Device Placement Optimization Based on Sequential Q-Learning Using Local Layout Effect Surrogate Models

An automatic methodology is proposed to optimize analog device placement using reinforcement learning (RL). Device characteristics are influenced by local layout effects and the process node used; hence, physical layout information from post-layout simulation acts as the input for an artificial neur...

Full description

Saved in:
Bibliographic Details
Published inJournal of semiconductor technology and science Vol. 25; no. 1; pp. 82 - 93
Main Authors Kang, KwonWoo, Kim, SoYoung
Format Journal Article
LanguageEnglish
Published 대한전자공학회 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An automatic methodology is proposed to optimize analog device placement using reinforcement learning (RL). Device characteristics are influenced by local layout effects and the process node used; hence, physical layout information from post-layout simulation acts as the input for an artificial neural network (ANN). Trained ANNs can be implemented as surrogate models for length of diffusion and deep trench isolation, which are integrated into the reward functions of the learning agent. The Q-learning method is employed for RL. The proposed method emulates design expert expertise by sequentially applying multiple Q-learning with selected reward functions. This approach effectively completes local layout effect-aware automated placement in the early setup stage of advanced process nodes, even with limited design knowledge. Finally, two fundamental analog circuits, the folded cascode operational transconductance amplifier and comparator, are employed to demonstrate the method’s ability to achieve zero threshold voltage variation under local layout effects using dummy transistors and guard rings while maintaining area efficiency KCI Citation Count: 0
AbstractList An automatic methodology is proposed to optimize analog device placement using reinforcement learning (RL). Device characteristics are influenced by local layout effects and the process node used; hence, physical layout information from post-layout simulation acts as the input for an artificial neural network (ANN). Trained ANNs can be implemented as surrogate models for length of diffusion and deep trench isolation, which are integrated into the reward functions of the learning agent. The Q-learning method is employed for RL. The proposed method emulates design expert expertise by sequentially applying multiple Q-learning with selected reward functions. This approach effectively completes local layout effect-aware automated placement in the early setup stage of advanced process nodes, even with limited design knowledge. Finally, two fundamental analog circuits, the folded cascode operational transconductance amplifier and comparator, are employed to demonstrate the method’s ability to achieve zero threshold voltage variation under local layout effects using dummy transistors and guard rings while maintaining area efficiency KCI Citation Count: 0
Author Kang, KwonWoo
Kim, SoYoung
Author_xml – sequence: 1
  givenname: KwonWoo
  surname: Kang
  fullname: Kang, KwonWoo
– sequence: 2
  givenname: SoYoung
  surname: Kim
  fullname: Kim, SoYoung
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003174541$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNotUF1PAjEQbAwmAvoDfOuzyeG1vd7HIyIq5gzqwXNT2-2lAlfsHSb46-2JyWRnszPZzc4IDRrXAELXJJ5wnrHb52pVTWhM-SSATHJ6hoaEF3lEUp4N0JBSxqIkT9MLNGrbzzhO86zIhqi-h2-rAL9upYIdNB1e7ju7sz-ys67Bd7IFjUNTwdchqFZu8VtUgvSNbWq8bvtaOhXGpTy6Q4fnxoDqcHXw3tWyA_ziNGzbS3Ru5LaFq38eo_XDfDV7isrl42I2LSNFUtpFVHMORpMi0yyXMSUqi4ERDonmWR73agwfkqlEM6MNk4niUhWJzHUiTUbYGN2c9jbeiI2ywkn7x7UTGy-m76uFIOH5cCENZnIyK-_a1oMRe2930h-DRfSxij5W0ccqAojIKfsFjHNuIw
ContentType Journal Article
DBID AAYXX
CITATION
ACYCR
DOI 10.5573/JSTS.2025.25.1.82
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1598-1657
2233-4866
EndPage 93
ExternalDocumentID oai_kci_go_kr_ARTI_10681976
10_5573_JSTS_2025_25_1_82
GroupedDBID 9ZL
AAYXX
ADDVE
AENEX
ALMA_UNASSIGNED_HOLDINGS
CITATION
DBRKI
FRP
GW5
HH5
JDI
OK1
TDB
TR2
.UV
ACYCR
C1A
KVFHK
MZR
ZZE
ID FETCH-LOGICAL-c162t-2d55efd197d38a021c70e315e4d5780d55e0eba3c4d3fdf3a4c5ac94a8d4af713
ISSN 2233-4866
1598-1657
IngestDate Sat Mar 01 03:20:15 EST 2025
Tue Jul 01 05:19:40 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c162t-2d55efd197d38a021c70e315e4d5780d55e0eba3c4d3fdf3a4c5ac94a8d4af713
PageCount 12
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10681976
crossref_primary_10_5573_JSTS_2025_25_1_82
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of semiconductor technology and science
PublicationYear 2025
Publisher 대한전자공학회
Publisher_xml – name: 대한전자공학회
SSID ssj0068797
Score 2.3092241
Snippet An automatic methodology is proposed to optimize analog device placement using reinforcement learning (RL). Device characteristics are influenced by local...
SourceID nrf
crossref
SourceType Open Website
Index Database
StartPage 82
SubjectTerms 전기공학
Title Device Placement Optimization Based on Sequential Q-Learning Using Local Layout Effect Surrogate Models
URI https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003174541
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, 2025, 25(1), 121, pp.82-93
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELa25QUeEKcoBWQJ8kKUkMTO9bi7DVpoAaG2om-RYydV1Tap0l0h-EH8TmbsJJuWQwUpiiznkHfm27kyniHklZLY0sVXTlRwcFD8qnCKWCROpcBWZuAUFRXud_7wMVoc8vdH4dFk8mOUtbRaFq78_tt9Jf_DVZgDvuIu2X_g7PBSmIAx8BfOwGE434jHOyX-z7HxkNRRPvsTCIDzbmelPQMFpWwtDzBdeomx8c_OXh8LMckCe40JZX_D_OSulPH-qm0bDK_pTmlnl38wYC8xr76psWAspioOMXr9PaLTrIM8_9rUX5rG3hWdpsSgTqNFjb17cj6OPQRhn67cocXKZlYyx5SMbMdKQyudW9ncmnpWwnGQZlYKl6bWjFmzsL8n1YMpPDgWuyn4spEpVe2Weg7sFubwJBqLV9OnqFPUprPidRUQhjGWogCxtu_ikl04fLd_cFxu-5oavFJw-1Se5MdNftrm4Fa8y8FvBsspjjbIrQDcEZ1AuhjcrCiJTROf_leYr-e4kje_rOOK_bNRt9XInDm4R-52bKRTA6r7ZFLWD8idUXXKh-TYwIsO8KJjeFENLwqDNbzoGl5Uw4tqeFEDL2rgRQd4UQOvR-TwbXYwXzhdXw5H-lGwdAIVhmWlgCCKJQKMRBl7JfPDkiuQ_x5e9cpCMMkVq1TFBJehkCkXieKiin32mGzWTV0-IdRXgvkgFxRLPS5EUXiln1QJkxUYwpLxLfK6p1Z-YcqvADNyJG2OpM2RtDkcfp4EW-Ql0FPz7i88fHqju7bJ7TXgn5HNZbsqn4P5uSxeaN7_BG--gS8
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Device+Placement+Optimization+Based+on+Sequential+Q-Learning+Using+Local+Layout+Effect+Surrogate+Models&rft.jtitle=Journal+of+semiconductor+technology+and+science&rft.au=KwonWoo+Kang&rft.au=SoYoung+Kim&rft.date=2025-02-01&rft.pub=%EB%8C%80%ED%95%9C%EC%A0%84%EC%9E%90%EA%B3%B5%ED%95%99%ED%9A%8C&rft.issn=1598-1657&rft.eissn=2233-4866&rft.spage=82&rft.epage=93&rft_id=info:doi/10.5573%2FJSTS.2025.25.1.82&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10681976
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2233-4866&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2233-4866&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2233-4866&client=summon