In Vivo Self‐Assembly Induced Cell Membrane Phase Separation for Improved Peptide Drug Internalization
Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the pepti...
Saved in:
Published in | Angewandte Chemie Vol. 133; no. 47; pp. 25332 - 25338 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
15.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization. A phosphopeptide KYp is synthesized, containing an anticancer peptide [KLAKLAK]2 (K) and a responsive moiety phosphorylated Y (Yp). After interacting with alkaline phosphatase (ALP), KYp can be dephosphorylated and self‐assembles in situ, which induces the aggregation of ALP and the protein‐lipid phase separation on cell membrane. Consequently, KYp internalization is 2‐fold enhanced compared to non‐responsive peptide, and IC50 value of KYp is approximately 5 times lower than that of free peptide. Therefore, the in vivo self‐assembly induced phase separation on cell membrane promises a new strategy to improve the drug delivery efficacy in cancer therapy.
An in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization and anticancer efficacy. KYp self‐assembles in situ, which induces the aggregation of ALP and the protein‐lipid phase separation and leakage on the cell membrane. The peptide drugs internalization is 2‐fold enhanced compared to non‐responsive peptide nanoparticle. |
---|---|
AbstractList | Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization. A phosphopeptide KYp is synthesized, containing an anticancer peptide [KLAKLAK]2 (K) and a responsive moiety phosphorylated Y (Yp). After interacting with alkaline phosphatase (ALP), KYp can be dephosphorylated and self‐assembles in situ, which induces the aggregation of ALP and the protein‐lipid phase separation on cell membrane. Consequently, KYp internalization is 2‐fold enhanced compared to non‐responsive peptide, and IC50 value of KYp is approximately 5 times lower than that of free peptide. Therefore, the in vivo self‐assembly induced phase separation on cell membrane promises a new strategy to improve the drug delivery efficacy in cancer therapy. Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization. A phosphopeptide KYp is synthesized, containing an anticancer peptide [KLAKLAK]2 (K) and a responsive moiety phosphorylated Y (Yp). After interacting with alkaline phosphatase (ALP), KYp can be dephosphorylated and self‐assembles in situ, which induces the aggregation of ALP and the protein‐lipid phase separation on cell membrane. Consequently, KYp internalization is 2‐fold enhanced compared to non‐responsive peptide, and IC50 value of KYp is approximately 5 times lower than that of free peptide. Therefore, the in vivo self‐assembly induced phase separation on cell membrane promises a new strategy to improve the drug delivery efficacy in cancer therapy. An in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization and anticancer efficacy. KYp self‐assembles in situ, which induces the aggregation of ALP and the protein‐lipid phase separation and leakage on the cell membrane. The peptide drugs internalization is 2‐fold enhanced compared to non‐responsive peptide nanoparticle. Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization. A phosphopeptide KYp is synthesized, containing an anticancer peptide [KLAKLAK] 2 (K) and a responsive moiety phosphorylated Y (Yp). After interacting with alkaline phosphatase (ALP), KYp can be dephosphorylated and self‐assembles in situ, which induces the aggregation of ALP and the protein‐lipid phase separation on cell membrane. Consequently, KYp internalization is 2‐fold enhanced compared to non‐responsive peptide, and IC 50 value of KYp is approximately 5 times lower than that of free peptide. Therefore, the in vivo self‐assembly induced phase separation on cell membrane promises a new strategy to improve the drug delivery efficacy in cancer therapy. |
Author | Fan, Peng‐Sheng Zhang, Xue‐Hao Li, Zhi‐Xiang Guo, Ruo‐Chen Qiao, Zeng‐Ying Song, Ben‐Li Duan, Zhong‐Yu Wang, Hao |
Author_xml | – sequence: 1 givenname: Ruo‐Chen surname: Guo fullname: Guo, Ruo‐Chen organization: Hebei University of Technology – sequence: 2 givenname: Xue‐Hao surname: Zhang fullname: Zhang, Xue‐Hao organization: National Center for Nanoscience and Technology (NCNST) – sequence: 3 givenname: Peng‐Sheng surname: Fan fullname: Fan, Peng‐Sheng organization: National Center for Nanoscience and Technology (NCNST) – sequence: 4 givenname: Ben‐Li surname: Song fullname: Song, Ben‐Li organization: National Center for Nanoscience and Technology (NCNST) – sequence: 5 givenname: Zhi‐Xiang surname: Li fullname: Li, Zhi‐Xiang organization: National Center for Nanoscience and Technology (NCNST) – sequence: 6 givenname: Zhong‐Yu surname: Duan fullname: Duan, Zhong‐Yu organization: Hebei University of Technology – sequence: 7 givenname: Zeng‐Ying orcidid: 0000-0002-9932-7702 surname: Qiao fullname: Qiao, Zeng‐Ying email: qiaozy@nanoctr.cn organization: National Center for Nanoscience and Technology (NCNST) – sequence: 8 givenname: Hao orcidid: 0000-0002-1961-0787 surname: Wang fullname: Wang, Hao email: wanghao@nanoctr.cn organization: National Center for Nanoscience and Technology (NCNST) |
BookMark | eNqFkM1Kw0AUhQdRsK1uXQ-4Tp2ZTH5mWWqtgaoFf7ZhMrlpU9JJnEkqdeUj-Iw-iUkrCoK4unD5vsPh9NGhLjUgdEbJkBLCLqRewJARRikNXXGAetRj1HEDLzhEPUI4d0LGxTHqW7sihPgsED20jDR-yjclvoci-3h7H1kL66TY4kinjYIUj6Eo8E37M1IDni-lhZatpJF1XmqclQZH68qUm5adQ1XnKeBL0yzagBqMlkX-uiNP0FEmCwunX3eAHq8mD-NrZ3Y3jcajmaOoz4ST-WHKuVA0CIRMmfQU8xLOQ5Uw5bohY1kAxG2rS6oUyBAECUIh_ESlrZQJd4DO97ltp-cGbB2vyqbrYWPmCc4Z7-YZIL6nlCmtNZDFKq93PWsj8yKmJO42jbtN4-9NW234S6tMvpZm-7cg9sJLXsD2Hzoe3U4nP-4nBvaNPA |
CitedBy_id | crossref_primary_10_1002_ange_202114267 crossref_primary_10_1002_syst_202200041 crossref_primary_10_1002_anie_202114267 |
Cites_doi | 10.1007/s12291-013-0408-y 10.1002/ange.202006290 10.1038/s41573-020-0090-8 10.1038/s41557-021-00661-x 10.1146/annurev-biophys-052118-115534 10.1038/s41467-017-01328-3 10.1016/j.cell.2016.05.026 10.1021/acs.biomac.6b01922 10.1016/j.cell.2016.06.010 10.1021/acs.nanolett.8b03174 10.1021/jacs.8b13512 10.1002/ange.202006385 10.1002/ange.201900135 10.1038/s41551-021-00698-w 10.1038/s41578-020-00269-6 10.1021/jacs.8b04641 10.1021/jacs.9b12232 10.1002/anie.201814552 10.1021/acs.chemrev.0c00963 10.1021/acs.nanolett.6b04955 10.1038/nprot.2012.059 10.1016/j.cell.2015.03.048 10.1021/jacs.7b08710 10.1002/ange.202102601 10.1002/anie.201900135 10.1002/anie.202014278 10.1002/ange.202008708 10.1039/D1NR01174J 10.1021/jacs.8b07727 10.1016/j.coph.2019.01.003 10.1021/acs.chemrev.0c00306 10.1002/ange.201814552 10.1021/ac4038653 10.1038/12469 10.1002/anie.202102601 10.1042/bj20031253 10.1021/jacs.1c06435 10.1002/ange.202014278 10.1021/jacs.1c00945 10.1016/j.molcel.2020.08.007 10.1021/acs.chemrev.0c00779 10.1002/anie.202008708 10.1002/advs.202003599 10.1002/adhm.202001211 10.1002/anie.202006385 10.1002/adfm.201804492 10.1002/anie.202006290 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/ange.202111839 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3757 |
EndPage | 25338 |
ExternalDocumentID | 10_1002_ange_202111839 ANGE202111839 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 31870998 and 51573032 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCUC ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K RGC ROL RWI RX1 RYL SUPJJ TN5 TUS UB1 UPT V2E W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c1629-f68d449c1779ad2a5c25b448cb2c33822f7e03279a1ccea8e9078996bcd9c1f93 |
IEDL.DBID | DR2 |
ISSN | 0044-8249 |
IngestDate | Fri Jul 25 11:44:38 EDT 2025 Thu Apr 24 22:54:44 EDT 2025 Tue Jul 01 02:42:06 EDT 2025 Wed Jan 22 16:27:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1629-f68d449c1779ad2a5c25b448cb2c33822f7e03279a1ccea8e9078996bcd9c1f93 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9932-7702 0000-0002-1961-0787 |
PQID | 2594424118 |
PQPubID | 866336 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2594424118 crossref_citationtrail_10_1002_ange_202111839 crossref_primary_10_1002_ange_202111839 wiley_primary_10_1002_ange_202111839_ANGE202111839 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 15, 2021 |
PublicationDateYYYYMMDD | 2021-11-15 |
PublicationDate_xml | – month: 11 year: 2021 text: November 15, 2021 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 8 2018; 28 2021; 6 2015; 161 2017; 8 2021; 20 2018; 140 2020; 142 2020; 120 2020; 80 2020 2020; 59 132 2016; 166 2016; 165 2014; 29 2021; 143 2021; 121 1999; 5 2019 2019; 58 131 2017; 139 2014; 86 2021; 13 2018; 18 2021; 10 2004; 377 2021 2017; 17 2019; 48 2019; 47 2019 2019; 141 141 2021 2021; 60 133 2017; 18 2012; 7 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_34_3 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_1 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_36_2 e_1_2_6_43_1 e_1_2_6_20_2 e_1_2_6_41_1 e_1_2_6_7_3 e_1_2_6_7_2 e_1_2_6_9_3 e_1_2_6_9_2 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_24_2 e_1_2_6_22_3 e_1_2_6_3_1 e_1_2_6_22_2 e_1_2_6_20_3 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_2 e_1_2_6_47_1 e_1_2_6_31_2 e_1_2_6_10_1 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_31_3 e_1_2_6_33_1 e_1_2_6_39_1 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_16_1 e_1_2_6_42_1 e_1_2_6_40_1 e_1_2_6_8_2 e_1_2_6_8_3 e_1_2_6_4_2 e_1_2_6_4_3 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_21_2 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_25_2 |
References_xml | – volume: 29 start-page: 269 year: 2014 end-page: 278 publication-title: Indian J. Clin. Biochem. – volume: 13 start-page: 10891 year: 2021 end-page: 10897 publication-title: Nanoscale – volume: 18 start-page: 1249 year: 2017 end-page: 1258 publication-title: Biomacromolecules – volume: 142 start-page: 2490 year: 2020 end-page: 2496 publication-title: J. Am. Chem. Soc. – volume: 141 141 start-page: 7235 4406 year: 2019 2019 end-page: 7239 4411 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 165 start-page: 1067 year: 2016 end-page: 1079 publication-title: Cell – volume: 60 133 start-page: 12796 12906 year: 2021 2021 end-page: 12801 12911 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 48 start-page: 465 year: 2019 end-page: 494 publication-title: Annu. Rev. Biophys. – year: 2021 publication-title: Chem. Rev. – volume: 59 132 start-page: 20582 20763 year: 2020 2020 end-page: 20588 20769 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 8121 8202 year: 2021 2021 end-page: 8129 8210 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 143 start-page: 5127 year: 2021 end-page: 5140 publication-title: J. Am. Chem. Soc. – volume: 120 start-page: 9994 year: 2020 end-page: 10078 publication-title: Chem. Rev. – volume: 86 start-page: 2193 year: 2014 end-page: 2199 publication-title: Anal. Chem. – volume: 59 132 start-page: 19136 19298 year: 2020 2020 end-page: 19142 19304 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 140 start-page: 9566 year: 2018 end-page: 9573 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 1678 year: 2017 end-page: 1684 publication-title: Nano Lett. – volume: 13 start-page: 530 year: 2021 end-page: 539 publication-title: Nat. Chem. – volume: 20 start-page: 101 year: 2021 end-page: 124 publication-title: Nat. Rev. Drug Discovery – volume: 18 start-page: 6577 year: 2018 end-page: 6584 publication-title: Nano Lett. – volume: 7 start-page: 1042 year: 2012 end-page: 1051 publication-title: Nat. Protoc. – volume: 58 131 start-page: 10423 10532 year: 2019 2019 end-page: 10432 10541 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 year: 2021 publication-title: Adv. Healthcare Mater. – year: 2021 publication-title: Nat. Biomed. Eng. – volume: 121 start-page: 1746 year: 2021 end-page: 1803 publication-title: Chem. Rev. – volume: 139 start-page: 14792 year: 2017 end-page: 14799 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1219 year: 2017 end-page: 1228 publication-title: Nat. Commun. – volume: 166 start-page: 651 year: 2016 end-page: 663 publication-title: Cell – volume: 47 start-page: 8 year: 2019 end-page: 13 publication-title: Curr. Opin. Pharmacol. – volume: 80 start-page: 9 year: 2020 end-page: 20 publication-title: Mol. Cell – volume: 377 start-page: 159 year: 2004 end-page: 169 publication-title: Biochem. J. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 58 131 start-page: 4632 4680 year: 2019 2019 end-page: 4637 4685 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 161 start-page: 581 year: 2015 end-page: 594 publication-title: Cell – volume: 5 start-page: 1032 year: 1999 end-page: 1038 publication-title: Nat. Med. – volume: 6 start-page: 351 year: 2021 end-page: 370 publication-title: Nat. Rev. Mater. – volume: 59 132 start-page: 16445 16587 year: 2020 2020 end-page: 16450 16592 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 143 start-page: 13854 year: 2021 publication-title: J. Am. Chem. Soc. – ident: e_1_2_6_32_2 doi: 10.1007/s12291-013-0408-y – ident: e_1_2_6_23_1 – ident: e_1_2_6_4_3 doi: 10.1002/ange.202006290 – ident: e_1_2_6_13_2 doi: 10.1038/s41573-020-0090-8 – ident: e_1_2_6_17_2 doi: 10.1038/s41557-021-00661-x – ident: e_1_2_6_27_1 doi: 10.1146/annurev-biophys-052118-115534 – ident: e_1_2_6_29_1 doi: 10.1038/s41467-017-01328-3 – ident: e_1_2_6_25_2 doi: 10.1016/j.cell.2016.05.026 – ident: e_1_2_6_44_1 doi: 10.1021/acs.biomac.6b01922 – ident: e_1_2_6_26_2 doi: 10.1016/j.cell.2016.06.010 – ident: e_1_2_6_21_2 doi: 10.1021/acs.nanolett.8b03174 – ident: e_1_2_6_22_3 doi: 10.1021/jacs.8b13512 – ident: e_1_2_6_8_3 doi: 10.1002/ange.202006385 – ident: e_1_2_6_20_3 doi: 10.1002/ange.201900135 – ident: e_1_2_6_12_2 doi: 10.1038/s41551-021-00698-w – ident: e_1_2_6_14_2 doi: 10.1038/s41578-020-00269-6 – ident: e_1_2_6_42_1 doi: 10.1021/jacs.8b04641 – ident: e_1_2_6_5_2 doi: 10.1021/jacs.9b12232 – ident: e_1_2_6_31_2 doi: 10.1002/anie.201814552 – ident: e_1_2_6_2_1 doi: 10.1021/acs.chemrev.0c00963 – ident: e_1_2_6_3_1 – ident: e_1_2_6_15_1 doi: 10.1021/acs.nanolett.6b04955 – ident: e_1_2_6_41_1 doi: 10.1038/nprot.2012.059 – ident: e_1_2_6_28_1 doi: 10.1016/j.cell.2015.03.048 – ident: e_1_2_6_43_1 doi: 10.1021/jacs.7b08710 – ident: e_1_2_6_6_1 – ident: e_1_2_6_7_3 doi: 10.1002/ange.202102601 – ident: e_1_2_6_20_2 doi: 10.1002/anie.201900135 – ident: e_1_2_6_34_2 doi: 10.1002/anie.202014278 – ident: e_1_2_6_9_3 doi: 10.1002/ange.202008708 – ident: e_1_2_6_37_2 doi: 10.1039/D1NR01174J – ident: e_1_2_6_22_2 doi: 10.1021/jacs.8b07727 – ident: e_1_2_6_18_2 doi: 10.1016/j.coph.2019.01.003 – ident: e_1_2_6_36_2 doi: 10.1021/acs.chemrev.0c00306 – ident: e_1_2_6_31_3 doi: 10.1002/ange.201814552 – ident: e_1_2_6_39_1 doi: 10.1021/ac4038653 – ident: e_1_2_6_11_1 – ident: e_1_2_6_38_1 doi: 10.1038/12469 – ident: e_1_2_6_7_2 doi: 10.1002/anie.202102601 – ident: e_1_2_6_45_1 doi: 10.1042/bj20031253 – ident: e_1_2_6_47_1 doi: 10.1021/jacs.1c06435 – ident: e_1_2_6_33_1 – ident: e_1_2_6_34_3 doi: 10.1002/ange.202014278 – ident: e_1_2_6_1_1 doi: 10.1021/jacs.1c00945 – ident: e_1_2_6_24_2 doi: 10.1016/j.molcel.2020.08.007 – ident: e_1_2_6_46_1 doi: 10.1021/acs.chemrev.0c00779 – ident: e_1_2_6_9_2 doi: 10.1002/anie.202008708 – ident: e_1_2_6_19_1 – ident: e_1_2_6_30_1 – ident: e_1_2_6_16_1 – ident: e_1_2_6_40_1 doi: 10.1002/advs.202003599 – ident: e_1_2_6_35_2 doi: 10.1002/adhm.202001211 – ident: e_1_2_6_8_2 doi: 10.1002/anie.202006385 – ident: e_1_2_6_10_1 doi: 10.1002/adfm.201804492 – ident: e_1_2_6_4_2 doi: 10.1002/anie.202006290 |
SSID | ssj0006279 |
Score | 2.1641567 |
Snippet | Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 25332 |
SubjectTerms | Alkaline phosphatase Assembly cancer Cell membranes Chemistry Drug delivery Internalization Lipids Membranes peptide Peptides Phase separation self-assembly |
Title | In Vivo Self‐Assembly Induced Cell Membrane Phase Separation for Improved Peptide Drug Internalization |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202111839 https://www.proquest.com/docview/2594424118 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QLnDhjRgMlAMSp2xrlrbrcRobA4lpAoZ2q5I0ZYjSoT2Q4MRP4DfyS7DXdg8khAS3tnKqNk7iz47zmZATrXiINDKMB1ozoV3JPOlZLDCWDKWlkTQOsy3aTqsrLnt2b-EUf8IPMQu44cyYrtc4waUaleakoZh7D_4dODBo5GERxoQtREXXc_4ohydke2UhWBUcjYy1scxLy82XrdIcai4C1qnFaW4QmX1rkmjyWJyMVVG_faNx_M_PbJL1FI7SWjJ-tsiKibfJaj2rArdD-hcxvXt4GdAbE4Wf7x-4SfykoleKNT-0CWjdRBG9gmdg9Azt9MEqgmzCKD6IKWBimgQuQLaDKTSBoWfDyT1NY5FRehB0l3Sbjdt6i6XVGZi2HO6x0KkGQnjacl1PBlzamtsKnD3Qvga_l_PQNeUKKAA0ro2sGg-Z7T1H6QAahV5lj-TiQWz2CdXKDWEwuaFtAGG6tnJwP1zA8qBdZSuTJyzTjq9T6nKsoBH5Ceky97H__Fn_5cnpTP45Ie34UbKQKdtPJ-_IB49QCEA2VjVP-FRrv7zFr7XPG7O7g780OiRreI2nHC27QHLj4cQcAdwZq-PpkP4CIuj4Mw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHMqFHVFWH5A4GRrXSZojKkvZqopN3KLYcSgipKi0SHDiE_hGvoSZLC0gISQ4xpqJEs_Ys3j8BmBDKxERjAwXodZcajfgXuBZPDRWEAWWJtA4qrZoOo1LeXRtF9WEdBcmw4cYJNxoZaT7NS1wSkhvD1FDqfgeAzyMYMjKj8I4tfVOo6qzIYKUIzK4vYqUvIahRoHbWBHbX_m_2qWhs_nZZU1tzv4UqOJrs1KTu61-T23pl29Ajv_6nWmYzD1StpOp0AyMmGQWSvWiEdwctA8TdnX71GHnJo7eX9_onPhexc-M2n5oE7K6iWN2imNo9wxrtdEwIm0GKt5JGLrFLMtdIG2LqmhCw3a7_RuWpyPj_C7oPFzu713UGzxv0MC15QiPR04tlNLTlut6QSgCWwtbYbyHCqAx9BUick2lihJAoWsT1IxH4Paeo3SITJFXXYCxpJOYRWBauRHqkxvZBp1M11YOHYlL3CG0q2xlysAL8fg6Ry-nJhqxn-EuC5_mzx_MXxk2B_QPGW7Hj5QrhbT9fP0--hgUSonOjVUrg0jF9stb_J3mwd7gaekvTOtQalycnvgnh83jZZigcbr0aNkrMNbr9s0qej89tZbq9weqW_xO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xkJa98EZbnj4gcTI0xnkdUUt5VxW7IG5R7NiAyKZVt0WCEz-B38gvYaZJWlgJIcEx1jhKPGPPN_b4G4BNrYQlGhkuEq251H7Mwzh0eGKc2MaOJtI4yrZoeocX8vjKvXpziz_nhxhuuNHMGKzXNME7id0ZkYZS7j3GdxjAkJMfh0npVQOy6_r5iEDKEznbXlVKHmCkUdI2VsXO-_7v3dIIa75FrAOX05iBuPzYPNPkbrvfU9v68T8ex-_8zSxMF3iU7eUGNAdjJpuHqVpZBm4Bbo4ydnl732a_TWpfnp7plPivSh8YFf3QJmE1k6bsDNvQ6xnWukG3iLI5pXg7YwiKWb5zgbItyqFJDKt3-9es2IxMi5ugi3DR2P9TO-RFeQauHU-E3HpBImWoHd8P40TErhauwmgP1a8x8BXC-qa6iwpAlWsTByYkavvQUzrBTjbcXYKJrJ2ZX8C08i1ak29dgxDTd5VHB-IS1wftK1eZCvBSO5EuuMuphEYa5azLIqLxi4bjV4GtoXwnZ-34UHK1VHZUzN5_EYaEUiK0cYIKiIHWPnlLtNc82B8-LX-l0wb8aNUb0elR82QFflIz3Xh03FWY6HX7Zg2hT0-tD6z7Fc-d-wY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Vivo+Self%E2%80%90Assembly+Induced+Cell+Membrane+Phase+Separation+for+Improved+Peptide+Drug+Internalization&rft.jtitle=Angewandte+Chemie&rft.au=Guo%2C+Ruo%E2%80%90Chen&rft.au=Zhang%2C+Xue%E2%80%90Hao&rft.au=Fan%2C+Peng%E2%80%90Sheng&rft.au=Song%2C+Ben%E2%80%90Li&rft.date=2021-11-15&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=133&rft.issue=47&rft.spage=25332&rft.epage=25338&rft_id=info:doi/10.1002%2Fange.202111839&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ange_202111839 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon |