HIA-Net: Hierarchical Interactive Alignment Network for Multimodal Few-Shot Emotion Recognition
Physiological multimodal emotion recognition (PMER) has become a key research direction for advancing human-computer interaction and affective computing. However, current PMER methods are affected by significant individual differences and the limited number of samples, making it challenging to captu...
Saved in:
Published in | IEEE signal processing letters Vol. 32; pp. 2679 - 2683 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Physiological multimodal emotion recognition (PMER) has become a key research direction for advancing human-computer interaction and affective computing. However, current PMER methods are affected by significant individual differences and the limited number of samples, making it challenging to capture complex emotional states comprehensively. To address aforementioned issues, this letter proposes a novel multimodal Few-Shot emotion recognition model, called Hierarchical Interactive Alignment Network (HIA-Net). Specifically, the Hierarchical Adaptive Interactive Attention (HAIA) module of HIA-Net is proposed to capture multidimensional emotional features and aggregate the cross-modal information effectively. Additionally, a cross-domain optimization strategy based on the maximum mean discrepancy is proposed to enhance the HIA-Net's adaptability across varying data distributions. Experimental results show that HIA-Net achieves state-of-the-art performance under Few-Shot experimental paradigms on the SEED and SEED-FRA datasets. |
---|---|
AbstractList | Physiological multimodal emotion recognition (PMER) has become a key research direction for advancing human-computer interaction and affective computing. However, current PMER methods are affected by significant individual differences and the limited number of samples, making it challenging to capture complex emotional states comprehensively. To address aforementioned issues, this letter proposes a novel multimodal Few-Shot emotion recognition model, called Hierarchical Interactive Alignment Network (HIA-Net). Specifically, the Hierarchical Adaptive Interactive Attention (HAIA) module of HIA-Net is proposed to capture multidimensional emotional features and aggregate the cross-modal information effectively. Additionally, a cross-domain optimization strategy based on the maximum mean discrepancy is proposed to enhance the HIA-Net's adaptability across varying data distributions. Experimental results show that HIA-Net achieves state-of-the-art performance under Few-Shot experimental paradigms on the SEED and SEED-FRA datasets. |
Author | Gong, Xinrong Zeng, Huanqiang Sun, Song Fu, Yuankang Yang, Kaixiang |
Author_xml | – sequence: 1 givenname: Yuankang orcidid: 0009-0000-5292-0536 surname: Fu fullname: Fu, Yuankang organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 2 givenname: Kaixiang orcidid: 0000-0003-2180-2101 surname: Yang fullname: Yang, Kaixiang organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 3 givenname: Song orcidid: 0009-0000-9766-8514 surname: Sun fullname: Sun, Song organization: School of Computer and Information Science, Chongqing Normal University, Chongqing, China – sequence: 4 givenname: Xinrong orcidid: 0000-0001-5821-6283 surname: Gong fullname: Gong, Xinrong email: gongxr@hqu.edu.cn organization: School of Engineering, Huaqiao University, Quanzhou, China – sequence: 5 givenname: Huanqiang orcidid: 0000-0002-2802-7745 surname: Zeng fullname: Zeng, Huanqiang organization: School of Engineering, Huaqiao University, Quanzhou, China |
BookMark | eNpFkEtPAjEURhuDiYDuXbho4nqwD6YPd4SAkOAjoutmpu1AcZhip0j895ZA4up-NznfvcnpgU7jGwvALUYDjJF8WCzfBgSRfEBzMSScXoAuznOREcpwJ2XEUSYlEleg17YbhJDAIu8CNZuPshcbH-HM2VAEvXa6qOG8iWnT0f1YOKrdqtnaJsLEHXz4gpUP8HlfR7f1JsFTe8iWax_hZOuj8w18t9qvGnfM1-CyKurW3pxnH3xOJx_jWbZ4fZqPR4tMY0ZixhkvsbElNUJSoSWzjBlT8IKYamhKIqkkvGKallyWQ2pMWXFDGSWyNIikTh_cn-7ugv_e2zaqjd-HJr1UlFCUM0wESRQ6UTr4tg22UrvgtkX4VRipo0aVNKqjRnXWmCp3p4qz1v7jGOWCpr9_pLdwdw |
CODEN | ISPLEM |
Cites_doi | 10.1109/TCSS.2023.3298324 10.5555/3294996.3295163 10.1109/jbhi.2025.3558935 10.1088/1741-2552/ac5c8d 10.1109/ACCESS.2024.3430850 10.1016/j.eswa.2025.127348 10.1109/EMBC48229.2022.9871605 10.1109/TIM.2023.3276515 10.1109/LSP.2024.3353679 10.1109/CVPR.2016.90 10.3389/fnhum.2024.1464431 10.7717/peerj-cs.2065 10.1111/j.1469-8986.2008.00654.x 10.1177/1754073911410737 10.1177/1754073913512003 10.3389/fnins.2023.1287377 10.1109/TCYB.2018.2797176 10.1145/3582688 10.1016/j.neunet.2024.106600 10.1016/j.neunet.2024.107060 10.1088/1741-2552/aace8c 10.1109/TCSVT.2024.3362270 10.1109/TAFFC.2024.3357656 10.3389/fnhum.2023.1250666 10.1109/BIBM52615.2021.9669542 10.1109/TAFFC.2024.3392791 10.1109/TAMD.2015.2431497 10.3390/brainsci15030220 10.1016/j.compbiomed.2022.105519 10.1109/CVPR52729.2023.01921 10.48550/ARXIV.1807.06521 10.3389/fnins.2024.1320645 10.3389/fpsyg.2025.1565130 10.1109/CVPR.2017.243 10.1016/j.iswa.2022.200171 10.1109/LSP.2022.3152686 10.3390/info13110550 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/LSP.2025.3584273 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2361 |
EndPage | 2683 |
ExternalDocumentID | 10_1109_LSP_2025_3584273 11058389 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62476101 funderid: 10.13039/501100001809 – fundername: High-level Talent Team Project of Quanzhou City grantid: 2023CT001 – fundername: Fundamental Research Funds for the Central Universities grantid: 2024ZYGXZR062 funderid: 10.13039/501100012226 – fundername: Natural Science Foundation of Xiamen grantid: 3502Z202571034 – fundername: Scientific Research Funds of Huaqiao University grantid: 24BS141 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c162t-767b1deb3d8938c96e66dda7a2df4db293927f6c3b79b43ddbf7d36329bd02893 |
IEDL.DBID | RIE |
ISSN | 1070-9908 |
IngestDate | Thu Jul 17 02:03:35 EDT 2025 Wed Aug 06 19:09:56 EDT 2025 Wed Aug 27 02:00:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c162t-767b1deb3d8938c96e66dda7a2df4db293927f6c3b79b43ddbf7d36329bd02893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5821-6283 0000-0002-2802-7745 0009-0000-9766-8514 0009-0000-5292-0536 0000-0003-2180-2101 |
PQID | 3230561282 |
PQPubID | 75747 |
PageCount | 5 |
ParticipantIDs | proquest_journals_3230561282 crossref_primary_10_1109_LSP_2025_3584273 ieee_primary_11058389 |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE signal processing letters |
PublicationTitleAbbrev | LSP |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 Finn (ref37) 2017; 70 ref14 ref31 ref30 ref11 ref33 ref32 ref2 ref1 ref17 ref39 Scherer (ref5) 2010 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 Maaten (ref40) 2014; 15 ref41 ref22 ref21 Li (ref10) 2023 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 Vinyals (ref36) 2016; 29 |
References_xml | – ident: ref18 doi: 10.1109/TCSS.2023.3298324 – ident: ref30 doi: 10.5555/3294996.3295163 – ident: ref42 doi: 10.1109/jbhi.2025.3558935 – ident: ref33 doi: 10.1088/1741-2552/ac5c8d – ident: ref9 doi: 10.1109/ACCESS.2024.3430850 – ident: ref16 doi: 10.1016/j.eswa.2025.127348 – ident: ref19 doi: 10.1109/EMBC48229.2022.9871605 – ident: ref21 doi: 10.1109/TIM.2023.3276515 – ident: ref6 doi: 10.1109/LSP.2024.3353679 – ident: ref27 doi: 10.1109/CVPR.2016.90 – ident: ref26 doi: 10.3389/fnhum.2024.1464431 – ident: ref13 doi: 10.7717/peerj-cs.2065 – ident: ref17 doi: 10.1111/j.1469-8986.2008.00654.x – ident: ref1 doi: 10.1177/1754073911410737 – ident: ref4 doi: 10.1177/1754073913512003 – volume: 70 start-page: 1126 volume-title: Proc. 34th Int. Conf. Mach. Learn. year: 2017 ident: ref37 article-title: Model-agnostic meta-learning for fast adaptation of deep networks – ident: ref20 doi: 10.3389/fnins.2023.1287377 – ident: ref35 doi: 10.1109/TCYB.2018.2797176 – start-page: 166 volume-title: Blueprint for Affective Computing: A Sourcebook and Manual year: 2010 ident: ref5 article-title: On the use of actor portrayals in research on emotional expression – ident: ref23 doi: 10.1145/3582688 – ident: ref31 doi: 10.1016/j.neunet.2024.106600 – year: 2023 ident: ref10 article-title: TACOformer: Token-channel compounded cross attention for multimodal emotion recognition – ident: ref15 doi: 10.1016/j.neunet.2024.107060 – ident: ref7 doi: 10.1088/1741-2552/aace8c – volume: 15 start-page: 3221 issue: 1 year: 2014 ident: ref40 article-title: Accelerating t-SNE using tree-based algorithms publication-title: J. Mach. Learn. Res. – ident: ref24 doi: 10.1109/TCSVT.2024.3362270 – ident: ref25 doi: 10.1109/TAFFC.2024.3357656 – ident: ref2 doi: 10.3389/fnhum.2023.1250666 – ident: ref34 doi: 10.1109/BIBM52615.2021.9669542 – ident: ref22 doi: 10.1109/TAFFC.2024.3392791 – ident: ref32 doi: 10.1109/TAMD.2015.2431497 – ident: ref12 doi: 10.3390/brainsci15030220 – ident: ref38 doi: 10.1016/j.compbiomed.2022.105519 – ident: ref39 doi: 10.1109/CVPR52729.2023.01921 – ident: ref28 doi: 10.48550/ARXIV.1807.06521 – volume: 29 start-page: 3637 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2016 ident: ref36 article-title: Matching networks for one shot learning – ident: ref14 doi: 10.3389/fnins.2024.1320645 – ident: ref3 doi: 10.3389/fpsyg.2025.1565130 – ident: ref29 doi: 10.1109/CVPR.2017.243 – ident: ref8 doi: 10.1016/j.iswa.2022.200171 – ident: ref41 doi: 10.1109/LSP.2022.3152686 – ident: ref11 doi: 10.3390/info13110550 |
SSID | ssj0008185 |
Score | 2.436634 |
Snippet | Physiological multimodal emotion recognition (PMER) has become a key research direction for advancing human-computer interaction and affective computing.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2679 |
SubjectTerms | Affective computing Alignment Brain modeling cross-subject Data mining domain adaptation EEG Electroencephalography Emotion recognition Emotional factors Emotions Feature extraction Few shot learning Logic gates physiological multimodal emotion recognition Physiology Prototypes Training |
Title | HIA-Net: Hierarchical Interactive Alignment Network for Multimodal Few-Shot Emotion Recognition |
URI | https://ieeexplore.ieee.org/document/11058389 https://www.proquest.com/docview/3230561282 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-Ekx78xIii6cGLh0JZR0e9EQNBo8SIJNyW9UuJyIyOmPjX-9ptfsbE2w7d0vR17_d-7xOhY9kxiqqIE0u1IqENGEmkSIgFcFGA90ABXIHz1YgPJ-HFtDMtitV9LYwxxiefmaZ79LF8naqlc5W1AKpclE9UUAWYW16s9aF2HfLkCYaUgIrtljFJKlqX42tggkGnyQBug4h9wyA_VOWXJvbwMthAo3JjeVbJQ3OZyaZ6-9Gz8d8730TrhaGJe_nN2EIrZrGN1r60H9xB8fC8R0YmO8XDmatD9mNR5tg7CROvB3FvPrvz-QJ4lOeLYzBysa_afUw1LB6YVzK-TzPcz-cB4ZsyIyld1NBk0L89G5Ji4AJRbR5kJOKRbGug1xqsmK4S3HCudRIlgbahlmAZiCCyXDEZCRkyraWNNOMsEFK7iCXbRdVFujB7CFsediwVrt87cCJhZEKtEMZS2RUqsbSOTkoRxE95X43Y8xEqYhBX7MQVF-Kqo5o70c91xWHWUaMUWlz8eS8xCzwpAia5_8drB2jVfT33ozRQNXtemkOwLDJ55G_UO5OiywA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB619NByaEsBsS0tPnDh4MUbJ866t1XFKpQlqnhI3Kz4BQjYVG1Wlfj1jJ0EChVSbzk4iuVx5ptvngDbOnOGmVxQz6yhqU84rbSsqEdwMYj3SAFCgfNhKYrT9PtZdtYVq8daGOdcTD5zw_AYY_m2NovgKttFqApRPvkSXiHwZ6O2XOte8QbsaVMMGUUlO-6jkkzuzo5_IBdMsiFHwE1y_giF4liVf3RxBJjpOyj7rbV5JVfDRaOH5vZJ18b_3vt7eNuZmmTS3o0VeOHmH2D5rwaEq6CK_QktXfOVFJehEjkORrkm0U1YRU1IJteX5zFjgJRtxjhBM5fEut2b2uLiqftDjy_qhuy1E4HIUZ-TVM_X4HS6d_KtoN3IBWpGImloLnI9skiwLdoxYyOFE8LaKq8S61Or0TaQSe6F4TqXOuXWap9bLngitQ0xS74OS_N67jaAeJFmnsnQ8R1ZkXS6Yl5K55keS1N5NoCdXgTqZ9tZQ0VGwqRCcakgLtWJawBr4UQf1nWHOYDNXmiq-_d-K55EWoRc8uMzr23B6-LkcKZm--XBJ3gTvtR6VTZhqfm1cJ_Rzmj0l3i77gBXK85J |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HIA-Net%3A+Hierarchical+Interactive+Alignment+Network+for+Multimodal+Few-Shot+Emotion+Recognition&rft.jtitle=IEEE+signal+processing+letters&rft.au=Fu%2C+Yuankang&rft.au=Yang%2C+Kaixiang&rft.au=Sun%2C+Song&rft.au=Gong%2C+Xinrong&rft.date=2025&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=32&rft.spage=2679&rft.epage=2683&rft_id=info:doi/10.1109%2FLSP.2025.3584273&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LSP_2025_3584273 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon |