Coherence-protected operations in hybrid superconducting circuit-magnon system
Hybrid systems consisting of superconducting circuits and magnon systems are a promising platform for quantum technology. However, realizing high-fidelity magnon state preparation and manipulation remains an outstanding challenge due to the complexity of interactions and noise sources in hybrid syst...
Saved in:
Published in | Chinese physics B Vol. 34; no. 3; pp. 30302 - 30308 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/ada550 |
Cover
Abstract | Hybrid systems consisting of superconducting circuits and magnon systems are a promising platform for quantum technology. However, realizing high-fidelity magnon state preparation and manipulation remains an outstanding challenge due to the complexity of interactions and noise sources in hybrid systems. Here, we propose a coherence-preserving magnon state manipulation scheme. By engineering a superconducting-magnon coupling pulse and combining it with dynamical decoupling pulses, we design a composite pulse sequence. We demonstrate the manipulation and preparation of non-classical states of magnons with a fidelity of up to 98% under realistic conditions. These designs significantly improve the fidelity of manipulation and robustness to noise in hybrid systems compared to existing schemes. These results pave the way for practical applications of quantum magnonics platforms. |
---|---|
AbstractList | Hybrid systems consisting of superconducting circuits and magnon systems are a promising platform for quantum technology. However, realizing high-fidelity magnon state preparation and manipulation remains an outstanding challenge due to the complexity of interactions and noise sources in hybrid systems. Here, we propose a coherence-preserving magnon state manipulation scheme. By engineering a superconducting-magnon coupling pulse and combining it with dynamical decoupling pulses, we design a composite pulse sequence. We demonstrate the manipulation and preparation of non-classical states of magnons with a fidelity of up to 98% under realistic conditions. These designs significantly improve the fidelity of manipulation and robustness to noise in hybrid systems compared to existing schemes. These results pave the way for practical applications of quantum magnonics platforms. |
Author | Zhu, Le-Tian Zhu, Xing-Yu Li, Chuan-Feng Tu, Tao Yue, Zhu-Cheng |
Author_xml | – sequence: 1 givenname: Le-Tian surname: Zhu fullname: Zhu, Le-Tian organization: Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China , Hefei 230026, China – sequence: 2 givenname: Xing-Yu surname: Zhu fullname: Zhu, Xing-Yu organization: School of Mechanical and Electronic Engineering, Suzhou University , Suzhou 234000, China – sequence: 3 givenname: Zhu-Cheng surname: Yue fullname: Yue, Zhu-Cheng organization: Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China , Hefei 230026, China – sequence: 4 givenname: Tao surname: Tu fullname: Tu, Tao organization: Hefei National Laboratory, University of Science and Technology of China, Chinese Academy of Sciences , Hefei 230088, China – sequence: 5 givenname: Chuan-Feng surname: Li fullname: Li, Chuan-Feng organization: Hefei National Laboratory, University of Science and Technology of China, Chinese Academy of Sciences , Hefei 230088, China |
BookMark | eNp1UD1PwzAUtFCRaAs7Y34Aps_xR9wRVUCRKlhgthzbaV1RO7Kdof-eVEFsTE-6d3e6uwWahRgcQvcEHglIuSKiYZgAFyttNedwheY1cImppGyG5n_vG7TI-QggCNR0jt438eCSC8bhPsXiTHG2ir1LuvgYcuVDdTi3ydsqDyNqYrCDKT7sK-OTGXzBJ70fo1T5nIs73aLrTn9nd_d7l-jr5flzs8W7j9e3zdMOGyJowbSWHNZMEwesbiRfM9IIVtPOSA3Num062WqnmRWCCWFaS6TpgPCR6-qGW7pEMPmaFHNOrlN98iedzoqAuuyhLoXVpbCa9hglD5PEx14d45DCGPB_-g9VwmPv |
Cites_doi | 10.1126/science.aaa3693 10.1088/0256-307X/38/9/094203 10.1103/PhysRevLett.117.123605 10.1038/s41586-020-3038-6 10.1103/PhysRevLett.113.156401 10.1063/1.5089550 10.1126/sciadv.1501286 10.1088/1674-1056/ac8919 10.1103/PhysRevA.100.013810 10.1103/PhysRevLett.114.227201 10.1103/RevModPhys.93.025005 10.1038/nphys1994 10.1103/PRXQuantum.2.040344 10.1126/sciadv.1603150 10.1103/PhysRevA.107.012410 10.1103/PhysRevLett.83.4888 10.1126/science.1192739 10.1016/j.physrep.2022.03.002 10.1103/PhysRevB.100.134421 10.1103/RevModPhys.88.041001 10.1103/PhysRevLett.105.266808 10.1103/PhysRevA.105.022624 10.1002/qute.v3.1 10.1103/PhysRevLett.130.193603 10.7567/1882-0786/ab248d 10.1007/s11433-021-1880-7 10.1103/PRXQuantum.2.040314 10.1038/s41567-020-0797-9 10.1103/PhysRevLett.113.083603 10.1038/s41467-017-01634-w 10.1103/PhysRevA.84.012305 10.1088/1674-1056/ad1747 10.1103/PhysRevLett.105.230503 10.1038/nature07136 10.1103/PhysRevApplied.2.054002 10.1126/science.aaz9236 10.1016/j.physrep.2022.06.001 10.1103/PhysRevB.103.L100403 10.1038/nature08005 10.1103/PRXQuantum.3.010329 10.1103/PhysRevLett.129.123601 10.1103/PhysRevLett.111.127003 10.1073/pnas.1419326112 10.1103/PhysRevA.76.042319 10.1038/nature07951 10.1103/PhysRevLett.116.223601 10.1038/nphys1856 10.1088/2058-9565/ab8962 |
ContentType | Journal Article |
Copyright | 2025 Chinese Physical Society and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
Copyright_xml | – notice: 2025 Chinese Physical Society and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
DBID | AAYXX CITATION |
DOI | 10.1088/1674-1056/ada550 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2058-3834 |
ExternalDocumentID | 10_1088_1674_1056_ada550 cpb_34_3_030302 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 IJHAN IOP IZVLO KOT N5L PJBAE RIN RNS ROL RPA SY9 TCJ TGP U1G U5K W28 AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c163t-3285094a1e04278594176423fc8a079b7f8baea4d66466cbd18cf015278e275d3 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Tue Jul 01 05:25:50 EDT 2025 Tue Mar 11 23:40:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c163t-3285094a1e04278594176423fc8a079b7f8baea4d66466cbd18cf015278e275d3 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1088_1674_1056_ada550 iop_journals_10_1088_1674_1056_ada550 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250301 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 20250301 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chin. Phys. B |
PublicationYear | 2025 |
Publisher | Chinese Physical Society and IOP Publishing Ltd |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
References | Blais (cpb_34_3_030302bib30) 2021; 93 Wang (cpb_34_3_030302bib15) 2022; 65 Kurizki (cpb_34_3_030302bib46) 2015; 112 Chamberland (cpb_34_3_030302bib35) 2022; 3 Zhang (cpb_34_3_030302bib39) 2016; 2 Hofheinz (cpb_34_3_030302bib31) 2008; 454 Yuan (cpb_34_3_030302bib3) 2022; 965 Zhang (cpb_34_3_030302bib7) 2014; 113 Mirhosseini (cpb_34_3_030302bib42) 2020; 588 Bittencourt (cpb_34_3_030302bib33) 2019; 100 Lachance-Quirion (cpb_34_3_030302bib2) 2019; 12 Zhu (cpb_34_3_030302bib47) 2024; 33 Xu (cpb_34_3_030302bib14) 2023; 130 Biercuk (cpb_34_3_030302bib22) 2009; 458 Liu (cpb_34_3_030302bib16) 2019; 100 Huebl (cpb_34_3_030302bib6) 2013; 111 Bylander (cpb_34_3_030302bib23) 2011; 7 Tabuchi (cpb_34_3_030302bib11) 2015; 349 Osada (cpb_34_3_030302bib37) 2016; 116 Shen (cpb_34_3_030302bib45) 2022; 129 Zeuthen (cpb_34_3_030302bib40) 2020; 5 Lachance-Quirion (cpb_34_3_030302bib12) 2017; 3 Rameshti (cpb_34_3_030302bib4) 2022; 979 Bluhm (cpb_34_3_030302bib25) 2011; 7 Ng (cpb_34_3_030302bib21) 2011; 84 Fukami (cpb_34_3_030302bib44) 2021; 2 Tabuchi (cpb_34_3_030302bib5) 2014; 113 Lachance-Quirion (cpb_34_3_030302bib13) 2020; 367 Lange de (cpb_34_3_030302bib26) 2010; 330 Lambert (cpb_34_3_030302bib41) 2020; 3 Qi (cpb_34_3_030302bib17) 2022; 105 West (cpb_34_3_030302bib20) 2010; 105 Goryachev (cpb_34_3_030302bib8) 2014; 2 Sharma (cpb_34_3_030302bib34) 2021; 103 Barthel (cpb_34_3_030302bib24) 2010; 105 Koch (cpb_34_3_030302bib28) 2007; 76 Hofheinz (cpb_34_3_030302bib32) 2009; 459 Bai (cpb_34_3_030302bib9) 2015; 114 Zhang (cpb_34_3_030302bib10) 2017; 8 Li (cpb_34_3_030302bib43) 2021; 2 Krantz (cpb_34_3_030302bib29) 2019; 6 Guo (cpb_34_3_030302bib48) 2021; 38 Viola (cpb_34_3_030302bib19) 1999; 83 Nielsen (cpb_34_3_030302bib36) 2000 Zhang (cpb_34_3_030302bib18) 2023; 107 Suter (cpb_34_3_030302bib27) 2016; 88 Zhu (cpb_34_3_030302bib49) 2022; 31 Zhang (cpb_34_3_030302bib38) 2016; 117 Clerk (cpb_34_3_030302bib1) 2020; 16 |
References_xml | – volume: 349 start-page: 405 year: 2015 ident: cpb_34_3_030302bib11 publication-title: Science doi: 10.1126/science.aaa3693 – volume: 38 year: 2021 ident: cpb_34_3_030302bib48 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/38/9/094203 – volume: 117 year: 2016 ident: cpb_34_3_030302bib38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.123605 – volume: 588 start-page: 599 year: 2020 ident: cpb_34_3_030302bib42 publication-title: Nature doi: 10.1038/s41586-020-3038-6 – volume: 113 year: 2014 ident: cpb_34_3_030302bib7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.156401 – volume: 6 year: 2019 ident: cpb_34_3_030302bib29 publication-title: Appl. Phys. Rev. doi: 10.1063/1.5089550 – volume: 2 year: 2016 ident: cpb_34_3_030302bib39 publication-title: Sci. Adv. doi: 10.1126/sciadv.1501286 – volume: 31 year: 2022 ident: cpb_34_3_030302bib49 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ac8919 – volume: 100 year: 2019 ident: cpb_34_3_030302bib33 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.100.013810 – volume: 114 year: 2015 ident: cpb_34_3_030302bib9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.227201 – volume: 93 year: 2021 ident: cpb_34_3_030302bib30 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.93.025005 – volume: 7 start-page: 565 year: 2011 ident: cpb_34_3_030302bib23 publication-title: Nat. Phys. doi: 10.1038/nphys1994 – volume: 2 year: 2021 ident: cpb_34_3_030302bib43 publication-title: PRX Quantum doi: 10.1103/PRXQuantum.2.040344 – volume: 3 year: 2017 ident: cpb_34_3_030302bib12 publication-title: Sci. Adv. doi: 10.1126/sciadv.1603150 – volume: 107 year: 2023 ident: cpb_34_3_030302bib18 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.107.012410 – volume: 83 start-page: 4888 year: 1999 ident: cpb_34_3_030302bib19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.4888 – volume: 330 start-page: 60 year: 2010 ident: cpb_34_3_030302bib26 publication-title: Science doi: 10.1126/science.1192739 – volume: 965 start-page: 1 year: 2022 ident: cpb_34_3_030302bib3 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2022.03.002 – volume: 100 year: 2019 ident: cpb_34_3_030302bib16 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.134421 – volume: 88 year: 2016 ident: cpb_34_3_030302bib27 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.88.041001 – volume: 105 year: 2010 ident: cpb_34_3_030302bib24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.266808 – volume: 105 year: 2022 ident: cpb_34_3_030302bib17 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.105.022624 – volume: 3 year: 2020 ident: cpb_34_3_030302bib41 publication-title: Adv. Quantum Technol. doi: 10.1002/qute.v3.1 – volume: 130 year: 2023 ident: cpb_34_3_030302bib14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.130.193603 – volume: 12 year: 2019 ident: cpb_34_3_030302bib2 publication-title: Appl. Phys. Express doi: 10.7567/1882-0786/ab248d – volume: 65 year: 2022 ident: cpb_34_3_030302bib15 publication-title: Sci. China-Phys. Mech. Astron. doi: 10.1007/s11433-021-1880-7 – volume: 2 year: 2021 ident: cpb_34_3_030302bib44 publication-title: PRX Quantum doi: 10.1103/PRXQuantum.2.040314 – volume: 16 start-page: 257 year: 2020 ident: cpb_34_3_030302bib1 publication-title: Nat. Phys. doi: 10.1038/s41567-020-0797-9 – volume: 113 year: 2014 ident: cpb_34_3_030302bib5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.083603 – volume: 8 start-page: 1368 year: 2017 ident: cpb_34_3_030302bib10 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01634-w – year: 2000 ident: cpb_34_3_030302bib36 – volume: 84 year: 2011 ident: cpb_34_3_030302bib21 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.84.012305 – volume: 33 year: 2024 ident: cpb_34_3_030302bib47 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ad1747 – volume: 105 year: 2010 ident: cpb_34_3_030302bib20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.230503 – volume: 454 start-page: 310 year: 2008 ident: cpb_34_3_030302bib31 publication-title: Nature doi: 10.1038/nature07136 – volume: 2 year: 2014 ident: cpb_34_3_030302bib8 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.2.054002 – volume: 367 start-page: 425 year: 2020 ident: cpb_34_3_030302bib13 publication-title: Science doi: 10.1126/science.aaz9236 – volume: 979 start-page: 1 year: 2022 ident: cpb_34_3_030302bib4 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2022.06.001 – volume: 103 year: 2021 ident: cpb_34_3_030302bib34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.L100403 – volume: 459 start-page: 546 year: 2009 ident: cpb_34_3_030302bib32 publication-title: Nature doi: 10.1038/nature08005 – volume: 3 year: 2022 ident: cpb_34_3_030302bib35 publication-title: PRX Quantum doi: 10.1103/PRXQuantum.3.010329 – volume: 129 year: 2022 ident: cpb_34_3_030302bib45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.129.123601 – volume: 111 year: 2013 ident: cpb_34_3_030302bib6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.127003 – volume: 112 start-page: 3866 year: 2015 ident: cpb_34_3_030302bib46 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1419326112 – volume: 76 year: 2007 ident: cpb_34_3_030302bib28 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.76.042319 – volume: 458 start-page: 996 year: 2009 ident: cpb_34_3_030302bib22 publication-title: Nature doi: 10.1038/nature07951 – volume: 116 year: 2016 ident: cpb_34_3_030302bib37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.223601 – volume: 7 start-page: 109 year: 2011 ident: cpb_34_3_030302bib25 publication-title: Nat. Phys. doi: 10.1038/nphys1856 – volume: 5 year: 2020 ident: cpb_34_3_030302bib40 publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/ab8962 |
SSID | ssj0061023 |
Score | 2.3650153 |
Snippet | Hybrid systems consisting of superconducting circuits and magnon systems are a promising platform for quantum technology. However, realizing high-fidelity... |
SourceID | crossref iop |
SourceType | Index Database Publisher |
StartPage | 30302 |
SubjectTerms | circuit QED entanglement production quantum information with hybrid systems |
Title | Coherence-protected operations in hybrid superconducting circuit-magnon system |
URI | https://iopscience.iop.org/article/10.1088/1674-1056/ada550 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zInjxW5xf9KAHD9m6Ns0HnkSUKTg9ONhBKGma4BC2sbYH_evNa1JRURBvpTyS8HhJ3o_83u8hdBIKHQmiYiwMAYASCyy43Ve5lFTEWiitoBr5bkgHI3I7TsYtdP5RCzOb-6O_az-dULBzoSfE8R7w5jE0jO_JXCaA15ehcSWE9839Q3MMU9AkALTVWPs3yp9G-HInLdl5P10x1-voqVmcY5a8dKsy66q3b7qN_1z9BlrzqWdw4Uw3UUtPt9BKTQFVxTYaQqVGXfuHvXiDzoPZXLsQKYLJNHh-hfquoKjsX4ujQSrW3nyBmixUNbEAGlh708CJQ--g0fXV4-UA-24LWNmcrMRxxEFMT_Z13X4jEaTPLDiJjeIyZCJjhmdSS5JTSihVWd7nyoTQFZfriCV5vIvadhK9B3Sp0GTcEJ5ITiQDUMYk5ZEihkU2n-ugs8bf6dyJaqT1YzjnKfgnBf-kzj8ddGpdmfqdVfxqt_9HuwO0GkEL35pGdoja5aLSRzavKLPjOn7eAY_gxFY |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9uonjxW5yfPejBQ7euTdPkKOrY_Jg7ONitpmmCQ9jK2h70rzevSUFFQfBWStq0j-S99yO_93sInXlM-gyLwGUKA0AJmMuo3lcp54QFkgkpoBr5YUj6Y3w7CSe2z2lVCzPPrOtv60sjFGxMaAlxtAO8eRcaxnd4ykFlO0tVAy2H2hUDp2vwOKpdMQFdAkBc9RP2nPKnt3yJSw0996cw09tAz_UHGnbJa7sskrZ4_6bd-I8_2ETrNgV1Ls3wLbQkZ9topaKCinwHDaFio6oBdK2Ig0ydeSbNUsmd6cx5eYM6Lycv9V2Np0EyVkdAR0wXopxqIA3svZljRKJ30bh383TVd23XBVfo3KxwA5-CqB7vyqoNR8hwN9IgJVCCci9iSaRowiXHKSGYEJGkXSqUB91xqfSjMA32UFNPIveBNuWphCpMQ04xjwCcRZxQX2AV-Tqva6GL2uZxZsQ14upQnNIYbBSDjWJjoxY61-aM7Q7Lfx138Mdxp2h1dN2L7wfDu0O05kNX34pZdoSaxaKUxzrVKJKTajl9AHtuybo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coherence-protected+operations+in+hybrid+superconducting+circuit-magnon+system&rft.jtitle=Chinese+physics+B&rft.au=Zhu+%E6%9C%B1%2C+Le-Tian+%E4%B9%90%E5%A4%A9&rft.au=Zhu+%E6%9C%B1%2C+Xing-Yu+%E8%A1%8C%E5%AE%87&rft.au=Yue+%E5%B2%B3%2C+Zhu-Cheng+%E7%A5%9D%E8%AF%9A&rft.au=Tu+%E6%B6%82%2C+Tao+%E6%B6%9B&rft.date=2025-03-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.volume=34&rft.issue=3&rft.spage=30302&rft_id=info:doi/10.1088%2F1674-1056%2Fada550&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_ada550 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-1056&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-1056&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-1056&client=summon |