Elastic Organic Crystals as Bioinspired Hair‐Like Sensors
One of the typical haptic elements are natural hairy structures that animals and plants rely on for feedback. Although these hair sensors are an admirable inspiration, the development of active flow sensing components having low elastic moduli and high aspect ratios remains a challenge. Here, we rep...
Saved in:
Published in | Angewandte Chemie Vol. 135; no. 9 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
20.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the typical haptic elements are natural hairy structures that animals and plants rely on for feedback. Although these hair sensors are an admirable inspiration, the development of active flow sensing components having low elastic moduli and high aspect ratios remains a challenge. Here, we report a new sensing approach based on a flexible, thin and optically transmissive organic crystal of high aspect ratio, which is stamped with fluorescent dye for tracking. When subjected to gas flow and exposed to laser, the crystal bends due to exerted pressure and acts as an optical flow (hair) sensor with low detection limit (≈1.578 m s−1) and fast response time (≈2.70 s). The air‐flow‐induced crystal deformation and flow dynamics response are modelled by finite element analysis. Due to having a simple design and being lightweight and mechanically robust this prototypical crystal hair‐like sensor opens prospects for a new class of sensing devices ranging from wearable electronics to aeronautics.
A high‐aspect ratio, elastically bendable organic single crystal is presented as a hair air‐flow sensor. The crystal acts as a passive light‐transducing medium that is stamped with a fluorescent dye to track its deformation upon exposure to nitrogen gas. Furthermore, the modelling analysis of the air‐flow‐induced crystal deformation, and the response to flow dynamics around the crystal body are presented. |
---|---|
AbstractList | One of the typical haptic elements are natural hairy structures that animals and plants rely on for feedback. Although these hair sensors are an admirable inspiration, the development of active flow sensing components having low elastic moduli and high aspect ratios remains a challenge. Here, we report a new sensing approach based on a flexible, thin and optically transmissive organic crystal of high aspect ratio, which is stamped with fluorescent dye for tracking. When subjected to gas flow and exposed to laser, the crystal bends due to exerted pressure and acts as an optical flow (hair) sensor with low detection limit (≈1.578 m s−1) and fast response time (≈2.70 s). The air‐flow‐induced crystal deformation and flow dynamics response are modelled by finite element analysis. Due to having a simple design and being lightweight and mechanically robust this prototypical crystal hair‐like sensor opens prospects for a new class of sensing devices ranging from wearable electronics to aeronautics.
A high‐aspect ratio, elastically bendable organic single crystal is presented as a hair air‐flow sensor. The crystal acts as a passive light‐transducing medium that is stamped with a fluorescent dye to track its deformation upon exposure to nitrogen gas. Furthermore, the modelling analysis of the air‐flow‐induced crystal deformation, and the response to flow dynamics around the crystal body are presented. One of the typical haptic elements are natural hairy structures that animals and plants rely on for feedback. Although these hair sensors are an admirable inspiration, the development of active flow sensing components having low elastic moduli and high aspect ratios remains a challenge. Here, we report a new sensing approach based on a flexible, thin and optically transmissive organic crystal of high aspect ratio, which is stamped with fluorescent dye for tracking. When subjected to gas flow and exposed to laser, the crystal bends due to exerted pressure and acts as an optical flow (hair) sensor with low detection limit (≈1.578 m s −1 ) and fast response time (≈2.70 s). The air‐flow‐induced crystal deformation and flow dynamics response are modelled by finite element analysis. Due to having a simple design and being lightweight and mechanically robust this prototypical crystal hair‐like sensor opens prospects for a new class of sensing devices ranging from wearable electronics to aeronautics. One of the typical haptic elements are natural hairy structures that animals and plants rely on for feedback. Although these hair sensors are an admirable inspiration, the development of active flow sensing components having low elastic moduli and high aspect ratios remains a challenge. Here, we report a new sensing approach based on a flexible, thin and optically transmissive organic crystal of high aspect ratio, which is stamped with fluorescent dye for tracking. When subjected to gas flow and exposed to laser, the crystal bends due to exerted pressure and acts as an optical flow (hair) sensor with low detection limit (≈1.578 m s−1) and fast response time (≈2.70 s). The air‐flow‐induced crystal deformation and flow dynamics response are modelled by finite element analysis. Due to having a simple design and being lightweight and mechanically robust this prototypical crystal hair‐like sensor opens prospects for a new class of sensing devices ranging from wearable electronics to aeronautics. |
Author | Mahmoud Halabi, Jad Naumov, Panče Yousuf, Soha Li, Liang Daqaq, Mohammed Laws, Praveen Tahir, Ibrahim Ahmed, Ejaz Rezgui, Rachid |
Author_xml | – sequence: 1 givenname: Soha surname: Yousuf fullname: Yousuf, Soha organization: New York University Abu Dhabi – sequence: 2 givenname: Jad surname: Mahmoud Halabi fullname: Mahmoud Halabi, Jad organization: New York University Abu Dhabi – sequence: 3 givenname: Ibrahim orcidid: 0000-0001-9231-9809 surname: Tahir fullname: Tahir, Ibrahim organization: New York University Abu Dhabi – sequence: 4 givenname: Ejaz orcidid: 0000-0002-3676-2950 surname: Ahmed fullname: Ahmed, Ejaz organization: New York University Abu Dhabi – sequence: 5 givenname: Rachid orcidid: 0000-0001-5398-9279 surname: Rezgui fullname: Rezgui, Rachid organization: New York University Abu Dhabi – sequence: 6 givenname: Liang orcidid: 0000-0002-3577-4343 surname: Li fullname: Li, Liang organization: Sorbonne University Abu Dhabi – sequence: 7 givenname: Praveen orcidid: 0000-0002-2114-2257 surname: Laws fullname: Laws, Praveen organization: New York University Abu Dhabi – sequence: 8 givenname: Mohammed orcidid: 0000-0002-2004-6482 surname: Daqaq fullname: Daqaq, Mohammed organization: New York University Abu Dhabi – sequence: 9 givenname: Panče orcidid: 0000-0003-2416-6569 surname: Naumov fullname: Naumov, Panče email: pance.naumov@nyu.edu organization: New York University |
BookMark | eNqFkMFKw0AQhhepYFu9eg54Tp2dbDJdPNVSW6HYg3peNummbI2bupsivfkIPqNPYkpFQRBP_-X7ZuDrsY6rnWHsnMOAA-CldiszQEDklKA8Yl2eIo8TSqnDugBCxEMU8oT1QlgDQIYku-xqUunQ2CJa-JV27Y79LjS6CpEO0bWtrQsb680ymmnrP97e5_bJRPfGhdqHU3ZctqQ5-9o-e7yZPIxn8XwxvR2P5nHBM5RxngIJGmJaQiETyLVZDrEkgyCLMhOgW0hnlGRJjiRESpwMkEk5ylyLDJI-uzjc3fj6ZWtCo9b11rv2pUIi4oJjJlpKHKjC1yF4U6rCNrqxtWu8tpXioPaZ1D6T-s7UaoNf2sbbZ-13fwvyILzayuz-odXobjr5cT8BXoR7hQ |
CitedBy_id | crossref_primary_10_2514_1_J062931 crossref_primary_10_1002_chem_202403283 crossref_primary_10_1088_1742_6596_2859_1_012004 crossref_primary_10_1002_adom_202400582 crossref_primary_10_1039_D3CE01321A |
Cites_doi | 10.1002/adfm.202105323 10.1002/ange.202113988 10.1007/s00348-005-1003-7 10.1109/JSEN.2021.3110770 10.1002/admt.201700285 10.1002/adfm.201701618 10.1063/1.5000506 10.1121/1.423083 10.1038/srep32955 10.1088/1361-665X/ab18cb 10.3390/jmse8090714 10.1021/acs.chemrev.5b00398 10.1007/s40820-020-00446-w 10.1016/j.mser.2022.100672 10.1002/ange.201810514 10.1021/nn500441k 10.1142/S1793604716500016 10.1002/adom.201200067 10.1021/jacs.9b07645 10.1364/OE.24.021407 10.1016/j.sna.2020.112438 10.1021/acsami.9b01427 10.1016/j.jfluidstructs.2016.07.017 10.1002/ange.201800137 10.1002/anie.201810514 10.1002/adom.202000959 10.1002/adma.201908214 10.1021/acsami.9b15382 10.3390/nano10020211 10.1039/C6MH00587J 10.1021/jacs.0c05440 10.1039/C8TA10750E 10.1002/anie.201802020 10.1109/JLT.2016.2615054 10.1002/anie.201800137 10.1002/ange.202006474 10.3390/app10186177 10.1007/s42235-020-0092-6 10.1039/C9CC01702J 10.1002/anie.202113988 10.1109/JSEN.2018.2868089 10.1039/C4LC00821A 10.1021/acsami.6b14236 10.1021/acsami.9b16336 10.1088/1361-6528/abcc96 10.1021/acs.nanolett.1c00852 10.1039/c3cp54994a 10.1039/c3tc31576b 10.1038/ncomms4324 10.1002/ange.201802020 10.1007/978-3-319-33201-7_1 10.1016/j.sna.2018.06.025 10.1038/nchem.2547 10.1002/anie.202006474 10.1002/adma.201305285 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/ange.202217329 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3757 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ange_202217329 ANGE202217329 |
Genre | article |
GrantInformation_xml | – fundername: New York University Abu Dhabi |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCUC ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K RGC ROL RWI RX1 RYL SUPJJ TN5 TUS UB1 UPT V2E W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c1629-b50747825f0c930baed82f7e209cf640a629a67363b27445717e07e5129ba4603 |
IEDL.DBID | DR2 |
ISSN | 0044-8249 |
IngestDate | Fri Jul 25 11:57:45 EDT 2025 Thu Apr 24 22:53:00 EDT 2025 Tue Jul 01 02:42:33 EDT 2025 Wed Jan 22 16:23:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1629-b50747825f0c930baed82f7e209cf640a629a67363b27445717e07e5129ba4603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3676-2950 0000-0002-2114-2257 0000-0002-2004-6482 0000-0001-9231-9809 0000-0003-2416-6569 0000-0002-3577-4343 0000-0001-5398-9279 |
PQID | 2777141264 |
PQPubID | 866336 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2777141264 crossref_citationtrail_10_1002_ange_202217329 crossref_primary_10_1002_ange_202217329 wiley_primary_10_1002_ange_202217329_ANGE202217329 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 20, 2023 |
PublicationDateYYYYMMDD | 2023-02-20 |
PublicationDate_xml | – month: 02 year: 2023 text: February 20, 2023 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2021; 21 2013; 1 2017; 4 2019; 11 2020; 142 2019; 55 2017; 27 2020; 17 2020 2020; 59 132 2014; 26 2020; 12 2020; 10 2020; 32 2018; 89 2019; 141 2016; 34 2020; 8 2016; 6 2018; 18 2022 2022; 61 134 2021; 32 2014; 5 2018; 3 2021; 31 2014; 2 2015; 115 2018 2018; 57 130 2021; 317 2018; 279 2019; 28 2014; 16 2014; 14 2017 1998; 103 2014; 8 2005; 39 2022; 148 2016; 8 2016; 24 2016; 9 2016; 66 e_1_2_8_28_1 e_1_2_8_28_2 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_24_2 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_34_2 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_30_1 e_1_2_8_27_2 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_50_1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 21 start-page: 4684 year: 2021 end-page: 4691 publication-title: Nano Lett. – volume: 5 start-page: 3324 year: 2014 publication-title: Nat. Commun. – volume: 8 start-page: 644 year: 2016 end-page: 656 publication-title: Nat. Chem. – volume: 59 132 start-page: 16195 16329 year: 2020 2020 end-page: 16201 16335 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 66 start-page: 110 year: 2016 end-page: 126 publication-title: J. Fluids Struct. – volume: 279 start-page: 293 year: 2018 end-page: 305 publication-title: Sens. Actuators A Phys. – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 24 start-page: 21407 year: 2016 publication-title: Opt. Express – volume: 11 start-page: 13608 year: 2019 end-page: 13615 publication-title: ACS Appl. Mater. Interfaces – start-page: 3 year: 2017 end-page: 25 – volume: 26 start-page: 3230 year: 2014 end-page: 3234 publication-title: Adv. Mater. – volume: 89 year: 2018 publication-title: Rev. Sci. Instrum. – volume: 34 start-page: 5351 year: 2016 end-page: 5356 publication-title: J. Lightwave Technol. – volume: 141 start-page: 14966 year: 2019 end-page: 14970 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 33848 year: 2016 end-page: 33855 publication-title: ACS Appl. Mater. Interfaces – volume: 39 start-page: 464 year: 2005 end-page: 474 publication-title: Exp. Fluids – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 1889 year: 2019 end-page: 1896 publication-title: J. Mater. Chem. A – volume: 142 start-page: 13256 year: 2020 end-page: 13272 publication-title: J. Am. Chem. Soc. – volume: 148 year: 2022 publication-title: Mater. Sci. Eng. R Rep. – volume: 12 start-page: 109 year: 2020 publication-title: Nano-Micro Lett. – volume: 28 year: 2019 publication-title: Smart Mater. Struct. – volume: 317 year: 2021 publication-title: Sens. Actuators A Phys. – volume: 8 start-page: 714 year: 2020 publication-title: J. Mar. Sci. Eng. – volume: 103 start-page: 3445 year: 1998 end-page: 3463 publication-title: J. Acoust. Soc. Am. – volume: 3 year: 2018 publication-title: Adv. Mater. Technol. – volume: 11 start-page: 43383 year: 2019 end-page: 43392 publication-title: ACS Appl. Mater. Interfaces – volume: 57 130 start-page: 8837 8974 year: 2018 2018 end-page: 8846 8984 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 115 start-page: 12440 year: 2015 end-page: 12490 publication-title: Chem. Rev. – volume: 14 start-page: 4362 year: 2014 end-page: 4369 publication-title: Lab Chip – volume: 1 start-page: 305 year: 2013 end-page: 311 publication-title: Adv. Opt. Mater. – volume: 57 130 start-page: 17254 17501 year: 2018 2018 end-page: 17258 17505 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 4689 year: 2014 end-page: 4697 publication-title: ACS Nano – volume: 10 start-page: 211 year: 2020 publication-title: Nanomaterials – volume: 18 start-page: 10192 year: 2018 end-page: 10198 publication-title: IEEE Sens. J. – volume: 57 130 start-page: 8448 8584 year: 2018 2018 end-page: 8452 8588 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2 start-page: 1404 year: 2014 publication-title: J. Mater. Chem. C – volume: 6 start-page: 32955 year: 2016 publication-title: Sci. Rep. – volume: 32 year: 2021 publication-title: Nanotechnology – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 7173 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 4 start-page: 383 year: 2017 end-page: 388 publication-title: Mater. Horiz. – volume: 17 start-page: 867 year: 2020 end-page: 898 publication-title: J. Bionic Eng. – volume: 21 start-page: 22544 year: 2021 end-page: 22552 publication-title: IEEE Sens. J. – volume: 55 start-page: 4921 year: 2019 end-page: 4924 publication-title: Chem. Commun. – volume: 10 start-page: 6177 year: 2020 publication-title: Appl. Sci. – volume: 11 start-page: 44865 year: 2019 end-page: 44873 publication-title: ACS Appl. Mater. Interfaces – volume: 9 year: 2016 publication-title: Funct. Mater. Lett. – ident: e_1_2_8_41_1 doi: 10.1002/adfm.202105323 – ident: e_1_2_8_22_2 doi: 10.1002/ange.202113988 – ident: e_1_2_8_14_1 doi: 10.1007/s00348-005-1003-7 – ident: e_1_2_8_11_1 doi: 10.1109/JSEN.2021.3110770 – ident: e_1_2_8_39_1 doi: 10.1002/admt.201700285 – ident: e_1_2_8_16_1 doi: 10.1002/adfm.201701618 – ident: e_1_2_8_4_1 doi: 10.1063/1.5000506 – ident: e_1_2_8_3_1 doi: 10.1121/1.423083 – ident: e_1_2_8_6_1 doi: 10.1038/srep32955 – ident: e_1_2_8_20_1 doi: 10.1088/1361-665X/ab18cb – ident: e_1_2_8_48_1 doi: 10.3390/jmse8090714 – ident: e_1_2_8_25_1 doi: 10.1021/acs.chemrev.5b00398 – ident: e_1_2_8_45_1 doi: 10.1007/s40820-020-00446-w – ident: e_1_2_8_1_1 doi: 10.1016/j.mser.2022.100672 – ident: e_1_2_8_27_2 doi: 10.1002/ange.201810514 – ident: e_1_2_8_42_1 doi: 10.1021/nn500441k – ident: e_1_2_8_36_1 doi: 10.1142/S1793604716500016 – ident: e_1_2_8_31_1 doi: 10.1002/adom.201200067 – ident: e_1_2_8_23_1 doi: 10.1021/jacs.9b07645 – ident: e_1_2_8_13_1 doi: 10.1364/OE.24.021407 – ident: e_1_2_8_46_1 doi: 10.1016/j.sna.2020.112438 – ident: e_1_2_8_5_1 doi: 10.1021/acsami.9b01427 – ident: e_1_2_8_50_1 doi: 10.1016/j.jfluidstructs.2016.07.017 – ident: e_1_2_8_24_2 doi: 10.1002/ange.201800137 – ident: e_1_2_8_27_1 doi: 10.1002/anie.201810514 – ident: e_1_2_8_30_1 doi: 10.1002/adom.202000959 – ident: e_1_2_8_37_1 doi: 10.1002/adma.201908214 – ident: e_1_2_8_12_1 doi: 10.1021/acsami.9b15382 – ident: e_1_2_8_10_1 doi: 10.3390/nano10020211 – ident: e_1_2_8_38_1 doi: 10.1039/C6MH00587J – ident: e_1_2_8_29_1 doi: 10.1021/jacs.0c05440 – ident: e_1_2_8_17_1 doi: 10.1039/C8TA10750E – ident: e_1_2_8_28_1 doi: 10.1002/anie.201802020 – ident: e_1_2_8_47_1 doi: 10.1109/JLT.2016.2615054 – ident: e_1_2_8_24_1 doi: 10.1002/anie.201800137 – ident: e_1_2_8_34_2 doi: 10.1002/ange.202006474 – ident: e_1_2_8_49_1 doi: 10.3390/app10186177 – ident: e_1_2_8_8_1 doi: 10.1007/s42235-020-0092-6 – ident: e_1_2_8_35_1 doi: 10.1039/C9CC01702J – ident: e_1_2_8_22_1 doi: 10.1002/anie.202113988 – ident: e_1_2_8_44_1 doi: 10.1109/JSEN.2018.2868089 – ident: e_1_2_8_21_1 doi: 10.1039/C4LC00821A – ident: e_1_2_8_7_1 doi: 10.1021/acsami.6b14236 – ident: e_1_2_8_43_1 doi: 10.1021/acsami.9b16336 – ident: e_1_2_8_9_1 doi: 10.1088/1361-6528/abcc96 – ident: e_1_2_8_18_1 doi: 10.1021/acs.nanolett.1c00852 – ident: e_1_2_8_33_1 doi: 10.1039/c3cp54994a – ident: e_1_2_8_32_1 doi: 10.1039/c3tc31576b – ident: e_1_2_8_19_1 doi: 10.1038/ncomms4324 – ident: e_1_2_8_28_2 doi: 10.1002/ange.201802020 – ident: e_1_2_8_2_1 doi: 10.1007/978-3-319-33201-7_1 – ident: e_1_2_8_40_1 doi: 10.1016/j.sna.2018.06.025 – ident: e_1_2_8_26_1 doi: 10.1038/nchem.2547 – ident: e_1_2_8_34_1 doi: 10.1002/anie.202006474 – ident: e_1_2_8_15_1 doi: 10.1002/adma.201305285 |
SSID | ssj0006279 |
Score | 2.2119706 |
Snippet | One of the typical haptic elements are natural hairy structures that animals and plants rely on for feedback. Although these hair sensors are an admirable... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Aeronautics Air Flow Sensors Bends Chemistry Crystals Dynamic Crystals Finite element method Fluorescent dyes Fluorescent indicators Gas flow Hair Hair Sensors High aspect ratio Modulus of elasticity Optical flow (image analysis) Organic Crystals Response time Sensors |
Title | Elastic Organic Crystals as Bioinspired Hair‐Like Sensors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202217329 https://www.proquest.com/docview/2777141264 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELZQF1j4RxQKyoDE5NZxEscWU6laKgQdgErdIttxpKgoRUk7wMQj8Iw8CXb-2iIhJBijnKPkzhd_Z999B8CFIgQzSRn0qOLQFR6FghEX-h72be4zWvQGvB-R4di9nXiTlSr-gh-i3nAznpH_r42Dc5F1lqShJvdex3dYY2oHmwo-k7BlUNHDkj-K4IJsD7kupDrQqFgbEe6sD19flZZQcxWw5ivOYAfw6l2LRJNpezEXbfn2jcbxPx-zC7ZLOGp1i_mzBzZUsg82e1UXuANw1dfwWt-0iqJNafXSVw0onzOLZ9Z1PIsTc1SvQmvI4_Tz_eMunirrUcfGszQ7BONB_6k3hGXDBShtbTIovJxOH3sRksxBgquQ4shXGDEZERdxLcRNIpgjDLGgp0NBhXxlMIPgLkHOEWgks0QdA0tgGkkUchpqy9tMUUoiqrGDJNwcxbEmgJXCA1mykZumGM9BwaOMA6OSoFZJE1zW8i8FD8ePkq3KfkHpj1mAfd-3XVujvybAuSF-eUrQHd3066uTvww6BVumN31e_45aoDFPF-pMI5i5OM9n6Rcb6uS6 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTgIxEJ4oHvDivxFF3YOJp2K37HbbeEIEUYGDQuJt05ZuQiBg-DnoyUfwGX0S210WxMSY6HGz083uTGf7TTvzDcCZppRwxTjymRbIkz5DklMPBT4JXBFwlvQGbDRpre3dPflpNqGthUn4IeYbbtYz4v-1dXC7IX2xYA21yfcmwCMGVBcJX4U129bb0udfPywYpChJ6Paw5yFmQo2UtxGTi-Xxy-vSAmx-hazxmlPdBJm-bZJq0itMJ7KgXr8ROf7rc7ZgY4ZInVIyhbZhRQ92IFtOG8HtwmXFIGxz00nqNpVTHr0YTNkfO2LsXHWH3YE9rdcdpya6o4-393q3p51HEx4PR-M9aFcrrXINzXouIOUaqyHpx4z6xI-w4kUshe4wEgWaYK4i6mFhhITNBStKyy3om2hQ40Bb2CCFR3FxHzKD4UAfgCMJixTuCNYxxne5ZoxGzMAHRYU9jeM5QKnGQzUjJLd9MfphQqVMQquScK6SHJzP5Z8TKo4fJfOpAcOZS45DEgSB67kGAOaAxJb45SlhqXlTmV8d_mXQKWRrrUY9rN82749g3baqj8vhcR4yk9FUHxtAM5En8ZT9BIL56NY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkYALO6JQIAckTqaOkzi2OJXSUrYKsUi9RbbjSFVRi7oc4MQn8I18CXbStICEkOAYZRwlM574jT3zBuBAU0q4YhwFTAvky4AhyamPwoCErgg5y3oDXjdp48G_aAWtT1X8GT_EZMPNekb6v7YO_hQn5SlpqM29N_EdMZjaI3wW5nyKuW3ecHo7JZCiJGPbw76PmIk0ctpGTMpfx39dlqZY8zNiTZec-jKI_GWzTJPO0Wgoj9TLNx7H_3zNCiyN8ahTySbQKszo7hosVPM2cOtwXDP42tx0sqpN5VT7zwZRPg4cMXBO2r12157V69hpiHb__fXtqt3Rzp0Jjnv9wQY81Gv31QYad1xAyjU2QzJI-fRJkGDFPSyFjhlJQk0wVwn1sTBCwmaCedIyCwYmFtQ41BY0SGH0721Codvr6i1wJGGJwrFgsTG9yzVjNGEGPCgq7FkcLwLKFR6pMR257YrxGGVEyiSyKokmKinC4UT-KSPi-FGylNsvGjvkICJhGLq-a-BfEUhqiF-eElWaZ7XJ1fZfBu3D_M1pPbo6b17uwKLtU5_WwuMSFIb9kd41aGYo99IJ-wHPSeeF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elastic+Organic+Crystals+as+Bioinspired+Hair%E2%80%90Like+Sensors&rft.jtitle=Angewandte+Chemie&rft.au=Yousuf%2C+Soha&rft.au=Mahmoud+Halabi%2C+Jad&rft.au=Tahir%2C+Ibrahim&rft.au=Ahmed%2C+Ejaz&rft.date=2023-02-20&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=135&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fange.202217329&rft.externalDBID=10.1002%252Fange.202217329&rft.externalDocID=ANGE202217329 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon |