Phase‐Separated Multienzyme Compartmentalization for Terpene Biosynthesis in a Prokaryote

Liquid–liquid phase separation (LLPS) forms biomolecular condensates or coacervates in cells. Metabolic enzymes can form phase‐separated subcellular compartments that enrich enzymes, cofactors, and substrates. Herein, we report the construction of synthetic multienzyme condensates that catalyze the...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie Vol. 134; no. 29
Main Authors Wang, Yue, Liu, Min, Wei, Qixin, Wu, Wanjie, He, Yanping, Gao, Jiayang, Zhou, Renjie, Jiang, Liwen, Qu, Jianan, Xia, Jiang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 18.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Liquid–liquid phase separation (LLPS) forms biomolecular condensates or coacervates in cells. Metabolic enzymes can form phase‐separated subcellular compartments that enrich enzymes, cofactors, and substrates. Herein, we report the construction of synthetic multienzyme condensates that catalyze the biosynthesis of a terpene, α‐farnesene, in the prokaryote E. coli. RGGRGG derived from LAF‐1 was used as the scaffold protein to form the condensates by LLPS. Multienzyme condensates were then formed by assembling two enzymes Idi and IspA through an RIAD/RIDD interaction. Multienzyme condensates constructed inside E. coli cells compartmentalized the cytosolic space into regions of high and low enzyme density and led to a significant enhancement of α‐farnesene production. This work demonstrates LLPS‐driven compartmentalization of the cytosolic space of prokaryotic cells, condensation of a biosynthetic pathway, and enhancement of the biosynthesis of α‐farnesene. Prokaryotic cells generally lack organelles to compartmentalize the intracellular content. When liquid–liquid phase‐separated protein condensates were constructed inside E. coli, membraneless organelles were created to compartmentalize terpene biosynthetic enzymes. Compartmentalizing the enzymes in protein condensates increased the production rate of the terpene product, showing this method to be an effective way of enhancing heterologous biosynthesis.
AbstractList Liquid–liquid phase separation (LLPS) forms biomolecular condensates or coacervates in cells. Metabolic enzymes can form phase‐separated subcellular compartments that enrich enzymes, cofactors, and substrates. Herein, we report the construction of synthetic multienzyme condensates that catalyze the biosynthesis of a terpene, α‐farnesene, in the prokaryote E. coli. RGGRGG derived from LAF‐1 was used as the scaffold protein to form the condensates by LLPS. Multienzyme condensates were then formed by assembling two enzymes Idi and IspA through an RIAD/RIDD interaction. Multienzyme condensates constructed inside E. coli cells compartmentalized the cytosolic space into regions of high and low enzyme density and led to a significant enhancement of α‐farnesene production. This work demonstrates LLPS‐driven compartmentalization of the cytosolic space of prokaryotic cells, condensation of a biosynthetic pathway, and enhancement of the biosynthesis of α‐farnesene.
Abstract Liquid–liquid phase separation (LLPS) forms biomolecular condensates or coacervates in cells. Metabolic enzymes can form phase‐separated subcellular compartments that enrich enzymes, cofactors, and substrates. Herein, we report the construction of synthetic multienzyme condensates that catalyze the biosynthesis of a terpene, α‐farnesene, in the prokaryote E. coli . RGGRGG derived from LAF‐1 was used as the scaffold protein to form the condensates by LLPS. Multienzyme condensates were then formed by assembling two enzymes Idi and IspA through an RIAD/RIDD interaction. Multienzyme condensates constructed inside E. coli cells compartmentalized the cytosolic space into regions of high and low enzyme density and led to a significant enhancement of α‐farnesene production. This work demonstrates LLPS‐driven compartmentalization of the cytosolic space of prokaryotic cells, condensation of a biosynthetic pathway, and enhancement of the biosynthesis of α‐farnesene.
Liquid–liquid phase separation (LLPS) forms biomolecular condensates or coacervates in cells. Metabolic enzymes can form phase‐separated subcellular compartments that enrich enzymes, cofactors, and substrates. Herein, we report the construction of synthetic multienzyme condensates that catalyze the biosynthesis of a terpene, α‐farnesene, in the prokaryote E. coli. RGGRGG derived from LAF‐1 was used as the scaffold protein to form the condensates by LLPS. Multienzyme condensates were then formed by assembling two enzymes Idi and IspA through an RIAD/RIDD interaction. Multienzyme condensates constructed inside E. coli cells compartmentalized the cytosolic space into regions of high and low enzyme density and led to a significant enhancement of α‐farnesene production. This work demonstrates LLPS‐driven compartmentalization of the cytosolic space of prokaryotic cells, condensation of a biosynthetic pathway, and enhancement of the biosynthesis of α‐farnesene. Prokaryotic cells generally lack organelles to compartmentalize the intracellular content. When liquid–liquid phase‐separated protein condensates were constructed inside E. coli, membraneless organelles were created to compartmentalize terpene biosynthetic enzymes. Compartmentalizing the enzymes in protein condensates increased the production rate of the terpene product, showing this method to be an effective way of enhancing heterologous biosynthesis.
Author He, Yanping
Wang, Yue
Wei, Qixin
Wu, Wanjie
Xia, Jiang
Zhou, Renjie
Qu, Jianan
Liu, Min
Gao, Jiayang
Jiang, Liwen
Author_xml – sequence: 1
  givenname: Yue
  surname: Wang
  fullname: Wang, Yue
  organization: The Chinese University of Hong Kong
– sequence: 2
  givenname: Min
  surname: Liu
  fullname: Liu, Min
  organization: The Chinese University of Hong Kong
– sequence: 3
  givenname: Qixin
  surname: Wei
  fullname: Wei, Qixin
  organization: The Chinese University of Hong Kong
– sequence: 4
  givenname: Wanjie
  surname: Wu
  fullname: Wu, Wanjie
  organization: Hong Kong University of Science and Technology
– sequence: 5
  givenname: Yanping
  surname: He
  fullname: He, Yanping
  organization: The Chinese University of Hong Kong
– sequence: 6
  givenname: Jiayang
  surname: Gao
  fullname: Gao, Jiayang
  organization: The Chinese University of Hong Kong
– sequence: 7
  givenname: Renjie
  surname: Zhou
  fullname: Zhou, Renjie
  organization: The Chinese University of Hong Kong
– sequence: 8
  givenname: Liwen
  surname: Jiang
  fullname: Jiang, Liwen
  organization: The Chinese University of Hong Kong
– sequence: 9
  givenname: Jianan
  surname: Qu
  fullname: Qu, Jianan
  organization: Hong Kong University of Science and Technology
– sequence: 10
  givenname: Jiang
  orcidid: 0000-0001-8112-7625
  surname: Xia
  fullname: Xia, Jiang
  email: jiangxia@cuhk.edu.hk
  organization: The Chinese University of Hong Kong
BookMark eNqFkL9OwzAQxi1UJNrCymyJOcV_EiceS1UKUoFKlInBcpMLTUnsYKdC6cQj8Iw8CamKYGS60-n33X33DVDPWAMInVMyooSwS21eYMQIY4RLIo9Qn0aMBjyO4h7qExKGQcJCeYIG3m8IIYLFso-eF2vt4evj8xFq7XQDGb7blk0BZtdWgCe26sZNBabRZbHTTWENzq3DS3A1GMBXhfWtadbgC48LgzVeOPuqXWsbOEXHuS49nP3UIXq6ni4nN8H8YXY7Gc-DlAomgzDhTCcpRBmXXbeCUHBNaRZxwWWWS5A8iuIsZbEmGggwDVm4ykVMV0x2X_AhujjsrZ1924Jv1MZunelOKiaSWEhBItFRowOVOuu9g1zVrqg6p4oStQ9Q7QNUvwF2AnkQvBcltP_Qanw_m_5pvwGXAXir
CitedBy_id crossref_primary_10_1002_ange_202215778
crossref_primary_10_1002_anie_202215778
crossref_primary_10_1021_acssynbio_4c00132
Cites_doi 10.1364/JOSAB.34.000B64
10.1038/s41587-019-0341-6
10.1016/j.tcb.2018.02.004
10.1021/acs.biomac.0c00321
10.1016/j.molcel.2006.09.006
10.1038/s41929-020-0433-1
10.1038/nrm.2017.7
10.1021/acs.analchem.8b04875
10.1038/s41589-020-0579-9
10.1186/s13068-017-1003-x
10.1016/j.str.2009.12.012
10.1038/nrm1527
10.1021/acs.bioconjchem.0c00476
10.1016/j.ymben.2018.03.004
10.1016/0968-0004(85)90266-X
10.1038/nbt.1557
10.1126/science.aaf4382
10.1186/1475-2859-13-68
10.1021/ar50074a002
10.1006/jmbi.2000.3662
10.1016/S1673-8527(09)60046-1
10.1126/science.1152241
10.1146/annurev-cellbio-111315-124907
10.1021/acssynbio.1c00045
10.1021/bc2004999
10.1021/acsnano.9b04554
10.1007/s00253-021-11121-4
10.1038/s41589-018-0180-7
10.1038/s41467-017-02088-w
10.1006/meth.1999.0858
10.1364/OE.26.000428
10.1126/science.aar3958
10.1073/pnas.1504822112
10.1073/pnas.0704977104
10.1002/bit.25226
10.1038/s41589-019-0284-8
10.1038/s41467-019-12247-w
10.1016/j.biotechadv.2020.107627
10.1016/j.jbiotec.2009.01.008
10.1038/s41467-018-05403-1
10.1021/acsnano.9b03631
10.1074/jbc.M603223200
10.1038/s41467-018-04543-8
10.1016/j.ymben.2010.01.003
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ange.202203909
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3757
EndPage n/a
ExternalDocumentID 10_1002_ange_202203909
ANGE202203909
Genre article
GrantInformation_xml – fundername: Hong Kong Research Grants Counsil
  funderid: 14304921
– fundername: National Key R&D Program of China
  funderid: 2018YFA0903204
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCUC
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RGC
ROL
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~IA
~WT
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c1629-4832a8ce5d3932abe463a11d53639df9e93557dc27a0ae0e2aed4bf671b296273
IEDL.DBID DR2
ISSN 0044-8249
IngestDate Thu Oct 10 19:57:19 EDT 2024
Fri Aug 23 01:48:51 EDT 2024
Sat Aug 24 01:03:35 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1629-4832a8ce5d3932abe463a11d53639df9e93557dc27a0ae0e2aed4bf671b296273
Notes These authors contributed equally to this work.
ORCID 0000-0001-8112-7625
PQID 2687696056
PQPubID 866336
PageCount 8
ParticipantIDs proquest_journals_2687696056
crossref_primary_10_1002_ange_202203909
wiley_primary_10_1002_ange_202203909_ANGE202203909
PublicationCentury 2000
PublicationDate July 18, 2022
PublicationDateYYYYMMDD 2022-07-18
PublicationDate_xml – month: 07
  year: 2022
  text: July 18, 2022
  day: 18
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2018; 361
2007; 104
2019; 91
2018; 28
2010; 37
2010; 18
2019; 10
2019; 13
2021; 105
2019; 15
2019; 37
2016; 32
2020; 16
2004; 5
2000; 298
1974; 7
2008; 320
2014; 111
2009; 27
2017; 357
2018; 26
2018; 47
2018; 9
2021; 10
2020; 3
2016; 2
2020; 31
2006; 24
1999; 19
2015; 112
2017; 34
2014; 13
2017; 18
2009; 140
2020; 44
2020; 21
2006; 281
2018; 11
2012; 23
1985; 10
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
Kim K. (e_1_2_7_42_1) 2016; 2
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 10
  start-page: 4248
  year: 2019
  publication-title: Nat. Commun.
– volume: 5
  start-page: 959
  year: 2004
  end-page: 970
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 2
  year: 2016
  publication-title: J. Biomed. Photonics Eng.
– volume: 104
  start-page: 11655
  year: 2007
  end-page: 11659
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  start-page: 3251
  year: 2021
  end-page: 3263
  publication-title: ACS Synth. Biol.
– volume: 7
  start-page: 40
  year: 1974
  end-page: 46
  publication-title: Acc. Chem. Res.
– volume: 281
  start-page: 21535
  year: 2006
  end-page: 21545
  publication-title: J. Biol. Chem.
– volume: 37
  start-page: 281
  year: 2010
  end-page: 296
  publication-title: J. Genet. Genomics
– volume: 13
  start-page: 68
  year: 2014
  publication-title: Microb. Cell Fact.
– volume: 32
  start-page: 349
  year: 2016
  end-page: 372
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 320
  start-page: 103
  year: 2008
  end-page: 106
  publication-title: Science
– volume: 16
  start-page: 1143
  year: 2020
  end-page: 1148
  publication-title: Nat. Chem. Biol.
– volume: 357
  year: 2017
  publication-title: Science
– volume: 24
  start-page: 383
  year: 2006
  end-page: 395
  publication-title: Mol. Cell
– volume: 23
  start-page: 309
  year: 2012
  end-page: 323
  publication-title: Bioconjugate Chem.
– volume: 27
  start-page: 753
  year: 2009
  end-page: 759
  publication-title: Nat. Biotechnol.
– volume: 91
  start-page: 2279
  year: 2019
  end-page: 2287
  publication-title: Anal. Chem.
– volume: 13
  start-page: 9895
  year: 2019
  end-page: 9906
  publication-title: ACS Nano
– volume: 10
  start-page: 109
  year: 1985
  end-page: 110
  publication-title: Trends Biochem. Sci.
– volume: 47
  start-page: 60
  year: 2018
  end-page: 72
  publication-title: Metab. Eng.
– volume: 15
  start-page: 51
  year: 2019
  end-page: 61
  publication-title: Nat. Chem. Biol.
– volume: 105
  start-page: 1759
  year: 2021
  end-page: 1777
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 11
  start-page: 1
  year: 2018
  end-page: 15
  publication-title: Biotechnol. Biofuels
– volume: 31
  start-page: 2413
  year: 2020
  end-page: 2420
  publication-title: Bioconjugate Chem.
– volume: 15
  start-page: 589
  year: 2019
  end-page: 597
  publication-title: Nat. Chem. Biol.
– volume: 9
  start-page: 1
  year: 2018
  end-page: 7
  publication-title: Nat. Commun.
– volume: 361
  year: 2018
  publication-title: Science
– volume: 18
  start-page: 285
  year: 2017
  end-page: 298
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 3
  start-page: 256
  year: 2020
  end-page: 273
  publication-title: Nat. Catal.
– volume: 28
  start-page: 420
  year: 2018
  end-page: 435
  publication-title: Trends Cell Biol.
– volume: 9
  start-page: 1
  year: 2018
  end-page: 12
  publication-title: Nat. Commun.
– volume: 12
  start-page: 298
  year: 2010
  end-page: 305
  publication-title: Metab. Eng.
– volume: 44
  year: 2020
  publication-title: Biotechnol. Adv.
– volume: 13
  start-page: 11343
  year: 2019
  end-page: 11352
  publication-title: ACS Nano
– volume: 37
  start-page: 1435
  year: 2019
  end-page: 1445
  publication-title: Nat. Biotechnol.
– volume: 111
  start-page: 1648
  year: 2014
  end-page: 1658
  publication-title: Biotechnol. Bioeng.
– volume: 140
  start-page: 218
  year: 2009
  end-page: 226
  publication-title: J. Biotechnol.
– volume: 18
  start-page: 155
  year: 2010
  end-page: 166
  publication-title: Structure
– volume: 112
  start-page: 7189
  year: 2015
  end-page: 7194
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 26
  start-page: 428
  year: 2018
  end-page: 437
  publication-title: Opt. Express
– volume: 21
  start-page: 2391
  year: 2020
  end-page: 2399
  publication-title: Biomacromolecules
– volume: 19
  start-page: 306
  year: 1999
  end-page: 321
  publication-title: Methods
– volume: 298
  start-page: 329
  year: 2000
  end-page: 339
  publication-title: J. Mol. Biol.
– volume: 34
  start-page: B64
  year: 2017
  end-page: B77
  publication-title: J. Opt. Soc. Am. B
– ident: e_1_2_7_41_1
  doi: 10.1364/JOSAB.34.000B64
– ident: e_1_2_7_21_1
  doi: 10.1038/s41587-019-0341-6
– ident: e_1_2_7_16_1
  doi: 10.1016/j.tcb.2018.02.004
– ident: e_1_2_7_28_1
  doi: 10.1021/acs.biomac.0c00321
– ident: e_1_2_7_39_1
  doi: 10.1016/j.molcel.2006.09.006
– ident: e_1_2_7_13_1
  doi: 10.1038/s41929-020-0433-1
– ident: e_1_2_7_18_1
  doi: 10.1038/nrm.2017.7
– ident: e_1_2_7_45_1
  doi: 10.1021/acs.analchem.8b04875
– ident: e_1_2_7_27_1
  doi: 10.1038/s41589-020-0579-9
– ident: e_1_2_7_31_1
  doi: 10.1186/s13068-017-1003-x
– ident: e_1_2_7_37_1
  doi: 10.1016/j.str.2009.12.012
– ident: e_1_2_7_36_1
  doi: 10.1038/nrm1527
– volume: 2
  start-page: 020201
  year: 2016
  ident: e_1_2_7_42_1
  publication-title: J. Biomed. Photonics Eng.
  contributor:
    fullname: Kim K.
– ident: e_1_2_7_12_1
  doi: 10.1021/acs.bioconjchem.0c00476
– ident: e_1_2_7_33_1
  doi: 10.1016/j.ymben.2018.03.004
– ident: e_1_2_7_1_1
  doi: 10.1016/0968-0004(85)90266-X
– ident: e_1_2_7_5_1
  doi: 10.1038/nbt.1557
– ident: e_1_2_7_20_1
  doi: 10.1126/science.aaf4382
– ident: e_1_2_7_44_1
  doi: 10.1186/1475-2859-13-68
– ident: e_1_2_7_2_1
  doi: 10.1021/ar50074a002
– ident: e_1_2_7_35_1
  doi: 10.1006/jmbi.2000.3662
– ident: e_1_2_7_23_1
  doi: 10.1016/S1673-8527(09)60046-1
– ident: e_1_2_7_25_1
  doi: 10.1126/science.1152241
– ident: e_1_2_7_22_1
  doi: 10.1146/annurev-cellbio-111315-124907
– ident: e_1_2_7_7_1
  doi: 10.1021/acssynbio.1c00045
– ident: e_1_2_7_40_1
  doi: 10.1021/bc2004999
– ident: e_1_2_7_10_1
  doi: 10.1021/acsnano.9b04554
– ident: e_1_2_7_14_1
  doi: 10.1007/s00253-021-11121-4
– ident: e_1_2_7_17_1
  doi: 10.1038/s41589-018-0180-7
– ident: e_1_2_7_8_1
  doi: 10.1038/s41467-017-02088-w
– ident: e_1_2_7_3_1
  doi: 10.1006/meth.1999.0858
– ident: e_1_2_7_43_1
  doi: 10.1364/OE.26.000428
– ident: e_1_2_7_19_1
  doi: 10.1126/science.aar3958
– ident: e_1_2_7_29_1
  doi: 10.1073/pnas.1504822112
– ident: e_1_2_7_24_1
  doi: 10.1073/pnas.0704977104
– ident: e_1_2_7_32_1
  doi: 10.1002/bit.25226
– ident: e_1_2_7_26_1
  doi: 10.1038/s41589-019-0284-8
– ident: e_1_2_7_9_1
  doi: 10.1038/s41467-019-12247-w
– ident: e_1_2_7_15_1
  doi: 10.1016/j.biotechadv.2020.107627
– ident: e_1_2_7_34_1
  doi: 10.1016/j.jbiotec.2009.01.008
– ident: e_1_2_7_30_1
  doi: 10.1038/s41467-018-05403-1
– ident: e_1_2_7_11_1
  doi: 10.1021/acsnano.9b03631
– ident: e_1_2_7_38_1
  doi: 10.1074/jbc.M603223200
– ident: e_1_2_7_4_1
  doi: 10.1038/s41467-018-04543-8
– ident: e_1_2_7_6_1
  doi: 10.1016/j.ymben.2010.01.003
SSID ssj0006279
Score 2.2440083
Snippet Liquid–liquid phase separation (LLPS) forms biomolecular condensates or coacervates in cells. Metabolic enzymes can form phase‐separated subcellular...
Abstract Liquid–liquid phase separation (LLPS) forms biomolecular condensates or coacervates in cells. Metabolic enzymes can form phase‐separated subcellular...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Biosynthesis
Chemistry
Cofactors
Condensates
E coli
Enzymes
Farnesene
Liquid phases
Multienzyme Catalysis
Multienzyme Compartmentalization
Phase Separation
Substrates
Terpene Biosynthesis
α-Farnesene
Title Phase‐Separated Multienzyme Compartmentalization for Terpene Biosynthesis in a Prokaryote
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202203909
https://www.proquest.com/docview/2687696056
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELYQDLDwjyiUygMSU9rEdZx0bEtLhURVQStVYoic-CKqiqRq0qGdeASekSfBdpr-sCDBFg-2nLPv7ruT7zuEbgNqCQtEYIATMp26MbggtkFEaIuQERpo-uKnLusM6OPQHm5U8Wf8EKuEm9IMba-VgnM_qaxJQ9XbexnfEWLKsF1V8Ck2PYWKntf8UYxkZHsmpYYrA42ctdEkle3p215pDTU3Aav2OO0jxPO9Zg9NxuVZ6peDxQ8ax__8zDE6XMJRXM_uzwnagegU7TfzLnBn6LX3Jv3c18fnC2iWcBBY1-xCtJi_A9bmZJpmHQKWJZ1Y4mDch-lEmlHcGMXJPJIoMxkleBRhjnvTeCw3GqdwjgbtVr_ZMZYNGYzAYqSmEo-EuwHYoiphH_eBsiq3LGFXJc4RYQ0UWbsjAuJwk4MJhIOgfsgcyyeqyU_1Au1GcQSXCLvCV56R2o7jUqA1N5Bgz5LrCuqEJgsL6C4_EG-S8W54GcMy8ZSwvJWwCqiYn5e31L_EI0xaeRmc2ayAiBb8L6t49e5DazW6-suka3SgvlXi13KLaDedzuBGIpbUL6G9euO-0S7p2_kNbuLl5Q
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsJAEJ4oHvDivxF_92Diqdgu2205KoKoQIhCYuKhabvTSIjFQD3AyUfwGX0Sd7cUxIuJHrvJbra7OzPfTGa-ATgNmSUsFKGBTsR16MbwBbUNKiJbRJyyUNMXN1u83mW3j3aWTahqYVJ-iFnATUmG1tdKwFVA-nzOGqqS76WDR6kp_fbyMqxImbeVbF7dzxmkOE3p9kzGDFe6Ghlvo0nPF-cv2qU52PwOWbXNqa1DkO02TTXpF9-SoBhOfhA5_ut3NmBtikjJRfqENmEJ4y3IV7JGcNvw1H6Wpu7z_eMBNVE4CqLLdjGejF-QaI0yTNImAdOqTiKhMOng8FVqUnLZG4zGsQSao96I9GLik_Zw0Jc7HSS4A91atVOpG9OeDEZocVpWsUfquyHaoiSRnx8g4yXfsoRdklBHRGVUfO2OCKnjmz6aSH0ULIi4YwVU9fkp7UIuHsS4B8QVgTKOzHYclyEru6HEe5ZcVzAnMnlUgLPsRrzXlHrDS0mWqacOy5sdVgEOswvzpiI48iiXil76ZzYvANUn_8sq3kXrujr72v_LpBPI1zvNhte4ad0dwKoaV3Fgyz2EXDJ8wyMJYJLgWD_RL6LL6JM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgSMCFN2I8c0Di1K1N07Q78hrvaQImTeJQpY0rJkQ3bd0BTvwEfiO_hCRdN-CCBMdGSpQ6sf3Zij8D7MfMkQ7K2EI_4SZ1YwlJPYvKxJMJpyw29MU3DX7eYpdtr_2lij_nhxgn3LRmGHutFbwnk-qENFS_vVfxHaW2Cttr0zDDuEt1-HVyOyGQ4jRn27MZswIVaRS0jTatfp__3S1NsOZXxGpcTn0RRLHZ_KXJU2WYRZX49QeP43_-ZgkWRniUHOYXaBmmMF2BueOiDdwqPDQflaP7eHu_Q0MTjpKYol1MX1-ekRh70s_yFgGjmk6igDC5x35P2VFy1OkOXlIFMwedAemkRJBmv_ukNtrNcA1a9dP743Nr1JHBih1OazrzSEUQoyddhftEhErmwnGk5yqgI5MaarZ2X8bUF7ZAG6lAyaKE-05EdZcfdx1KaTfFDSCBjLRrZJ7vBwxZLYgV2nPUupL5ic2TMhwUBxL2cuKNMKdYpqEWVjgWVhm2i_MKRwo4CClXZl5FZx4vAzWC_2WV8LBxdjr-2vzLpD2YbZ7Uw-uLxtUWzOthnQR2gm0oZf0h7ij0kkW75oJ-Avxb50I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase%E2%80%90Separated+Multienzyme+Compartmentalization+for+Terpene+Biosynthesis+in+a+Prokaryote&rft.jtitle=Angewandte+Chemie&rft.au=Wang%2C+Yue&rft.au=Liu%2C+Min&rft.au=Wei%2C+Qixin&rft.au=Wu%2C+Wanjie&rft.date=2022-07-18&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=134&rft.issue=29&rft_id=info:doi/10.1002%2Fange.202203909&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ange_202203909
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon