib36) 2000
Zhang (cpb_34_3_030302bib18) 2023; 107
Suter (cpb_34_3_030302bib27) 2016; 88
Zhu (cpb_34_3_030302bib49) 2022; 31
Zhang (cpb_34_3_030302bib38) 2016; 117
Clerk (cpb_34_3_030302bib1) 2020; 16
References_xml – volume: 349
  start-page: 405
  year: 2015
  ident: cpb_34_3_030302bib11
  publication-title: Science
  doi: 10.1126/science.aaa3693
– volume: 38
  year: 2021
  ident: cpb_34_3_030302bib48
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/38/9/094203
– volume: 117
  year: 2016
  ident: cpb_34_3_030302bib38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.123605
– volume: 588
  start-page: 599
  year: 2020
  ident: cpb_34_3_030302bib42
  publication-title: Nature
  doi: 10.1038/s41586-020-3038-6
– volume: 113
  year: 2014
  ident: cpb_34_3_030302bib7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.156401
– volume: 6
  year: 2019
  ident: cpb_34_3_030302bib29
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5089550
– volume: 2
  year: 2016
  ident: cpb_34_3_030302bib39
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501286
– volume: 31
  year: 2022
  ident: cpb_34_3_030302bib49
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ac8919
– volume: 100
  year: 2019
  ident: cpb_34_3_030302bib33
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.100.013810
– volume: 114
  year: 2015
  ident: cpb_34_3_030302bib9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.227201
– volume: 93
  year: 2021
  ident: cpb_34_3_030302bib30
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.93.025005
– volume: 7
  start-page: 565
  year: 2011
  ident: cpb_34_3_030302bib23
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1994
– volume: 2
  year: 2021
  ident: cpb_34_3_030302bib43
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.2.040344
– volume: 3
  year: 2017
  ident: cpb_34_3_030302bib12
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1603150
– volume: 107
  year: 2023
  ident: cpb_34_3_030302bib18
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.107.012410
– volume: 83
  start-page: 4888
  year: 1999
  ident: cpb_34_3_030302bib19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.4888
– volume: 330
  start-page: 60
  year: 2010
  ident: cpb_34_3_030302bib26
  publication-title: Science
  doi: 10.1126/science.1192739
– volume: 965
  start-page: 1
  year: 2022
  ident: cpb_34_3_030302bib3
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2022.03.002
– volume: 100
  year: 2019
  ident: cpb_34_3_030302bib16
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.134421
– volume: 88
  year: 2016
  ident: cpb_34_3_030302bib27
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.88.041001
– volume: 105
  year: 2010
  ident: cpb_34_3_030302bib24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.266808
– volume: 105
  year: 2022
  ident: cpb_34_3_030302bib17
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.105.022624
– volume: 3
  year: 2020
  ident: cpb_34_3_030302bib41
  publication-title: Adv. Quantum Technol.
  doi: 10.1002/qute.v3.1
– volume: 130
  year: 2023
  ident: cpb_34_3_030302bib14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.130.193603
– volume: 12
  year: 2019
  ident: cpb_34_3_030302bib2
  publication-title: Appl. Phys. Express
  doi: 10.7567/1882-0786/ab248d
– volume: 65
  year: 2022
  ident: cpb_34_3_030302bib15
  publication-title: Sci. China-Phys. Mech. Astron.
  doi: 10.1007/s11433-021-1880-7
– volume: 2
  year: 2021
  ident: cpb_34_3_030302bib44
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.2.040314
– volume: 16
  start-page: 257
  year: 2020
  ident: cpb_34_3_030302bib1
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0797-9
– volume: 113
  year: 2014
  ident: cpb_34_3_030302bib5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.083603
– volume: 8
  start-page: 1368
  year: 2017
  ident: cpb_34_3_030302bib10
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01634-w
– year: 2000
  ident: cpb_34_3_030302bib36
– volume: 84
  year: 2011
  ident: cpb_34_3_030302bib21
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.84.012305
– volume: 33
  year: 2024
  ident: cpb_34_3_030302bib47
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ad1747
– volume: 105
  year: 2010
  ident: cpb_34_3_030302bib20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.230503
– volume: 454
  start-page: 310
  year: 2008
  ident: cpb_34_3_030302bib31
  publication-title: Nature
  doi: 10.1038/nature07136
– volume: 2
  year: 2014
  ident: cpb_34_3_030302bib8
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.2.054002
– volume: 367
  start-page: 425
  year: 2020
  ident: cpb_34_3_030302bib13
  publication-title: Science
  doi: 10.1126/science.aaz9236
– volume: 979
  start-page: 1
  year: 2022
  ident: cpb_34_3_030302bib4
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2022.06.001
– volume: 103
  year: 2021
  ident: cpb_34_3_030302bib34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.103.L100403
– volume: 459
  start-page: 546
  year: 2009
  ident: cpb_34_3_030302bib32
  publication-title: Nature
  doi: 10.1038/nature08005
– volume: 3
  year: 2022
  ident: cpb_34_3_030302bib35
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.3.010329
– volume: 129
  year: 2022
  ident: cpb_34_3_030302bib45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.129.123601
– volume: 111
  year: 2013
  ident: cpb_34_3_030302bib6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.127003
– volume: 112
  start-page: 3866
  year: 2015
  ident: cpb_34_3_030302bib46
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1419326112
– volume: 76
  year: 2007
  ident: cpb_34_3_030302bib28
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.76.042319
– volume: 458
  start-page: 996
  year: 2009
  ident: cpb_34_3_030302bib22
  publication-title: Nature
  doi: 10.1038/nature07951
– volume: 116
  year: 2016
  ident: cpb_34_3_030302bib37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.223601
– volume: 7
  start-page: 109
  year: 2011
  ident: cpb_34_3_030302bib25
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1856
– volume: 5
  year: 2020
  ident: cpb_34_3_030302bib40
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/ab8962
SSID ssj0061023
Score 2.3650153
Snippet Hybrid systems consisting of superconducting circuits and magnon systems are a promising platform for quantum technology. However, realizing high-fidelity...
SourceID crossref
iop
SourceType Index Database
Publisher
StartPage 30302
SubjectTerms circuit QED
entanglement production
quantum information with hybrid systems
Title Coherence-protected operations in hybrid superconducting circuit-magnon system
URI https://iopscience.iop.org/article/10.1088/1674-1056/ada550
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zInjxW5xf9KAHD9m6Ns0HnkSUKTg9ONhBKGma4BC2sbYH_evNa1JRURBvpTyS8HhJ3o_83u8hdBIKHQmiYiwMAYASCyy43Ve5lFTEWiitoBr5bkgHI3I7TsYtdP5RCzOb-6O_az-dULBzoSfE8R7w5jE0jO_JXCaA15ehcSWE9839Q3MMU9AkALTVWPs3yp9G-HInLdl5P10x1-voqVmcY5a8dKsy66q3b7qN_1z9BlrzqWdw4Uw3UUtPt9BKTQFVxTYaQqVGXfuHvXiDzoPZXLsQKYLJNHh-hfquoKjsX4ujQSrW3nyBmixUNbEAGlh708CJQ--g0fXV4-UA-24LWNmcrMRxxEFMT_Z13X4jEaTPLDiJjeIyZCJjhmdSS5JTSihVWd7nyoTQFZfriCV5vIvadhK9B3Sp0GTcEJ5ITiQDUMYk5ZEihkU2n-ugs8bf6dyJaqT1YzjnKfgnBf-kzj8ddGpdmfqdVfxqt_9HuwO0GkEL35pGdoja5aLSRzavKLPjOn7eAY_gxFY
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9uonjxW5yfPejBQ7euTdPkKOrY_Jg7ONitpmmCQ9jK2h70rzevSUFFQfBWStq0j-S99yO_93sInXlM-gyLwGUKA0AJmMuo3lcp54QFkgkpoBr5YUj6Y3w7CSe2z2lVCzPPrOtv60sjFGxMaAlxtAO8eRcaxnd4ykFlO0tVAy2H2hUDp2vwOKpdMQFdAkBc9RP2nPKnt3yJSw0996cw09tAz_UHGnbJa7sskrZ4_6bd-I8_2ETrNgV1Ls3wLbQkZ9topaKCinwHDaFio6oBdK2Ig0ydeSbNUsmd6cx5eYM6Lycv9V2Np0EyVkdAR0wXopxqIA3svZljRKJ30bh383TVd23XBVfo3KxwA5-CqB7vyqoNR8hwN9IgJVCCci9iSaRowiXHKSGYEJGkXSqUB91xqfSjMA32UFNPIveBNuWphCpMQ04xjwCcRZxQX2AV-Tqva6GL2uZxZsQ14upQnNIYbBSDjWJjoxY61-aM7Q7Lfx138Mdxp2h1dN2L7wfDu0O05kNX34pZdoSaxaKUxzrVKJKTajl9AHtuybo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coherence-protected+operations+in+hybrid+superconducting+circuit-magnon+system&rft.jtitle=Chinese+physics+B&rft.au=Zhu+%E6%9C%B1%2C+Le-Tian+%E4%B9%90%E5%A4%A9&rft.au=Zhu+%E6%9C%B1%2C+Xing-Yu+%E8%A1%8C%E5%AE%87&rft.au=Yue+%E5%B2%B3%2C+Zhu-Cheng+%E7%A5%9D%E8%AF%9A&rft.au=Tu+%E6%B6%82%2C+Tao+%E6%B6%9B&rft.date=2025-03-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.volume=34&rft.issue=3&rft.spage=30302&rft_id=info:doi/10.1088%2F1674-1056%2Fada550&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_ada550
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-1056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-1056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-1056&client=summon