HIA-Net: Hierarchical Interactive Alignment Network for Multimodal Few-Shot Emotion Recognition

Physiological multimodal emotion recognition (PMER) has become a key research direction for advancing human-computer interaction and affective computing. However, current PMER methods are affected by significant individual differences and the limited number of samples, making it challenging to captu...

Full description

Saved in:
Bibliographic Details
Published inIEEE signal processing letters Vol. 32; pp. 2679 - 2683
Main Authors Fu, Yuankang, Yang, Kaixiang, Sun, Song, Gong, Xinrong, Zeng, Huanqiang
Format Journal Article
LanguageEnglish
Published New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Physiological multimodal emotion recognition (PMER) has become a key research direction for advancing human-computer interaction and affective computing. However, current PMER methods are affected by significant individual differences and the limited number of samples, making it challenging to capture complex emotional states comprehensively. To address aforementioned issues, this letter proposes a novel multimodal Few-Shot emotion recognition model, called Hierarchical Interactive Alignment Network (HIA-Net). Specifically, the Hierarchical Adaptive Interactive Attention (HAIA) module of HIA-Net is proposed to capture multidimensional emotional features and aggregate the cross-modal information effectively. Additionally, a cross-domain optimization strategy based on the maximum mean discrepancy is proposed to enhance the HIA-Net's adaptability across varying data distributions. Experimental results show that HIA-Net achieves state-of-the-art performance under Few-Shot experimental paradigms on the SEED and SEED-FRA datasets.
AbstractList Physiological multimodal emotion recognition (PMER) has become a key research direction for advancing human-computer interaction and affective computing. However, current PMER methods are affected by significant individual differences and the limited number of samples, making it challenging to capture complex emotional states comprehensively. To address aforementioned issues, this letter proposes a novel multimodal Few-Shot emotion recognition model, called Hierarchical Interactive Alignment Network (HIA-Net). Specifically, the Hierarchical Adaptive Interactive Attention (HAIA) module of HIA-Net is proposed to capture multidimensional emotional features and aggregate the cross-modal information effectively. Additionally, a cross-domain optimization strategy based on the maximum mean discrepancy is proposed to enhance the HIA-Net's adaptability across varying data distributions. Experimental results show that HIA-Net achieves state-of-the-art performance under Few-Shot experimental paradigms on the SEED and SEED-FRA datasets.
Author Gong, Xinrong
Zeng, Huanqiang
Sun, Song
Fu, Yuankang
Yang, Kaixiang
Author_xml – sequence: 1
  givenname: Yuankang
  orcidid: 0009-0000-5292-0536
  surname: Fu
  fullname: Fu, Yuankang
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 2
  givenname: Kaixiang
  orcidid: 0000-0003-2180-2101
  surname: Yang
  fullname: Yang, Kaixiang
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 3
  givenname: Song
  orcidid: 0009-0000-9766-8514
  surname: Sun
  fullname: Sun, Song
  organization: School of Computer and Information Science, Chongqing Normal University, Chongqing, China
– sequence: 4
  givenname: Xinrong
  orcidid: 0000-0001-5821-6283
  surname: Gong
  fullname: Gong, Xinrong
  email: gongxr@hqu.edu.cn
  organization: School of Engineering, Huaqiao University, Quanzhou, China
– sequence: 5
  givenname: Huanqiang
  orcidid: 0000-0002-2802-7745
  surname: Zeng
  fullname: Zeng, Huanqiang
  organization: School of Engineering, Huaqiao University, Quanzhou, China
BookMark eNpFkEtPAjEURhuDiYDuXbho4nqwD6YPd4SAkOAjoutmpu1AcZhip0j895ZA4up-NznfvcnpgU7jGwvALUYDjJF8WCzfBgSRfEBzMSScXoAuznOREcpwJ2XEUSYlEleg17YbhJDAIu8CNZuPshcbH-HM2VAEvXa6qOG8iWnT0f1YOKrdqtnaJsLEHXz4gpUP8HlfR7f1JsFTe8iWax_hZOuj8w18t9qvGnfM1-CyKurW3pxnH3xOJx_jWbZ4fZqPR4tMY0ZixhkvsbElNUJSoSWzjBlT8IKYamhKIqkkvGKallyWQ2pMWXFDGSWyNIikTh_cn-7ugv_e2zaqjd-HJr1UlFCUM0wESRQ6UTr4tg22UrvgtkX4VRipo0aVNKqjRnXWmCp3p4qz1v7jGOWCpr9_pLdwdw
CODEN ISPLEM
Cites_doi 10.1109/TCSS.2023.3298324
10.5555/3294996.3295163
10.1109/jbhi.2025.3558935
10.1088/1741-2552/ac5c8d
10.1109/ACCESS.2024.3430850
10.1016/j.eswa.2025.127348
10.1109/EMBC48229.2022.9871605
10.1109/TIM.2023.3276515
10.1109/LSP.2024.3353679
10.1109/CVPR.2016.90
10.3389/fnhum.2024.1464431
10.7717/peerj-cs.2065
10.1111/j.1469-8986.2008.00654.x
10.1177/1754073911410737
10.1177/1754073913512003
10.3389/fnins.2023.1287377
10.1109/TCYB.2018.2797176
10.1145/3582688
10.1016/j.neunet.2024.106600
10.1016/j.neunet.2024.107060
10.1088/1741-2552/aace8c
10.1109/TCSVT.2024.3362270
10.1109/TAFFC.2024.3357656
10.3389/fnhum.2023.1250666
10.1109/BIBM52615.2021.9669542
10.1109/TAFFC.2024.3392791
10.1109/TAMD.2015.2431497
10.3390/brainsci15030220
10.1016/j.compbiomed.2022.105519
10.1109/CVPR52729.2023.01921
10.48550/ARXIV.1807.06521
10.3389/fnins.2024.1320645
10.3389/fpsyg.2025.1565130
10.1109/CVPR.2017.243
10.1016/j.iswa.2022.200171
10.1109/LSP.2022.3152686
10.3390/info13110550
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LSP.2025.3584273
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 2683
ExternalDocumentID 10_1109_LSP_2025_3584273
11058389
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62476101
  funderid: 10.13039/501100001809
– fundername: High-level Talent Team Project of Quanzhou City
  grantid: 2023CT001
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2024ZYGXZR062
  funderid: 10.13039/501100012226
– fundername: Natural Science Foundation of Xiamen
  grantid: 3502Z202571034
– fundername: Scientific Research Funds of Huaqiao University
  grantid: 24BS141
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c162t-767b1deb3d8938c96e66dda7a2df4db293927f6c3b79b43ddbf7d36329bd02893
IEDL.DBID RIE
ISSN 1070-9908
IngestDate Thu Jul 17 02:03:35 EDT 2025
Wed Aug 06 19:09:56 EDT 2025
Wed Aug 27 02:00:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c162t-767b1deb3d8938c96e66dda7a2df4db293927f6c3b79b43ddbf7d36329bd02893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5821-6283
0000-0002-2802-7745
0009-0000-9766-8514
0009-0000-5292-0536
0000-0003-2180-2101
PQID 3230561282
PQPubID 75747
PageCount 5
ParticipantIDs proquest_journals_3230561282
crossref_primary_10_1109_LSP_2025_3584273
ieee_primary_11058389
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
Finn (ref37) 2017; 70
ref14
ref31
ref30
ref11
ref33
ref32
ref2
ref1
ref17
ref39
Scherer (ref5) 2010
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
Maaten (ref40) 2014; 15
ref41
ref22
ref21
Li (ref10) 2023
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
Vinyals (ref36) 2016; 29
References_xml – ident: ref18
  doi: 10.1109/TCSS.2023.3298324
– ident: ref30
  doi: 10.5555/3294996.3295163
– ident: ref42
  doi: 10.1109/jbhi.2025.3558935
– ident: ref33
  doi: 10.1088/1741-2552/ac5c8d
– ident: ref9
  doi: 10.1109/ACCESS.2024.3430850
– ident: ref16
  doi: 10.1016/j.eswa.2025.127348
– ident: ref19
  doi: 10.1109/EMBC48229.2022.9871605
– ident: ref21
  doi: 10.1109/TIM.2023.3276515
– ident: ref6
  doi: 10.1109/LSP.2024.3353679
– ident: ref27
  doi: 10.1109/CVPR.2016.90
– ident: ref26
  doi: 10.3389/fnhum.2024.1464431
– ident: ref13
  doi: 10.7717/peerj-cs.2065
– ident: ref17
  doi: 10.1111/j.1469-8986.2008.00654.x
– ident: ref1
  doi: 10.1177/1754073911410737
– ident: ref4
  doi: 10.1177/1754073913512003
– volume: 70
  start-page: 1126
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  year: 2017
  ident: ref37
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
– ident: ref20
  doi: 10.3389/fnins.2023.1287377
– ident: ref35
  doi: 10.1109/TCYB.2018.2797176
– start-page: 166
  volume-title: Blueprint for Affective Computing: A Sourcebook and Manual
  year: 2010
  ident: ref5
  article-title: On the use of actor portrayals in research on emotional expression
– ident: ref23
  doi: 10.1145/3582688
– ident: ref31
  doi: 10.1016/j.neunet.2024.106600
– year: 2023
  ident: ref10
  article-title: TACOformer: Token-channel compounded cross attention for multimodal emotion recognition
– ident: ref15
  doi: 10.1016/j.neunet.2024.107060
– ident: ref7
  doi: 10.1088/1741-2552/aace8c
– volume: 15
  start-page: 3221
  issue: 1
  year: 2014
  ident: ref40
  article-title: Accelerating t-SNE using tree-based algorithms
  publication-title: J. Mach. Learn. Res.
– ident: ref24
  doi: 10.1109/TCSVT.2024.3362270
– ident: ref25
  doi: 10.1109/TAFFC.2024.3357656
– ident: ref2
  doi: 10.3389/fnhum.2023.1250666
– ident: ref34
  doi: 10.1109/BIBM52615.2021.9669542
– ident: ref22
  doi: 10.1109/TAFFC.2024.3392791
– ident: ref32
  doi: 10.1109/TAMD.2015.2431497
– ident: ref12
  doi: 10.3390/brainsci15030220
– ident: ref38
  doi: 10.1016/j.compbiomed.2022.105519
– ident: ref39
  doi: 10.1109/CVPR52729.2023.01921
– ident: ref28
  doi: 10.48550/ARXIV.1807.06521
– volume: 29
  start-page: 3637
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2016
  ident: ref36
  article-title: Matching networks for one shot learning
– ident: ref14
  doi: 10.3389/fnins.2024.1320645
– ident: ref3
  doi: 10.3389/fpsyg.2025.1565130
– ident: ref29
  doi: 10.1109/CVPR.2017.243
– ident: ref8
  doi: 10.1016/j.iswa.2022.200171
– ident: ref41
  doi: 10.1109/LSP.2022.3152686
– ident: ref11
  doi: 10.3390/info13110550
SSID ssj0008185
Score 2.436634
Snippet Physiological multimodal emotion recognition (PMER) has become a key research direction for advancing human-computer interaction and affective computing....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 2679
SubjectTerms Affective computing
Alignment
Brain modeling
cross-subject
Data mining
domain adaptation
EEG
Electroencephalography
Emotion recognition
Emotional factors
Emotions
Feature extraction
Few shot learning
Logic gates
physiological multimodal emotion recognition
Physiology
Prototypes
Training
Title HIA-Net: Hierarchical Interactive Alignment Network for Multimodal Few-Shot Emotion Recognition
URI https://ieeexplore.ieee.org/document/11058389
https://www.proquest.com/docview/3230561282
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-Ekx78xIii6cGLh0JZR0e9EQNBo8SIJNyW9UuJyIyOmPjX-9ptfsbE2w7d0vR17_d-7xOhY9kxiqqIE0u1IqENGEmkSIgFcFGA90ABXIHz1YgPJ-HFtDMtitV9LYwxxiefmaZ79LF8naqlc5W1AKpclE9UUAWYW16s9aF2HfLkCYaUgIrtljFJKlqX42tggkGnyQBug4h9wyA_VOWXJvbwMthAo3JjeVbJQ3OZyaZ6-9Gz8d8730TrhaGJe_nN2EIrZrGN1r60H9xB8fC8R0YmO8XDmatD9mNR5tg7CROvB3FvPrvz-QJ4lOeLYzBysa_afUw1LB6YVzK-TzPcz-cB4ZsyIyld1NBk0L89G5Ji4AJRbR5kJOKRbGug1xqsmK4S3HCudRIlgbahlmAZiCCyXDEZCRkyraWNNOMsEFK7iCXbRdVFujB7CFsediwVrt87cCJhZEKtEMZS2RUqsbSOTkoRxE95X43Y8xEqYhBX7MQVF-Kqo5o70c91xWHWUaMUWlz8eS8xCzwpAia5_8drB2jVfT33ozRQNXtemkOwLDJ55G_UO5OiywA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB619NByaEsBsS0tPnDh4MUbJ866t1XFKpQlqnhI3Kz4BQjYVG1Wlfj1jJ0EChVSbzk4iuVx5ptvngDbOnOGmVxQz6yhqU84rbSsqEdwMYj3SAFCgfNhKYrT9PtZdtYVq8daGOdcTD5zw_AYY_m2NovgKttFqApRPvkSXiHwZ6O2XOte8QbsaVMMGUUlO-6jkkzuzo5_IBdMsiFHwE1y_giF4liVf3RxBJjpOyj7rbV5JVfDRaOH5vZJ18b_3vt7eNuZmmTS3o0VeOHmH2D5rwaEq6CK_QktXfOVFJehEjkORrkm0U1YRU1IJteX5zFjgJRtxjhBM5fEut2b2uLiqftDjy_qhuy1E4HIUZ-TVM_X4HS6d_KtoN3IBWpGImloLnI9skiwLdoxYyOFE8LaKq8S61Or0TaQSe6F4TqXOuXWap9bLngitQ0xS74OS_N67jaAeJFmnsnQ8R1ZkXS6Yl5K55keS1N5NoCdXgTqZ9tZQ0VGwqRCcakgLtWJawBr4UQf1nWHOYDNXmiq-_d-K55EWoRc8uMzr23B6-LkcKZm--XBJ3gTvtR6VTZhqfm1cJ_Rzmj0l3i77gBXK85J
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HIA-Net%3A+Hierarchical+Interactive+Alignment+Network+for+Multimodal+Few-Shot+Emotion+Recognition&rft.jtitle=IEEE+signal+processing+letters&rft.au=Fu%2C+Yuankang&rft.au=Yang%2C+Kaixiang&rft.au=Sun%2C+Song&rft.au=Gong%2C+Xinrong&rft.date=2025&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=32&rft.spage=2679&rft.epage=2683&rft_id=info:doi/10.1109%2FLSP.2025.3584273&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LSP_2025_3584273
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon