Enantioselective Copper‐Catalyzed Formal [2+1] and [4+1] Annulations of Diynes with Ketones via Carbonyl Ylides

Carbonyl ylides have proven to be powerful synthons for the efficient construction of various valuable O‐heterocycles, and the formation of carbonyl ylides by the reaction of metal carbenes with carbonyls has attracted increasing attention over the past decades. However, a catalyst‐controlled highly...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie Vol. 134; no. 43
Main Authors Qi, Lin‐Jun, Li, Cui‐Ting, Huang, Zheng‐Qi, Jiang, Jia‐Tian, Zhu, Xin‐Qi, Lu, Xin, Ye, Long‐Wu
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 24.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Carbonyl ylides have proven to be powerful synthons for the efficient construction of various valuable O‐heterocycles, and the formation of carbonyl ylides by the reaction of metal carbenes with carbonyls has attracted increasing attention over the past decades. However, a catalyst‐controlled highly enantioselective reaction of carbonyl ylides from metal carbenes is extremely challenging. Herein, we report a novel copper‐catalyzed asymmetric formal [2+1] and [4+1] annulations of diynes with ketones via carbonyl ylides. Importantly, this protocol not only represents the first example of successful asymmetric epoxidation via carbonyl ylides, but also constitutes the first reaction of vinyl cations with carbonyl compounds. This method leads to the divergent, practical and atom‐economical synthesis of a range of chiral oxiranes and dihydrofurans in moderate to excellent yields with generally excellent enantioselectivities and diastereoselectivities via remote‐stereocontrol strategy. A copper‐catalyzed asymmetric formal [2+1] and [4+1] annulations of diynes with ketones via carbonyl ylides is disclosed. This protocol enables the divergent, practical and atom‐economical synthesis of a range of chiral oxiranes and dihydrofurans in moderate to excellent yields with generally excellent enantioselectivities and diastereoselectivities.
AbstractList Carbonyl ylides have proven to be powerful synthons for the efficient construction of various valuable O‐heterocycles, and the formation of carbonyl ylides by the reaction of metal carbenes with carbonyls has attracted increasing attention over the past decades. However, a catalyst‐controlled highly enantioselective reaction of carbonyl ylides from metal carbenes is extremely challenging. Herein, we report a novel copper‐catalyzed asymmetric formal [2+1] and [4+1] annulations of diynes with ketones via carbonyl ylides. Importantly, this protocol not only represents the first example of successful asymmetric epoxidation via carbonyl ylides, but also constitutes the first reaction of vinyl cations with carbonyl compounds. This method leads to the divergent, practical and atom‐economical synthesis of a range of chiral oxiranes and dihydrofurans in moderate to excellent yields with generally excellent enantioselectivities and diastereoselectivities via remote‐stereocontrol strategy.
Carbonyl ylides have proven to be powerful synthons for the efficient construction of various valuable O‐heterocycles, and the formation of carbonyl ylides by the reaction of metal carbenes with carbonyls has attracted increasing attention over the past decades. However, a catalyst‐controlled highly enantioselective reaction of carbonyl ylides from metal carbenes is extremely challenging. Herein, we report a novel copper‐catalyzed asymmetric formal [2+1] and [4+1] annulations of diynes with ketones via carbonyl ylides. Importantly, this protocol not only represents the first example of successful asymmetric epoxidation via carbonyl ylides, but also constitutes the first reaction of vinyl cations with carbonyl compounds. This method leads to the divergent, practical and atom‐economical synthesis of a range of chiral oxiranes and dihydrofurans in moderate to excellent yields with generally excellent enantioselectivities and diastereoselectivities via remote‐stereocontrol strategy. A copper‐catalyzed asymmetric formal [2+1] and [4+1] annulations of diynes with ketones via carbonyl ylides is disclosed. This protocol enables the divergent, practical and atom‐economical synthesis of a range of chiral oxiranes and dihydrofurans in moderate to excellent yields with generally excellent enantioselectivities and diastereoselectivities.
Author Qi, Lin‐Jun
Huang, Zheng‐Qi
Jiang, Jia‐Tian
Lu, Xin
Li, Cui‐Ting
Zhu, Xin‐Qi
Ye, Long‐Wu
Author_xml – sequence: 1
  givenname: Lin‐Jun
  surname: Qi
  fullname: Qi, Lin‐Jun
  organization: Taizhou University
– sequence: 2
  givenname: Cui‐Ting
  surname: Li
  fullname: Li, Cui‐Ting
  organization: Xiamen University
– sequence: 3
  givenname: Zheng‐Qi
  surname: Huang
  fullname: Huang, Zheng‐Qi
  organization: Xiamen University
– sequence: 4
  givenname: Jia‐Tian
  surname: Jiang
  fullname: Jiang, Jia‐Tian
  organization: Xiamen University
– sequence: 5
  givenname: Xin‐Qi
  surname: Zhu
  fullname: Zhu, Xin‐Qi
  organization: Xiamen University
– sequence: 6
  givenname: Xin
  surname: Lu
  fullname: Lu, Xin
  email: xinlu@xmu.edu.cn
  organization: Xiamen University
– sequence: 7
  givenname: Long‐Wu
  orcidid: 0000-0003-3108-2611
  surname: Ye
  fullname: Ye, Long‐Wu
  email: longwuye@xmu.edu.cn
  organization: Chinese Academy of Sciences
BookMark eNqFkE1L5DAYx4O44Oh69RzwKB2TtEmnx6HOqCi7l92DiJSn7RONxGRMOko9-RH8jH4SO46sIMienhf-v-flv002nXdIyB5nY86YOAR3jWPBhOBMpfkGGXEpeJLmMt8kI8ayLJmIrNgi2zHeMsaUyIsRuZ85cJ3xES02nXlAWvrFAsPr80sJHdj-CVs69-EOLL0UB_yKgmvpZbbKps4tLQywi9RremR6h5E-mu6GnmHnV8WDAVpCqL3rLb2wpsX4k_zQYCPufsQd8nc--1OeJOe_j0_L6XnS8OG0RLVaN8AnvJF1qhsmeasm-dCtC6lyrTnKQtdKYtpiLmRRqywVkNVFXUtoAdIdsr-euwj-fomxq279MrhhZSUGQBVccDWosrWqCT7GgLpqTPf-UxfA2IqzamVutTK3-mfugI2_YItg7iD03wPFGng0Fvv_qKvpr-PZJ_sG4QaQsg
CitedBy_id crossref_primary_10_1002_anie_202216923
crossref_primary_10_1002_anie_202215616
crossref_primary_10_1002_adsc_202301037
crossref_primary_10_1002_ange_202215616
crossref_primary_10_1002_ange_202216923
Cites_doi 10.1002/ange.201105557
10.1002/anie.202115554
10.1021/ol015600x
10.1016/j.tetlet.2011.02.052
10.1016/j.chempr.2018.02.001
10.1039/D0CS00283F
10.1021/ja00997a060
10.1021/jacs.9b09303
10.1021/acscatal.9b01851
10.1016/S0040-4039(01)01415-0
10.1021/ol016703i
10.1021/om0609970
10.1016/j.xcrp.2021.100448
10.1039/C9CC06078B
10.1002/ange.201100551
10.1002/ange.201700057
10.1002/asia.201403325
10.1002/chem.201502009
10.1021/ja068344y
10.1002/ange.202113464
10.24820/ark.5550190.p010.416
10.1021/jacs.7b12673
10.1021/cs400437s
10.1021/jacs.9b13975
10.1002/anie.201100551
10.1002/anie.201700057
10.1016/j.tetlet.2014.03.105
10.1002/3527607862
10.1016/S0040-4039(00)90743-3
10.1002/ejoc.201001693
10.1002/ange.202115554
10.1002/ange.202007206
10.1055/s-2004-817750
10.1021/acscatal.0c04180
10.1021/ar400193g
10.1002/ange.202204603
10.1002/anie.200800568
10.1002/ange.200602056
10.1016/j.tetlet.2007.11.197
10.1039/D1SC02773E
10.1021/jo049403y
10.1007/s11172-016-1566-x
10.1039/D1NJ02034J
10.1039/D0CS00769B
10.1021/ja00382a038
10.1002/ange.201400241
10.1016/j.tetlet.2018.05.069
10.1039/c3sc50425e
10.1002/anie.201810701
10.1016/j.tet.2008.04.074
10.1021/acs.joc.8b01027
10.1016/S0040-4039(01)88729-3
10.2174/1570193X17999200807141622
10.1039/D0CS00474J
10.1002/ejoc.200500489
10.1021/ar500015k
10.1021/jacs.6b02158
10.1002/ange.202201436
10.1021/acs.chemrev.5b00121
10.1002/ajoc.202000123
10.1039/b816701j
10.2174/1385272819666150810225618
10.1016/j.bmcl.2011.10.127
10.1021/acs.accounts.0c00417
10.1002/anie.201400241
10.1038/s41557-021-00778-z
10.1007/s11426-021-1117-2
10.1002/anie.202007206
10.1002/adsc.201600005
10.1002/anie.202201436
10.1021/ol060266w
10.1002/ange.200800568
10.1002/9783527634880
10.2174/1385272821666170221151356
10.1016/j.tet.2015.06.076
10.1002/anie.202204603
10.1021/cr5006974
10.1021/ol061137i
10.1021/ja0057979
10.1002/anie.201105557
10.1002/anie.200602056
10.1039/C7QO01150D
10.1002/anie.202113464
10.1039/C6CS00023A
10.1021/cs400019u
10.1021/acscatal.6b02929
10.1021/np970030o
10.1002/ange.201810701
10.1021/ar800104y
10.1021/jacs.0c01918
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ange.202210637
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3757
EndPage n/a
ExternalDocumentID 10_1002_ange_202210637
ANGE202210637
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22125108, 22101238, 22121001 and 92056104
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCUC
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RGC
ROL
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c1627-6dffca181c5b3fc051d6876dfb9567ff1e59fb65e3de7259b6432a4b9bb5adaa3
IEDL.DBID DR2
ISSN 0044-8249
IngestDate Fri Jul 25 10:18:49 EDT 2025
Tue Jul 01 02:42:24 EDT 2025
Thu Apr 24 22:56:06 EDT 2025
Wed Jan 22 16:22:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1627-6dffca181c5b3fc051d6876dfb9567ff1e59fb65e3de7259b6432a4b9bb5adaa3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3108-2611
PQID 2725691216
PQPubID 866336
PageCount 9
ParticipantIDs proquest_journals_2725691216
crossref_citationtrail_10_1002_ange_202210637
crossref_primary_10_1002_ange_202210637
wiley_primary_10_1002_ange_202210637_ANGE202210637
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 24, 2022
PublicationDateYYYYMMDD 2022-10-24
PublicationDate_xml – month: 10
  year: 2022
  text: October 24, 2022
  day: 24
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2017; 7
2013; 3
2013; 4
2015; 71
2019; 55
2004; 69
2020 2020; 59 132
2011; 52
1982; 104
2022; 65
2018; 83
2008 2008; 47 120
2020; 10
2001; 42
2015; 48
2022 2022; 61 134
2018; 5
2018; 4
2020; 53
2018 2018; 57 130
2020; 9
2020; 49
2016; 358
2008; 64
2012; 22
2014; 55
2007; 26
2016; 45
2001; 123
2019; 9
2007; 129
2021; 45
2018; 140
1997; 60
2021; 2
2011
2020; 142
1967; 89
2017; 21
1969; 10
2015; 10
2006; 8
2014; 47
2006
2005
2004
2003
2017 2017; 56 129
2021; 50
2019; 141
2006 2006; 45 118
2021; 13
1967; 8
2018; 2018
2021; 12
2015; 115
2021; 18
2008; 49
2015; 21
2016; 65
2016; 20
2021 2021; 60 133
2001; 3
2011 2011; 50 123
2016; 138
2009; 38
2018; 59
e_1_2_7_3_2
Li Z.-C. (e_1_2_7_28_2) 2005
e_1_2_7_7_2
e_1_2_7_19_1
e_1_2_7_83_2
e_1_2_7_15_3
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_41_2
e_1_2_7_87_2
e_1_2_7_11_2
e_1_2_7_64_2
e_1_2_7_45_1
e_1_2_7_68_2
e_1_2_7_26_2
e_1_2_7_49_1
e_1_2_7_26_3
Evano G. (e_1_2_7_61_2) 2015; 48
e_1_2_7_90_2
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_2
e_1_2_7_75_2
e_1_2_7_23_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_79_2
e_1_2_7_37_2
e_1_2_7_4_2
e_1_2_7_8_2
e_1_2_7_16_3
e_1_2_7_16_2
e_1_2_7_82_1
e_1_2_7_40_2
e_1_2_7_86_2
e_1_2_7_63_1
e_1_2_7_12_2
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_67_3
e_1_2_7_48_2
e_1_2_7_48_3
e_1_2_7_29_2
e_1_2_7_70_3
e_1_2_7_93_1
e_1_2_7_70_2
e_1_2_7_24_2
e_1_2_7_51_2
(e_1_2_7_53_3) 2022; 134
e_1_2_7_32_2
e_1_2_7_74_2
e_1_2_7_20_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_78_2
e_1_2_7_36_3
e_1_2_7_59_2
e_1_2_7_5_2
(e_1_2_7_65_3) 2022; 134
e_1_2_7_9_2
e_1_2_7_17_2
e_1_2_7_81_2
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_62_2
e_1_2_7_85_1
e_1_2_7_43_2
e_1_2_7_66_2
e_1_2_7_47_2
e_1_2_7_89_2
e_1_2_7_47_3
e_1_2_7_50_2
e_1_2_7_25_2
Garzino F. (e_1_2_7_92_2) 2003
e_1_2_7_77_1
e_1_2_7_31_2
e_1_2_7_73_2
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_2
e_1_2_7_35_1
e_1_2_7_58_2
e_1_2_7_39_2
e_1_2_7_2_2
(e_1_2_7_64_3) 2022; 134
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_80_2
e_1_2_7_14_2
e_1_2_7_42_1
e_1_2_7_65_2
e_1_2_7_84_2
e_1_2_7_10_1
e_1_2_7_46_2
e_1_2_7_69_2
e_1_2_7_88_2
e_1_2_7_88_3
e_1_2_7_27_2
e_1_2_7_95_1
e_1_2_7_72_2
e_1_2_7_91_2
e_1_2_7_30_2
e_1_2_7_76_2
e_1_2_7_22_2
e_1_2_7_53_2
e_1_2_7_34_2
e_1_2_7_57_2
e_1_2_7_38_2
References_xml – volume: 142
  start-page: 7618
  year: 2020
  publication-title: J. Am. Chem. Soc.
– year: 2011
– volume: 45 118
  start-page: 6197 6343
  year: 2006 2006
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 65
  start-page: 2183
  year: 2016
  publication-title: Russ. Chem. Bull.
– volume: 42
  start-page: 6803
  year: 2001
  publication-title: Tetrahedron Lett.
– volume: 53
  start-page: 2003
  year: 2020
  publication-title: Acc. Chem. Res.
– volume: 64
  start-page: 6577
  year: 2008
  publication-title: Tetrahedron
– volume: 115
  start-page: 5301
  year: 2015
  publication-title: Chem. Rev.
– volume: 115
  start-page: 9981
  year: 2015
  publication-title: Chem. Rev.
– volume: 10
  start-page: 13978
  year: 2020
  publication-title: ACS Catal.
– volume: 60 133
  start-page: 27164 27370
  year: 2021 2021
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  year: 2021
  publication-title: Cell Rep. Phys. Sci.
– volume: 3
  start-page: 1902
  year: 2013
  publication-title: ACS Catal.
– volume: 2018
  start-page: 23
  year: 2018
  publication-title: Arkivoc
– volume: 47 120
  start-page: 4009 4073
  year: 2008 2008
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 933
  year: 2001
  publication-title: Org. Lett.
– volume: 4
  start-page: 1208
  year: 2018
  publication-title: Chem
– volume: 141
  start-page: 16961
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 4471
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 45
  start-page: 11018
  year: 2021
  publication-title: New J. Chem.
– volume: 140
  start-page: 1884
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 3741
  year: 2001
  publication-title: Org. Lett.
– volume: 13
  start-page: 1093
  year: 2021
  publication-title: Nat. Chem.
– start-page: 2587
  year: 2011
  publication-title: Eur. J. Org. Chem.
– volume: 47
  start-page: 560
  year: 2014
  publication-title: Acc. Chem. Res.
– start-page: 598
  year: 2003
  publication-title: Synthesis
– volume: 71
  start-page: 6219
  year: 2015
  publication-title: Tetrahedron
– volume: 8
  start-page: 3275
  year: 2006
  publication-title: Org. Lett.
– volume: 49
  start-page: 1062
  year: 2008
  publication-title: Tetrahedron Lett.
– volume: 47
  start-page: 864
  year: 2014
  publication-title: Acc. Chem. Res.
– start-page: 4929
  year: 2005
  publication-title: Eur. J. Org. Chem.
– volume: 57 130
  start-page: 16942 17186
  year: 2018 2018
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 20
  start-page: 19
  year: 2016
  publication-title: Curr. Org. Chem.
– start-page: 639
  year: 2004
  publication-title: Synlett
– volume: 49
  start-page: 8897
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 138
  start-page: 4014
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 6393
  year: 2019
  publication-title: ACS Catal.
– volume: 89
  start-page: 5497
  year: 1967
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 8543
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 142
  start-page: 3636
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 1092
  year: 2018
  publication-title: Org. Chem. Front.
– volume: 18
  start-page: 606
  year: 2021
  publication-title: Mini-Rev. Org. Chem.
– volume: 9
  start-page: 918
  year: 2020
  publication-title: Asian J. Org. Chem.
– volume: 60
  start-page: 458
  year: 1997
  publication-title: J. Nat. Prod.
– volume: 7
  start-page: 992
  year: 2017
  publication-title: ACS Catal.
– volume: 59
  start-page: 2600
  year: 2018
  publication-title: Tetrahedron Lett.
– volume: 50 123
  start-page: 7874 8020
  year: 2011 2011
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55
  start-page: 12127
  year: 2019
  publication-title: Chem. Commun.
– volume: 55
  start-page: 2969
  year: 2014
  publication-title: Tetrahedron Lett.
– volume: 69
  start-page: 5269
  year: 2004
  publication-title: J. Org. Chem.
– volume: 123
  start-page: 2097
  year: 2001
  publication-title: J. Am. Chem. Soc.
– volume: 53 126
  start-page: 7406 7534
  year: 2014 2014
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 26
  start-page: 2978
  year: 2007
  publication-title: Organometallics
– volume: 8
  start-page: 1427
  year: 2006
  publication-title: Org. Lett.
– volume: 8
  start-page: 1865
  year: 1967
  publication-title: Tetrahedron Lett.
– volume: 12
  start-page: 9466
  year: 2021
  publication-title: Chem. Sci.
– volume: 3
  start-page: 685
  year: 2013
  publication-title: ACS Catal.
– volume: 129
  start-page: 1046
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 1934
  year: 2011
  publication-title: Tetrahedron Lett.
– volume: 48
  start-page: 59
  year: 2015
  publication-title: Aldrichimica Acta
– volume: 21
  start-page: 1143
  year: 2017
  publication-title: Curr. Org. Chem.
– volume: 358
  start-page: 1368
  year: 2016
  publication-title: Adv. Synth. Catal.
– volume: 59 132
  start-page: 17984 18140
  year: 2020 2020
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 2844
  year: 2013
  publication-title: Chem. Sci.
– volume: 10
  start-page: 1042
  year: 2015
  publication-title: Chem. Asian J.
– start-page: 1711
  year: 2005
  publication-title: Synlett
– year: 2006
– volume: 104
  start-page: 4952
  year: 1982
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 2260
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 21
  start-page: 11671
  year: 2015
  publication-title: Chem. Eur. J.
– volume: 83
  start-page: 8341
  year: 2018
  publication-title: J. Org. Chem.
– volume: 10
  start-page: 4479
  year: 1969
  publication-title: Tetrahedron Lett.
– volume: 38
  start-page: 3072
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 56 129
  start-page: 3364 3413
  year: 2017 2017
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 22
  start-page: 449
  year: 2012
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 65
  start-page: 20
  year: 2022
  publication-title: Sci. China Chem.
– volume: 50 123
  start-page: 11152 11348
  year: 2011 2011
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50
  start-page: 2582
  year: 2021
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_7_26_3
  doi: 10.1002/ange.201105557
– ident: e_1_2_7_53_2
  doi: 10.1002/anie.202115554
– ident: e_1_2_7_32_2
  doi: 10.1021/ol015600x
– ident: e_1_2_7_27_2
  doi: 10.1016/j.tetlet.2011.02.052
– ident: e_1_2_7_96_1
  doi: 10.1016/j.chempr.2018.02.001
– ident: e_1_2_7_55_2
  doi: 10.1039/D0CS00283F
– ident: e_1_2_7_40_2
  doi: 10.1021/ja00997a060
– ident: e_1_2_7_50_2
  doi: 10.1021/jacs.9b09303
– ident: e_1_2_7_60_2
  doi: 10.1021/acscatal.9b01851
– ident: e_1_2_7_31_2
  doi: 10.1016/S0040-4039(01)01415-0
– ident: e_1_2_7_33_2
  doi: 10.1021/ol016703i
– ident: e_1_2_7_38_2
  doi: 10.1021/om0609970
– ident: e_1_2_7_10_1
– ident: e_1_2_7_68_2
  doi: 10.1016/j.xcrp.2021.100448
– ident: e_1_2_7_72_2
  doi: 10.1039/C9CC06078B
– ident: e_1_2_7_36_3
  doi: 10.1002/ange.201100551
– ident: e_1_2_7_48_3
  doi: 10.1002/ange.201700057
– ident: e_1_2_7_13_2
  doi: 10.1002/asia.201403325
– ident: e_1_2_7_14_2
  doi: 10.1002/chem.201502009
– ident: e_1_2_7_44_2
  doi: 10.1021/ja068344y
– ident: e_1_2_7_67_3
  doi: 10.1002/ange.202113464
– ident: e_1_2_7_54_1
– ident: e_1_2_7_3_2
  doi: 10.24820/ark.5550190.p010.416
– ident: e_1_2_7_21_2
  doi: 10.1021/jacs.7b12673
– ident: e_1_2_7_76_2
  doi: 10.1021/cs400437s
– ident: e_1_2_7_69_2
  doi: 10.1021/jacs.9b13975
– ident: e_1_2_7_36_2
  doi: 10.1002/anie.201100551
– ident: e_1_2_7_45_1
– ident: e_1_2_7_48_2
  doi: 10.1002/anie.201700057
– ident: e_1_2_7_24_2
  doi: 10.1016/j.tetlet.2014.03.105
– ident: e_1_2_7_91_2
  doi: 10.1002/3527607862
– ident: e_1_2_7_41_2
  doi: 10.1016/S0040-4039(00)90743-3
– ident: e_1_2_7_71_1
– ident: e_1_2_7_89_2
  doi: 10.1002/ejoc.201001693
– volume: 134
  start-page: e202115554
  year: 2022
  ident: e_1_2_7_53_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202115554
– ident: e_1_2_7_70_3
  doi: 10.1002/ange.202007206
– ident: e_1_2_7_29_2
  doi: 10.1055/s-2004-817750
– ident: e_1_2_7_59_2
  doi: 10.1021/acscatal.0c04180
– ident: e_1_2_7_62_2
  doi: 10.1021/ar400193g
– ident: e_1_2_7_77_1
– start-page: 598
  year: 2003
  ident: e_1_2_7_92_2
  publication-title: Synthesis
– volume: 134
  start-page: e202204603
  year: 2022
  ident: e_1_2_7_64_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202204603
– ident: e_1_2_7_15_2
  doi: 10.1002/anie.200800568
– ident: e_1_2_7_16_3
  doi: 10.1002/ange.200602056
– ident: e_1_2_7_42_1
– ident: e_1_2_7_37_2
  doi: 10.1016/j.tetlet.2007.11.197
– ident: e_1_2_7_52_2
  doi: 10.1039/D1SC02773E
– ident: e_1_2_7_30_2
  doi: 10.1021/jo049403y
– ident: e_1_2_7_4_2
  doi: 10.1007/s11172-016-1566-x
– start-page: 1711
  year: 2005
  ident: e_1_2_7_28_2
  publication-title: Synlett
– ident: e_1_2_7_2_2
  doi: 10.1039/D1NJ02034J
– ident: e_1_2_7_56_2
  doi: 10.1039/D0CS00769B
– ident: e_1_2_7_34_2
  doi: 10.1021/ja00382a038
– ident: e_1_2_7_82_1
– ident: e_1_2_7_88_3
  doi: 10.1002/ange.201400241
– ident: e_1_2_7_12_2
  doi: 10.1016/j.tetlet.2018.05.069
– ident: e_1_2_7_25_2
  doi: 10.1039/c3sc50425e
– ident: e_1_2_7_47_2
  doi: 10.1002/anie.201810701
– ident: e_1_2_7_9_2
  doi: 10.1016/j.tet.2008.04.074
– ident: e_1_2_7_79_2
  doi: 10.1021/acs.joc.8b01027
– ident: e_1_2_7_39_2
  doi: 10.1016/S0040-4039(01)88729-3
– ident: e_1_2_7_78_2
  doi: 10.2174/1570193X17999200807141622
– ident: e_1_2_7_57_2
  doi: 10.1039/D0CS00474J
– ident: e_1_2_7_81_2
  doi: 10.1002/ejoc.200500489
– ident: e_1_2_7_75_2
  doi: 10.1021/ar500015k
– ident: e_1_2_7_35_1
– ident: e_1_2_7_19_1
– ident: e_1_2_7_49_1
– ident: e_1_2_7_95_1
– ident: e_1_2_7_87_2
  doi: 10.1021/jacs.6b02158
– volume: 134
  start-page: e202201436
  year: 2022
  ident: e_1_2_7_65_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202201436
– volume: 48
  start-page: 59
  year: 2015
  ident: e_1_2_7_61_2
  publication-title: Aldrichimica Acta
– ident: e_1_2_7_7_2
  doi: 10.1021/acs.chemrev.5b00121
– ident: e_1_2_7_20_2
  doi: 10.1002/ajoc.202000123
– ident: e_1_2_7_8_2
  doi: 10.1039/b816701j
– ident: e_1_2_7_5_2
  doi: 10.2174/1385272819666150810225618
– ident: e_1_2_7_83_2
  doi: 10.1016/j.bmcl.2011.10.127
– ident: e_1_2_7_58_2
  doi: 10.1021/acs.accounts.0c00417
– ident: e_1_2_7_88_2
  doi: 10.1002/anie.201400241
– ident: e_1_2_7_66_2
  doi: 10.1038/s41557-021-00778-z
– ident: e_1_2_7_46_2
  doi: 10.1007/s11426-021-1117-2
– ident: e_1_2_7_70_2
  doi: 10.1002/anie.202007206
– ident: e_1_2_7_74_2
  doi: 10.1002/adsc.201600005
– ident: e_1_2_7_85_1
– ident: e_1_2_7_65_2
  doi: 10.1002/anie.202201436
– ident: e_1_2_7_90_2
  doi: 10.1021/ol060266w
– ident: e_1_2_7_1_1
– ident: e_1_2_7_15_3
  doi: 10.1002/ange.200800568
– ident: e_1_2_7_80_2
  doi: 10.1002/9783527634880
– ident: e_1_2_7_63_1
– ident: e_1_2_7_86_2
  doi: 10.2174/1385272821666170221151356
– ident: e_1_2_7_23_2
  doi: 10.1016/j.tet.2015.06.076
– ident: e_1_2_7_64_2
  doi: 10.1002/anie.202204603
– ident: e_1_2_7_6_2
  doi: 10.1021/cr5006974
– ident: e_1_2_7_17_2
  doi: 10.1021/ol061137i
– ident: e_1_2_7_18_2
  doi: 10.1021/ja0057979
– ident: e_1_2_7_94_1
– ident: e_1_2_7_26_2
  doi: 10.1002/anie.201105557
– ident: e_1_2_7_16_2
  doi: 10.1002/anie.200602056
– ident: e_1_2_7_11_2
  doi: 10.1039/C7QO01150D
– ident: e_1_2_7_67_2
  doi: 10.1002/anie.202113464
– ident: e_1_2_7_73_2
  doi: 10.1039/C6CS00023A
– ident: e_1_2_7_43_2
  doi: 10.1021/cs400019u
– ident: e_1_2_7_22_2
  doi: 10.1021/acscatal.6b02929
– ident: e_1_2_7_84_2
  doi: 10.1021/np970030o
– ident: e_1_2_7_47_3
  doi: 10.1002/ange.201810701
– ident: e_1_2_7_93_1
  doi: 10.1021/ar800104y
– ident: e_1_2_7_51_2
  doi: 10.1021/jacs.0c01918
SSID ssj0006279
Score 2.199287
Snippet Carbonyl ylides have proven to be powerful synthons for the efficient construction of various valuable O‐heterocycles, and the formation of carbonyl ylides by...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Alkynes
Annulation
Asymmetric Catalysis
Asymmetry
Carbenes
Carbonyl compounds
Carbonyl Ylides
Carbonyls
Catalysts
Cations
Chemistry
Copper
Divergence
Enantiomers
Epoxidation
Heterocycles
Ketones
Title Enantioselective Copper‐Catalyzed Formal [2+1] and [4+1] Annulations of Diynes with Ketones via Carbonyl Ylides
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202210637
https://www.proquest.com/docview/2725691216
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7iRS--xfoiB8GDbNvNZtPuUdbWotiDKFSKLMkmgWJpa7cV9ORP8Df6S5zZR6uCCHrLQrKbzWQm34SZbwg58oytWmNrjq8ZOCh1oRwp6tyxPPZ5TcS2bjDf-aotWrf8ouN3PmXxZ_wQsws31IzUXqOCS5VU5qShGHsP_h0Dn0V4mE6OAVuIiq7n_FGCZWR7Vc6dOjgaBWtjlVW-Dv96Ks2h5mfAmp44zVUii7lmgSYP5elEleOXbzSO__mZNbKSw1F6mu2fdbJgBhtkKSyqwG2SxwZGyvSGSVovB0wjDYejkRm_v76FePPz_GI0bSLw7dMuO3HvqRxo2uXYQu7-PNSODi096z2DXaV480svDZKAJ_SpJ2koxwrj4-ldv6dNskVum42bsOXkZRqc2IUFdoS2NpaAFGJfeTYGLdcCbKy2CnyvmrWu8QOrhG88bWrgbSkAQUxyFSjlSy2lt00WB_DNHUItlp8xAVhRrThYF8W11lUbSKa50MIvEacQUxTnHOZYSqMfZezLLMKFjGYLWSLHs_6jjL3jx577hdSjXIuTiMF0ReAyV5QIS8X3y1ui0_Z5Y_a0-5dBe2QZ23g8Mr5PFifjqTkA3DNRh-ne_gC0q_te
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xOMCFxwKiuyz4sNIeUKBxHKc5otDSXaCHFUisEIrs2JYqqrbblpXgxE_gN_JLdiaPFpBWSLu3JLITZ-wZfzMafwPwJbCu7qyLvNBwdFAaUntKNoTnRBaKSGauYem883lHti_F96uwyiakszAFP8Q04EaakdtrUnAKSB_OWEMp-R4dPI5OiwyieVikst5En3_8Y8YgJXlBt1cXwmugq1HxNtb54ev-r_elGdh8CVnzPae1CroabZFqcntwN9EH2cMbIsf_-p01WCkRKTsqltA6zNn-B1hKqkJwG_CrScky3cE4L5mD1pElg-HQjp4fnxIK_tw_WMNahH177Jrv-zdM9Q27FnRF9P1lth0bOHbcvUfTyij4y04t8YCP2e-uYokaaUqRZz97XWPHm3DZal4kba-s1OBlPkrYk8a5TCFYyEIduAwV3Ug0s8ZpdL8i53wbxk7L0AbGRuhwacRBXAkdax0qo1SwBQt9_OY2MEcVaGyMhtRogQZGC2NM3cWKGyGNDGvgVfOUZiWNOVXT6KUFATNPSZDpVJA1-DptPywIPP7acqea9rRU5HHKcbgy9rkva8Dz-XvnLelR56Q5vfv4L532YKl9cX6Wnn3rnH6CZXpOuyUXO7AwGd3ZzwiDJno3X-h_AG-q_3o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED9tTGJ7YYOBKGPMD5N4QIHEcZzmEaUtbGzVhEBiQiiyY1uqqNquLZPgaR9hn5FPwl3-tDBpQoK3JLITx-e7-511_h3A59A631kXe5HhGKA0pfaUbArPiTwSscxd09J55-9deXgqvp5FZ_dO8Zf8ELMNN9KMwl6Tgo-M25uThlLuPcZ3HGMWGcYv4ZWQfkLFG1rHcwIpyUu2PV8Ir4mRRk3b6PO9h_0fuqU51ryPWAuX03kLqh5smWlyuXs11bv5zT88js_5m3ewVOFRtl8uoGV4YQcr8Dqty8C9h19tSpXpDSdFwRy0jSwdjkZ2fPvnb0pbP9c31rAOId8-O-c7wQVTA8POBV0ReX-Va8eGjrV612hYGW39siNLLOAT9runWKrGmhLk2c9-z9jJKpx22ifpoVfVafDyACfYk8a5XCFUyCMduhzV3Eg0ssZpDL5i5wIbJU7LyIbGxhhuaURBXAmdaB0po1S4BgsD_OY6MEf1Z2yCZtRogeZFC2OM7xLFjZBGRg3wajFleUViTrU0-llJv8wzmshsNpEN2J61H5X0Hf9tuVlLPavUeJJxHK5MAh7IBvBCfI-8JdvvHrRndxtP6fQJFn-0Otm3L92jD_CGHpOr5GITFqbjK_sRMdBUbxXL_A5vNv4p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enantioselective+Copper%E2%80%90Catalyzed+Formal+%5B2%2B1%5D+and+%5B4%2B1%5D+Annulations+of+Diynes+with+Ketones+via+Carbonyl+Ylides&rft.jtitle=Angewandte+Chemie&rft.au=Qi%2C+Lin%E2%80%90Jun&rft.au=Li%2C+Cui%E2%80%90Ting&rft.au=Huang%2C+Zheng%E2%80%90Qi&rft.au=Jiang%2C+Jia%E2%80%90Tian&rft.date=2022-10-24&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=134&rft.issue=43&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fange.202210637&rft.externalDBID=10.1002%252Fange.202210637&rft.externalDocID=ANGE202210637
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon