In Vivo Self‐Assembly Induced Cell Membrane Phase Separation for Improved Peptide Drug Internalization

Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the pepti...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie Vol. 133; no. 47; pp. 25332 - 25338
Main Authors Guo, Ruo‐Chen, Zhang, Xue‐Hao, Fan, Peng‐Sheng, Song, Ben‐Li, Li, Zhi‐Xiang, Duan, Zhong‐Yu, Qiao, Zeng‐Ying, Wang, Hao
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 15.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization. A phosphopeptide KYp is synthesized, containing an anticancer peptide [KLAKLAK]2 (K) and a responsive moiety phosphorylated Y (Yp). After interacting with alkaline phosphatase (ALP), KYp can be dephosphorylated and self‐assembles in situ, which induces the aggregation of ALP and the protein‐lipid phase separation on cell membrane. Consequently, KYp internalization is 2‐fold enhanced compared to non‐responsive peptide, and IC50 value of KYp is approximately 5 times lower than that of free peptide. Therefore, the in vivo self‐assembly induced phase separation on cell membrane promises a new strategy to improve the drug delivery efficacy in cancer therapy. An in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization and anticancer efficacy. KYp self‐assembles in situ, which induces the aggregation of ALP and the protein‐lipid phase separation and leakage on the cell membrane. The peptide drugs internalization is 2‐fold enhanced compared to non‐responsive peptide nanoparticle.
AbstractList Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization. A phosphopeptide KYp is synthesized, containing an anticancer peptide [KLAKLAK]2 (K) and a responsive moiety phosphorylated Y (Yp). After interacting with alkaline phosphatase (ALP), KYp can be dephosphorylated and self‐assembles in situ, which induces the aggregation of ALP and the protein‐lipid phase separation on cell membrane. Consequently, KYp internalization is 2‐fold enhanced compared to non‐responsive peptide, and IC50 value of KYp is approximately 5 times lower than that of free peptide. Therefore, the in vivo self‐assembly induced phase separation on cell membrane promises a new strategy to improve the drug delivery efficacy in cancer therapy.
Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization. A phosphopeptide KYp is synthesized, containing an anticancer peptide [KLAKLAK]2 (K) and a responsive moiety phosphorylated Y (Yp). After interacting with alkaline phosphatase (ALP), KYp can be dephosphorylated and self‐assembles in situ, which induces the aggregation of ALP and the protein‐lipid phase separation on cell membrane. Consequently, KYp internalization is 2‐fold enhanced compared to non‐responsive peptide, and IC50 value of KYp is approximately 5 times lower than that of free peptide. Therefore, the in vivo self‐assembly induced phase separation on cell membrane promises a new strategy to improve the drug delivery efficacy in cancer therapy. An in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization and anticancer efficacy. KYp self‐assembles in situ, which induces the aggregation of ALP and the protein‐lipid phase separation and leakage on the cell membrane. The peptide drugs internalization is 2‐fold enhanced compared to non‐responsive peptide nanoparticle.
Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization. A phosphopeptide KYp is synthesized, containing an anticancer peptide [KLAKLAK] 2 (K) and a responsive moiety phosphorylated Y (Yp). After interacting with alkaline phosphatase (ALP), KYp can be dephosphorylated and self‐assembles in situ, which induces the aggregation of ALP and the protein‐lipid phase separation on cell membrane. Consequently, KYp internalization is 2‐fold enhanced compared to non‐responsive peptide, and IC 50 value of KYp is approximately 5 times lower than that of free peptide. Therefore, the in vivo self‐assembly induced phase separation on cell membrane promises a new strategy to improve the drug delivery efficacy in cancer therapy.
Author Fan, Peng‐Sheng
Zhang, Xue‐Hao
Li, Zhi‐Xiang
Guo, Ruo‐Chen
Qiao, Zeng‐Ying
Song, Ben‐Li
Duan, Zhong‐Yu
Wang, Hao
Author_xml – sequence: 1
  givenname: Ruo‐Chen
  surname: Guo
  fullname: Guo, Ruo‐Chen
  organization: Hebei University of Technology
– sequence: 2
  givenname: Xue‐Hao
  surname: Zhang
  fullname: Zhang, Xue‐Hao
  organization: National Center for Nanoscience and Technology (NCNST)
– sequence: 3
  givenname: Peng‐Sheng
  surname: Fan
  fullname: Fan, Peng‐Sheng
  organization: National Center for Nanoscience and Technology (NCNST)
– sequence: 4
  givenname: Ben‐Li
  surname: Song
  fullname: Song, Ben‐Li
  organization: National Center for Nanoscience and Technology (NCNST)
– sequence: 5
  givenname: Zhi‐Xiang
  surname: Li
  fullname: Li, Zhi‐Xiang
  organization: National Center for Nanoscience and Technology (NCNST)
– sequence: 6
  givenname: Zhong‐Yu
  surname: Duan
  fullname: Duan, Zhong‐Yu
  organization: Hebei University of Technology
– sequence: 7
  givenname: Zeng‐Ying
  orcidid: 0000-0002-9932-7702
  surname: Qiao
  fullname: Qiao, Zeng‐Ying
  email: qiaozy@nanoctr.cn
  organization: National Center for Nanoscience and Technology (NCNST)
– sequence: 8
  givenname: Hao
  orcidid: 0000-0002-1961-0787
  surname: Wang
  fullname: Wang, Hao
  email: wanghao@nanoctr.cn
  organization: National Center for Nanoscience and Technology (NCNST)
BookMark eNqFkM1Kw0AUhQdRsK1uXQ-4Tp2ZTH5mWWqtgaoFf7ZhMrlpU9JJnEkqdeUj-Iw-iUkrCoK4unD5vsPh9NGhLjUgdEbJkBLCLqRewJARRikNXXGAetRj1HEDLzhEPUI4d0LGxTHqW7sihPgsED20jDR-yjclvoci-3h7H1kL66TY4kinjYIUj6Eo8E37M1IDni-lhZatpJF1XmqclQZH68qUm5adQ1XnKeBL0yzagBqMlkX-uiNP0FEmCwunX3eAHq8mD-NrZ3Y3jcajmaOoz4ST-WHKuVA0CIRMmfQU8xLOQ5Uw5bohY1kAxG2rS6oUyBAECUIh_ESlrZQJd4DO97ltp-cGbB2vyqbrYWPmCc4Z7-YZIL6nlCmtNZDFKq93PWsj8yKmJO42jbtN4-9NW234S6tMvpZm-7cg9sJLXsD2Hzoe3U4nP-4nBvaNPA
CitedBy_id crossref_primary_10_1002_ange_202114267
crossref_primary_10_1002_syst_202200041
crossref_primary_10_1002_anie_202114267
Cites_doi 10.1007/s12291-013-0408-y
10.1002/ange.202006290
10.1038/s41573-020-0090-8
10.1038/s41557-021-00661-x
10.1146/annurev-biophys-052118-115534
10.1038/s41467-017-01328-3
10.1016/j.cell.2016.05.026
10.1021/acs.biomac.6b01922
10.1016/j.cell.2016.06.010
10.1021/acs.nanolett.8b03174
10.1021/jacs.8b13512
10.1002/ange.202006385
10.1002/ange.201900135
10.1038/s41551-021-00698-w
10.1038/s41578-020-00269-6
10.1021/jacs.8b04641
10.1021/jacs.9b12232
10.1002/anie.201814552
10.1021/acs.chemrev.0c00963
10.1021/acs.nanolett.6b04955
10.1038/nprot.2012.059
10.1016/j.cell.2015.03.048
10.1021/jacs.7b08710
10.1002/ange.202102601
10.1002/anie.201900135
10.1002/anie.202014278
10.1002/ange.202008708
10.1039/D1NR01174J
10.1021/jacs.8b07727
10.1016/j.coph.2019.01.003
10.1021/acs.chemrev.0c00306
10.1002/ange.201814552
10.1021/ac4038653
10.1038/12469
10.1002/anie.202102601
10.1042/bj20031253
10.1021/jacs.1c06435
10.1002/ange.202014278
10.1021/jacs.1c00945
10.1016/j.molcel.2020.08.007
10.1021/acs.chemrev.0c00779
10.1002/anie.202008708
10.1002/advs.202003599
10.1002/adhm.202001211
10.1002/anie.202006385
10.1002/adfm.201804492
10.1002/anie.202006290
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ange.202111839
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3757
EndPage 25338
ExternalDocumentID 10_1002_ange_202111839
ANGE202111839
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31870998 and 51573032
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCUC
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RGC
ROL
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c1629-f68d449c1779ad2a5c25b448cb2c33822f7e03279a1ccea8e9078996bcd9c1f93
IEDL.DBID DR2
ISSN 0044-8249
IngestDate Fri Jul 25 11:44:38 EDT 2025
Thu Apr 24 22:54:44 EDT 2025
Tue Jul 01 02:42:06 EDT 2025
Wed Jan 22 16:27:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 47
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1629-f68d449c1779ad2a5c25b448cb2c33822f7e03279a1ccea8e9078996bcd9c1f93
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9932-7702
0000-0002-1961-0787
PQID 2594424118
PQPubID 866336
PageCount 7
ParticipantIDs proquest_journals_2594424118
crossref_citationtrail_10_1002_ange_202111839
crossref_primary_10_1002_ange_202111839
wiley_primary_10_1002_ange_202111839_ANGE202111839
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 15, 2021
PublicationDateYYYYMMDD 2021-11-15
PublicationDate_xml – month: 11
  year: 2021
  text: November 15, 2021
  day: 15
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 8
2018; 28
2021; 6
2015; 161
2017; 8
2021; 20
2018; 140
2020; 142
2020; 120
2020; 80
2020 2020; 59 132
2016; 166
2016; 165
2014; 29
2021; 143
2021; 121
1999; 5
2019 2019; 58 131
2017; 139
2014; 86
2021; 13
2018; 18
2021; 10
2004; 377
2021
2017; 17
2019; 48
2019; 47
2019 2019; 141 141
2021 2021; 60 133
2017; 18
2012; 7
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_34_3
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_1
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_36_2
e_1_2_6_43_1
e_1_2_6_20_2
e_1_2_6_41_1
e_1_2_6_7_3
e_1_2_6_7_2
e_1_2_6_9_3
e_1_2_6_9_2
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_24_2
e_1_2_6_22_3
e_1_2_6_3_1
e_1_2_6_22_2
e_1_2_6_20_3
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_2
e_1_2_6_47_1
e_1_2_6_31_2
e_1_2_6_10_1
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_31_3
e_1_2_6_33_1
e_1_2_6_39_1
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_16_1
e_1_2_6_42_1
e_1_2_6_40_1
e_1_2_6_8_2
e_1_2_6_8_3
e_1_2_6_4_2
e_1_2_6_4_3
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_21_2
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_25_2
References_xml – volume: 29
  start-page: 269
  year: 2014
  end-page: 278
  publication-title: Indian J. Clin. Biochem.
– volume: 13
  start-page: 10891
  year: 2021
  end-page: 10897
  publication-title: Nanoscale
– volume: 18
  start-page: 1249
  year: 2017
  end-page: 1258
  publication-title: Biomacromolecules
– volume: 142
  start-page: 2490
  year: 2020
  end-page: 2496
  publication-title: J. Am. Chem. Soc.
– volume: 141 141
  start-page: 7235 4406
  year: 2019 2019
  end-page: 7239 4411
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 165
  start-page: 1067
  year: 2016
  end-page: 1079
  publication-title: Cell
– volume: 60 133
  start-page: 12796 12906
  year: 2021 2021
  end-page: 12801 12911
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 48
  start-page: 465
  year: 2019
  end-page: 494
  publication-title: Annu. Rev. Biophys.
– year: 2021
  publication-title: Chem. Rev.
– volume: 59 132
  start-page: 20582 20763
  year: 2020 2020
  end-page: 20588 20769
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 8121 8202
  year: 2021 2021
  end-page: 8129 8210
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 143
  start-page: 5127
  year: 2021
  end-page: 5140
  publication-title: J. Am. Chem. Soc.
– volume: 120
  start-page: 9994
  year: 2020
  end-page: 10078
  publication-title: Chem. Rev.
– volume: 86
  start-page: 2193
  year: 2014
  end-page: 2199
  publication-title: Anal. Chem.
– volume: 59 132
  start-page: 19136 19298
  year: 2020 2020
  end-page: 19142 19304
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 140
  start-page: 9566
  year: 2018
  end-page: 9573
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 1678
  year: 2017
  end-page: 1684
  publication-title: Nano Lett.
– volume: 13
  start-page: 530
  year: 2021
  end-page: 539
  publication-title: Nat. Chem.
– volume: 20
  start-page: 101
  year: 2021
  end-page: 124
  publication-title: Nat. Rev. Drug Discovery
– volume: 18
  start-page: 6577
  year: 2018
  end-page: 6584
  publication-title: Nano Lett.
– volume: 7
  start-page: 1042
  year: 2012
  end-page: 1051
  publication-title: Nat. Protoc.
– volume: 58 131
  start-page: 10423 10532
  year: 2019 2019
  end-page: 10432 10541
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  year: 2021
  publication-title: Adv. Healthcare Mater.
– year: 2021
  publication-title: Nat. Biomed. Eng.
– volume: 121
  start-page: 1746
  year: 2021
  end-page: 1803
  publication-title: Chem. Rev.
– volume: 139
  start-page: 14792
  year: 2017
  end-page: 14799
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1219
  year: 2017
  end-page: 1228
  publication-title: Nat. Commun.
– volume: 166
  start-page: 651
  year: 2016
  end-page: 663
  publication-title: Cell
– volume: 47
  start-page: 8
  year: 2019
  end-page: 13
  publication-title: Curr. Opin. Pharmacol.
– volume: 80
  start-page: 9
  year: 2020
  end-page: 20
  publication-title: Mol. Cell
– volume: 377
  start-page: 159
  year: 2004
  end-page: 169
  publication-title: Biochem. J.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 58 131
  start-page: 4632 4680
  year: 2019 2019
  end-page: 4637 4685
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 161
  start-page: 581
  year: 2015
  end-page: 594
  publication-title: Cell
– volume: 5
  start-page: 1032
  year: 1999
  end-page: 1038
  publication-title: Nat. Med.
– volume: 6
  start-page: 351
  year: 2021
  end-page: 370
  publication-title: Nat. Rev. Mater.
– volume: 59 132
  start-page: 16445 16587
  year: 2020 2020
  end-page: 16450 16592
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 143
  start-page: 13854
  year: 2021
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_6_32_2
  doi: 10.1007/s12291-013-0408-y
– ident: e_1_2_6_23_1
– ident: e_1_2_6_4_3
  doi: 10.1002/ange.202006290
– ident: e_1_2_6_13_2
  doi: 10.1038/s41573-020-0090-8
– ident: e_1_2_6_17_2
  doi: 10.1038/s41557-021-00661-x
– ident: e_1_2_6_27_1
  doi: 10.1146/annurev-biophys-052118-115534
– ident: e_1_2_6_29_1
  doi: 10.1038/s41467-017-01328-3
– ident: e_1_2_6_25_2
  doi: 10.1016/j.cell.2016.05.026
– ident: e_1_2_6_44_1
  doi: 10.1021/acs.biomac.6b01922
– ident: e_1_2_6_26_2
  doi: 10.1016/j.cell.2016.06.010
– ident: e_1_2_6_21_2
  doi: 10.1021/acs.nanolett.8b03174
– ident: e_1_2_6_22_3
  doi: 10.1021/jacs.8b13512
– ident: e_1_2_6_8_3
  doi: 10.1002/ange.202006385
– ident: e_1_2_6_20_3
  doi: 10.1002/ange.201900135
– ident: e_1_2_6_12_2
  doi: 10.1038/s41551-021-00698-w
– ident: e_1_2_6_14_2
  doi: 10.1038/s41578-020-00269-6
– ident: e_1_2_6_42_1
  doi: 10.1021/jacs.8b04641
– ident: e_1_2_6_5_2
  doi: 10.1021/jacs.9b12232
– ident: e_1_2_6_31_2
  doi: 10.1002/anie.201814552
– ident: e_1_2_6_2_1
  doi: 10.1021/acs.chemrev.0c00963
– ident: e_1_2_6_3_1
– ident: e_1_2_6_15_1
  doi: 10.1021/acs.nanolett.6b04955
– ident: e_1_2_6_41_1
  doi: 10.1038/nprot.2012.059
– ident: e_1_2_6_28_1
  doi: 10.1016/j.cell.2015.03.048
– ident: e_1_2_6_43_1
  doi: 10.1021/jacs.7b08710
– ident: e_1_2_6_6_1
– ident: e_1_2_6_7_3
  doi: 10.1002/ange.202102601
– ident: e_1_2_6_20_2
  doi: 10.1002/anie.201900135
– ident: e_1_2_6_34_2
  doi: 10.1002/anie.202014278
– ident: e_1_2_6_9_3
  doi: 10.1002/ange.202008708
– ident: e_1_2_6_37_2
  doi: 10.1039/D1NR01174J
– ident: e_1_2_6_22_2
  doi: 10.1021/jacs.8b07727
– ident: e_1_2_6_18_2
  doi: 10.1016/j.coph.2019.01.003
– ident: e_1_2_6_36_2
  doi: 10.1021/acs.chemrev.0c00306
– ident: e_1_2_6_31_3
  doi: 10.1002/ange.201814552
– ident: e_1_2_6_39_1
  doi: 10.1021/ac4038653
– ident: e_1_2_6_11_1
– ident: e_1_2_6_38_1
  doi: 10.1038/12469
– ident: e_1_2_6_7_2
  doi: 10.1002/anie.202102601
– ident: e_1_2_6_45_1
  doi: 10.1042/bj20031253
– ident: e_1_2_6_47_1
  doi: 10.1021/jacs.1c06435
– ident: e_1_2_6_33_1
– ident: e_1_2_6_34_3
  doi: 10.1002/ange.202014278
– ident: e_1_2_6_1_1
  doi: 10.1021/jacs.1c00945
– ident: e_1_2_6_24_2
  doi: 10.1016/j.molcel.2020.08.007
– ident: e_1_2_6_46_1
  doi: 10.1021/acs.chemrev.0c00779
– ident: e_1_2_6_9_2
  doi: 10.1002/anie.202008708
– ident: e_1_2_6_19_1
– ident: e_1_2_6_30_1
– ident: e_1_2_6_16_1
– ident: e_1_2_6_40_1
  doi: 10.1002/advs.202003599
– ident: e_1_2_6_35_2
  doi: 10.1002/adhm.202001211
– ident: e_1_2_6_8_2
  doi: 10.1002/anie.202006385
– ident: e_1_2_6_10_1
  doi: 10.1002/adfm.201804492
– ident: e_1_2_6_4_2
  doi: 10.1002/anie.202006290
SSID ssj0006279
Score 2.1641567
Snippet Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 25332
SubjectTerms Alkaline phosphatase
Assembly
cancer
Cell membranes
Chemistry
Drug delivery
Internalization
Lipids
Membranes
peptide
Peptides
Phase separation
self-assembly
Title In Vivo Self‐Assembly Induced Cell Membrane Phase Separation for Improved Peptide Drug Internalization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202111839
https://www.proquest.com/docview/2594424118
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QLnDhjRgMlAMSp2xrlrbrcRobA4lpAoZ2q5I0ZYjSoT2Q4MRP4DfyS7DXdg8khAS3tnKqNk7iz47zmZATrXiINDKMB1ozoV3JPOlZLDCWDKWlkTQOsy3aTqsrLnt2b-EUf8IPMQu44cyYrtc4waUaleakoZh7D_4dODBo5GERxoQtREXXc_4ohydke2UhWBUcjYy1scxLy82XrdIcai4C1qnFaW4QmX1rkmjyWJyMVVG_faNx_M_PbJL1FI7SWjJ-tsiKibfJaj2rArdD-hcxvXt4GdAbE4Wf7x-4SfykoleKNT-0CWjdRBG9gmdg9Azt9MEqgmzCKD6IKWBimgQuQLaDKTSBoWfDyT1NY5FRehB0l3Sbjdt6i6XVGZi2HO6x0KkGQnjacl1PBlzamtsKnD3Qvga_l_PQNeUKKAA0ro2sGg-Z7T1H6QAahV5lj-TiQWz2CdXKDWEwuaFtAGG6tnJwP1zA8qBdZSuTJyzTjq9T6nKsoBH5Ceky97H__Fn_5cnpTP45Ie34UbKQKdtPJ-_IB49QCEA2VjVP-FRrv7zFr7XPG7O7g780OiRreI2nHC27QHLj4cQcAdwZq-PpkP4CIuj4Mw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHMqFHVFWH5A4GRrXSZojKkvZqopN3KLYcSgipKi0SHDiE_hGvoSZLC0gISQ4xpqJEs_Ys3j8BmBDKxERjAwXodZcajfgXuBZPDRWEAWWJtA4qrZoOo1LeXRtF9WEdBcmw4cYJNxoZaT7NS1wSkhvD1FDqfgeAzyMYMjKj8I4tfVOo6qzIYKUIzK4vYqUvIahRoHbWBHbX_m_2qWhs_nZZU1tzv4UqOJrs1KTu61-T23pl29Ajv_6nWmYzD1StpOp0AyMmGQWSvWiEdwctA8TdnX71GHnJo7eX9_onPhexc-M2n5oE7K6iWN2imNo9wxrtdEwIm0GKt5JGLrFLMtdIG2LqmhCw3a7_RuWpyPj_C7oPFzu713UGzxv0MC15QiPR04tlNLTlut6QSgCWwtbYbyHCqAx9BUick2lihJAoWsT1IxH4Paeo3SITJFXXYCxpJOYRWBauRHqkxvZBp1M11YOHYlL3CG0q2xlysAL8fg6Ry-nJhqxn-EuC5_mzx_MXxk2B_QPGW7Hj5QrhbT9fP0--hgUSonOjVUrg0jF9stb_J3mwd7gaekvTOtQalycnvgnh83jZZigcbr0aNkrMNbr9s0qej89tZbq9weqW_xO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xkJa98EZbnj4gcTI0xnkdUUt5VxW7IG5R7NiAyKZVt0WCEz-B38gvYaZJWlgJIcEx1jhKPGPPN_b4G4BNrYQlGhkuEq251H7Mwzh0eGKc2MaOJtI4yrZoeocX8vjKvXpziz_nhxhuuNHMGKzXNME7id0ZkYZS7j3GdxjAkJMfh0npVQOy6_r5iEDKEznbXlVKHmCkUdI2VsXO-_7v3dIIa75FrAOX05iBuPzYPNPkbrvfU9v68T8ex-_8zSxMF3iU7eUGNAdjJpuHqVpZBm4Bbo4ydnl732a_TWpfnp7plPivSh8YFf3QJmE1k6bsDNvQ6xnWukG3iLI5pXg7YwiKWb5zgbItyqFJDKt3-9es2IxMi5ugi3DR2P9TO-RFeQauHU-E3HpBImWoHd8P40TErhauwmgP1a8x8BXC-qa6iwpAlWsTByYkavvQUzrBTjbcXYKJrJ2ZX8C08i1ak29dgxDTd5VHB-IS1wftK1eZCvBSO5EuuMuphEYa5azLIqLxi4bjV4GtoXwnZ-34UHK1VHZUzN5_EYaEUiK0cYIKiIHWPnlLtNc82B8-LX-l0wb8aNUb0elR82QFflIz3Xh03FWY6HX7Zg2hT0-tD6z7Fc-d-wY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Vivo+Self%E2%80%90Assembly+Induced+Cell+Membrane+Phase+Separation+for+Improved+Peptide+Drug+Internalization&rft.jtitle=Angewandte+Chemie&rft.au=Guo%2C+Ruo%E2%80%90Chen&rft.au=Zhang%2C+Xue%E2%80%90Hao&rft.au=Fan%2C+Peng%E2%80%90Sheng&rft.au=Song%2C+Ben%E2%80%90Li&rft.date=2021-11-15&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=133&rft.issue=47&rft.spage=25332&rft.epage=25338&rft_id=info:doi/10.1002%2Fange.202111839&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ange_202111839
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon