Enantioselective Copper‐Catalyzed Formal [2+1] and [4+1] Annulations of Diynes with Ketones via Carbonyl Ylides
Carbonyl ylides have proven to be powerful synthons for the efficient construction of various valuable O‐heterocycles, and the formation of carbonyl ylides by the reaction of metal carbenes with carbonyls has attracted increasing attention over the past decades. However, a catalyst‐controlled highly...
Saved in:
Published in | Angewandte Chemie Vol. 134; no. 43 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
24.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Carbonyl ylides have proven to be powerful synthons for the efficient construction of various valuable O‐heterocycles, and the formation of carbonyl ylides by the reaction of metal carbenes with carbonyls has attracted increasing attention over the past decades. However, a catalyst‐controlled highly enantioselective reaction of carbonyl ylides from metal carbenes is extremely challenging. Herein, we report a novel copper‐catalyzed asymmetric formal [2+1] and [4+1] annulations of diynes with ketones via carbonyl ylides. Importantly, this protocol not only represents the first example of successful asymmetric epoxidation via carbonyl ylides, but also constitutes the first reaction of vinyl cations with carbonyl compounds. This method leads to the divergent, practical and atom‐economical synthesis of a range of chiral oxiranes and dihydrofurans in moderate to excellent yields with generally excellent enantioselectivities and diastereoselectivities via remote‐stereocontrol strategy.
A copper‐catalyzed asymmetric formal [2+1] and [4+1] annulations of diynes with ketones via carbonyl ylides is disclosed. This protocol enables the divergent, practical and atom‐economical synthesis of a range of chiral oxiranes and dihydrofurans in moderate to excellent yields with generally excellent enantioselectivities and diastereoselectivities. |
---|---|
AbstractList | Carbonyl ylides have proven to be powerful synthons for the efficient construction of various valuable O‐heterocycles, and the formation of carbonyl ylides by the reaction of metal carbenes with carbonyls has attracted increasing attention over the past decades. However, a catalyst‐controlled highly enantioselective reaction of carbonyl ylides from metal carbenes is extremely challenging. Herein, we report a novel copper‐catalyzed asymmetric formal [2+1] and [4+1] annulations of diynes with ketones via carbonyl ylides. Importantly, this protocol not only represents the first example of successful asymmetric epoxidation via carbonyl ylides, but also constitutes the first reaction of vinyl cations with carbonyl compounds. This method leads to the divergent, practical and atom‐economical synthesis of a range of chiral oxiranes and dihydrofurans in moderate to excellent yields with generally excellent enantioselectivities and diastereoselectivities via remote‐stereocontrol strategy. Carbonyl ylides have proven to be powerful synthons for the efficient construction of various valuable O‐heterocycles, and the formation of carbonyl ylides by the reaction of metal carbenes with carbonyls has attracted increasing attention over the past decades. However, a catalyst‐controlled highly enantioselective reaction of carbonyl ylides from metal carbenes is extremely challenging. Herein, we report a novel copper‐catalyzed asymmetric formal [2+1] and [4+1] annulations of diynes with ketones via carbonyl ylides. Importantly, this protocol not only represents the first example of successful asymmetric epoxidation via carbonyl ylides, but also constitutes the first reaction of vinyl cations with carbonyl compounds. This method leads to the divergent, practical and atom‐economical synthesis of a range of chiral oxiranes and dihydrofurans in moderate to excellent yields with generally excellent enantioselectivities and diastereoselectivities via remote‐stereocontrol strategy. A copper‐catalyzed asymmetric formal [2+1] and [4+1] annulations of diynes with ketones via carbonyl ylides is disclosed. This protocol enables the divergent, practical and atom‐economical synthesis of a range of chiral oxiranes and dihydrofurans in moderate to excellent yields with generally excellent enantioselectivities and diastereoselectivities. |
Author | Qi, Lin‐Jun Huang, Zheng‐Qi Jiang, Jia‐Tian Lu, Xin Li, Cui‐Ting Zhu, Xin‐Qi Ye, Long‐Wu |
Author_xml | – sequence: 1 givenname: Lin‐Jun surname: Qi fullname: Qi, Lin‐Jun organization: Taizhou University – sequence: 2 givenname: Cui‐Ting surname: Li fullname: Li, Cui‐Ting organization: Xiamen University – sequence: 3 givenname: Zheng‐Qi surname: Huang fullname: Huang, Zheng‐Qi organization: Xiamen University – sequence: 4 givenname: Jia‐Tian surname: Jiang fullname: Jiang, Jia‐Tian organization: Xiamen University – sequence: 5 givenname: Xin‐Qi surname: Zhu fullname: Zhu, Xin‐Qi organization: Xiamen University – sequence: 6 givenname: Xin surname: Lu fullname: Lu, Xin email: xinlu@xmu.edu.cn organization: Xiamen University – sequence: 7 givenname: Long‐Wu orcidid: 0000-0003-3108-2611 surname: Ye fullname: Ye, Long‐Wu email: longwuye@xmu.edu.cn organization: Chinese Academy of Sciences |
BookMark | eNqFkE1L5DAYx4O44Oh69RzwKB2TtEmnx6HOqCi7l92DiJSn7RONxGRMOko9-RH8jH4SO46sIMienhf-v-flv002nXdIyB5nY86YOAR3jWPBhOBMpfkGGXEpeJLmMt8kI8ayLJmIrNgi2zHeMsaUyIsRuZ85cJ3xES02nXlAWvrFAsPr80sJHdj-CVs69-EOLL0UB_yKgmvpZbbKps4tLQywi9RremR6h5E-mu6GnmHnV8WDAVpCqL3rLb2wpsX4k_zQYCPufsQd8nc--1OeJOe_j0_L6XnS8OG0RLVaN8AnvJF1qhsmeasm-dCtC6lyrTnKQtdKYtpiLmRRqywVkNVFXUtoAdIdsr-euwj-fomxq279MrhhZSUGQBVccDWosrWqCT7GgLpqTPf-UxfA2IqzamVutTK3-mfugI2_YItg7iD03wPFGng0Fvv_qKvpr-PZJ_sG4QaQsg |
CitedBy_id | crossref_primary_10_1002_anie_202216923 crossref_primary_10_1002_anie_202215616 crossref_primary_10_1002_adsc_202301037 crossref_primary_10_1002_ange_202215616 crossref_primary_10_1002_ange_202216923 |
Cites_doi | 10.1002/ange.201105557 10.1002/anie.202115554 10.1021/ol015600x 10.1016/j.tetlet.2011.02.052 10.1016/j.chempr.2018.02.001 10.1039/D0CS00283F 10.1021/ja00997a060 10.1021/jacs.9b09303 10.1021/acscatal.9b01851 10.1016/S0040-4039(01)01415-0 10.1021/ol016703i 10.1021/om0609970 10.1016/j.xcrp.2021.100448 10.1039/C9CC06078B 10.1002/ange.201100551 10.1002/ange.201700057 10.1002/asia.201403325 10.1002/chem.201502009 10.1021/ja068344y 10.1002/ange.202113464 10.24820/ark.5550190.p010.416 10.1021/jacs.7b12673 10.1021/cs400437s 10.1021/jacs.9b13975 10.1002/anie.201100551 10.1002/anie.201700057 10.1016/j.tetlet.2014.03.105 10.1002/3527607862 10.1016/S0040-4039(00)90743-3 10.1002/ejoc.201001693 10.1002/ange.202115554 10.1002/ange.202007206 10.1055/s-2004-817750 10.1021/acscatal.0c04180 10.1021/ar400193g 10.1002/ange.202204603 10.1002/anie.200800568 10.1002/ange.200602056 10.1016/j.tetlet.2007.11.197 10.1039/D1SC02773E 10.1021/jo049403y 10.1007/s11172-016-1566-x 10.1039/D1NJ02034J 10.1039/D0CS00769B 10.1021/ja00382a038 10.1002/ange.201400241 10.1016/j.tetlet.2018.05.069 10.1039/c3sc50425e 10.1002/anie.201810701 10.1016/j.tet.2008.04.074 10.1021/acs.joc.8b01027 10.1016/S0040-4039(01)88729-3 10.2174/1570193X17999200807141622 10.1039/D0CS00474J 10.1002/ejoc.200500489 10.1021/ar500015k 10.1021/jacs.6b02158 10.1002/ange.202201436 10.1021/acs.chemrev.5b00121 10.1002/ajoc.202000123 10.1039/b816701j 10.2174/1385272819666150810225618 10.1016/j.bmcl.2011.10.127 10.1021/acs.accounts.0c00417 10.1002/anie.201400241 10.1038/s41557-021-00778-z 10.1007/s11426-021-1117-2 10.1002/anie.202007206 10.1002/adsc.201600005 10.1002/anie.202201436 10.1021/ol060266w 10.1002/ange.200800568 10.1002/9783527634880 10.2174/1385272821666170221151356 10.1016/j.tet.2015.06.076 10.1002/anie.202204603 10.1021/cr5006974 10.1021/ol061137i 10.1021/ja0057979 10.1002/anie.201105557 10.1002/anie.200602056 10.1039/C7QO01150D 10.1002/anie.202113464 10.1039/C6CS00023A 10.1021/cs400019u 10.1021/acscatal.6b02929 10.1021/np970030o 10.1002/ange.201810701 10.1021/ar800104y 10.1021/jacs.0c01918 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/ange.202210637 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3757 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ange_202210637 ANGE202210637 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22125108, 22101238, 22121001 and 92056104 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCUC ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K RGC ROL RWI RX1 RYL SUPJJ TN5 TUS UB1 UPT V2E W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c1627-6dffca181c5b3fc051d6876dfb9567ff1e59fb65e3de7259b6432a4b9bb5adaa3 |
IEDL.DBID | DR2 |
ISSN | 0044-8249 |
IngestDate | Fri Jul 25 10:18:49 EDT 2025 Tue Jul 01 02:42:24 EDT 2025 Thu Apr 24 22:56:06 EDT 2025 Wed Jan 22 16:22:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1627-6dffca181c5b3fc051d6876dfb9567ff1e59fb65e3de7259b6432a4b9bb5adaa3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3108-2611 |
PQID | 2725691216 |
PQPubID | 866336 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2725691216 crossref_citationtrail_10_1002_ange_202210637 crossref_primary_10_1002_ange_202210637 wiley_primary_10_1002_ange_202210637_ANGE202210637 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 24, 2022 |
PublicationDateYYYYMMDD | 2022-10-24 |
PublicationDate_xml | – month: 10 year: 2022 text: October 24, 2022 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2017; 7 2013; 3 2013; 4 2015; 71 2019; 55 2004; 69 2020 2020; 59 132 2011; 52 1982; 104 2022; 65 2018; 83 2008 2008; 47 120 2020; 10 2001; 42 2015; 48 2022 2022; 61 134 2018; 5 2018; 4 2020; 53 2018 2018; 57 130 2020; 9 2020; 49 2016; 358 2008; 64 2012; 22 2014; 55 2007; 26 2016; 45 2001; 123 2019; 9 2007; 129 2021; 45 2018; 140 1997; 60 2021; 2 2011 2020; 142 1967; 89 2017; 21 1969; 10 2015; 10 2006; 8 2014; 47 2006 2005 2004 2003 2017 2017; 56 129 2021; 50 2019; 141 2006 2006; 45 118 2021; 13 1967; 8 2018; 2018 2021; 12 2015; 115 2021; 18 2008; 49 2015; 21 2016; 65 2016; 20 2021 2021; 60 133 2001; 3 2011 2011; 50 123 2016; 138 2009; 38 2018; 59 e_1_2_7_3_2 Li Z.-C. (e_1_2_7_28_2) 2005 e_1_2_7_7_2 e_1_2_7_19_1 e_1_2_7_83_2 e_1_2_7_15_3 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_41_2 e_1_2_7_87_2 e_1_2_7_11_2 e_1_2_7_64_2 e_1_2_7_45_1 e_1_2_7_68_2 e_1_2_7_26_2 e_1_2_7_49_1 e_1_2_7_26_3 Evano G. (e_1_2_7_61_2) 2015; 48 e_1_2_7_90_2 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_23_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_79_2 e_1_2_7_37_2 e_1_2_7_4_2 e_1_2_7_8_2 e_1_2_7_16_3 e_1_2_7_16_2 e_1_2_7_82_1 e_1_2_7_40_2 e_1_2_7_86_2 e_1_2_7_63_1 e_1_2_7_12_2 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_67_3 e_1_2_7_48_2 e_1_2_7_48_3 e_1_2_7_29_2 e_1_2_7_70_3 e_1_2_7_93_1 e_1_2_7_70_2 e_1_2_7_24_2 e_1_2_7_51_2 (e_1_2_7_53_3) 2022; 134 e_1_2_7_32_2 e_1_2_7_74_2 e_1_2_7_20_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_78_2 e_1_2_7_36_3 e_1_2_7_59_2 e_1_2_7_5_2 (e_1_2_7_65_3) 2022; 134 e_1_2_7_9_2 e_1_2_7_17_2 e_1_2_7_81_2 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_62_2 e_1_2_7_85_1 e_1_2_7_43_2 e_1_2_7_66_2 e_1_2_7_47_2 e_1_2_7_89_2 e_1_2_7_47_3 e_1_2_7_50_2 e_1_2_7_25_2 Garzino F. (e_1_2_7_92_2) 2003 e_1_2_7_77_1 e_1_2_7_31_2 e_1_2_7_73_2 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_2 e_1_2_7_35_1 e_1_2_7_58_2 e_1_2_7_39_2 e_1_2_7_2_2 (e_1_2_7_64_3) 2022; 134 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_80_2 e_1_2_7_14_2 e_1_2_7_42_1 e_1_2_7_65_2 e_1_2_7_84_2 e_1_2_7_10_1 e_1_2_7_46_2 e_1_2_7_69_2 e_1_2_7_88_2 e_1_2_7_88_3 e_1_2_7_27_2 e_1_2_7_95_1 e_1_2_7_72_2 e_1_2_7_91_2 e_1_2_7_30_2 e_1_2_7_76_2 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_34_2 e_1_2_7_57_2 e_1_2_7_38_2 |
References_xml | – volume: 142 start-page: 7618 year: 2020 publication-title: J. Am. Chem. Soc. – year: 2011 – volume: 45 118 start-page: 6197 6343 year: 2006 2006 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 65 start-page: 2183 year: 2016 publication-title: Russ. Chem. Bull. – volume: 42 start-page: 6803 year: 2001 publication-title: Tetrahedron Lett. – volume: 53 start-page: 2003 year: 2020 publication-title: Acc. Chem. Res. – volume: 64 start-page: 6577 year: 2008 publication-title: Tetrahedron – volume: 115 start-page: 5301 year: 2015 publication-title: Chem. Rev. – volume: 115 start-page: 9981 year: 2015 publication-title: Chem. Rev. – volume: 10 start-page: 13978 year: 2020 publication-title: ACS Catal. – volume: 60 133 start-page: 27164 27370 year: 2021 2021 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2 year: 2021 publication-title: Cell Rep. Phys. Sci. – volume: 3 start-page: 1902 year: 2013 publication-title: ACS Catal. – volume: 2018 start-page: 23 year: 2018 publication-title: Arkivoc – volume: 47 120 start-page: 4009 4073 year: 2008 2008 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 933 year: 2001 publication-title: Org. Lett. – volume: 4 start-page: 1208 year: 2018 publication-title: Chem – volume: 141 start-page: 16961 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 4471 year: 2016 publication-title: Chem. Soc. Rev. – volume: 45 start-page: 11018 year: 2021 publication-title: New J. Chem. – volume: 140 start-page: 1884 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 3741 year: 2001 publication-title: Org. Lett. – volume: 13 start-page: 1093 year: 2021 publication-title: Nat. Chem. – start-page: 2587 year: 2011 publication-title: Eur. J. Org. Chem. – volume: 47 start-page: 560 year: 2014 publication-title: Acc. Chem. Res. – start-page: 598 year: 2003 publication-title: Synthesis – volume: 71 start-page: 6219 year: 2015 publication-title: Tetrahedron – volume: 8 start-page: 3275 year: 2006 publication-title: Org. Lett. – volume: 49 start-page: 1062 year: 2008 publication-title: Tetrahedron Lett. – volume: 47 start-page: 864 year: 2014 publication-title: Acc. Chem. Res. – start-page: 4929 year: 2005 publication-title: Eur. J. Org. Chem. – volume: 57 130 start-page: 16942 17186 year: 2018 2018 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 20 start-page: 19 year: 2016 publication-title: Curr. Org. Chem. – start-page: 639 year: 2004 publication-title: Synlett – volume: 49 start-page: 8897 year: 2020 publication-title: Chem. Soc. Rev. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 138 start-page: 4014 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 6393 year: 2019 publication-title: ACS Catal. – volume: 89 start-page: 5497 year: 1967 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 8543 year: 2020 publication-title: Chem. Soc. Rev. – volume: 142 start-page: 3636 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 1092 year: 2018 publication-title: Org. Chem. Front. – volume: 18 start-page: 606 year: 2021 publication-title: Mini-Rev. Org. Chem. – volume: 9 start-page: 918 year: 2020 publication-title: Asian J. Org. Chem. – volume: 60 start-page: 458 year: 1997 publication-title: J. Nat. Prod. – volume: 7 start-page: 992 year: 2017 publication-title: ACS Catal. – volume: 59 start-page: 2600 year: 2018 publication-title: Tetrahedron Lett. – volume: 50 123 start-page: 7874 8020 year: 2011 2011 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 start-page: 12127 year: 2019 publication-title: Chem. Commun. – volume: 55 start-page: 2969 year: 2014 publication-title: Tetrahedron Lett. – volume: 69 start-page: 5269 year: 2004 publication-title: J. Org. Chem. – volume: 123 start-page: 2097 year: 2001 publication-title: J. Am. Chem. Soc. – volume: 53 126 start-page: 7406 7534 year: 2014 2014 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 26 start-page: 2978 year: 2007 publication-title: Organometallics – volume: 8 start-page: 1427 year: 2006 publication-title: Org. Lett. – volume: 8 start-page: 1865 year: 1967 publication-title: Tetrahedron Lett. – volume: 12 start-page: 9466 year: 2021 publication-title: Chem. Sci. – volume: 3 start-page: 685 year: 2013 publication-title: ACS Catal. – volume: 129 start-page: 1046 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 1934 year: 2011 publication-title: Tetrahedron Lett. – volume: 48 start-page: 59 year: 2015 publication-title: Aldrichimica Acta – volume: 21 start-page: 1143 year: 2017 publication-title: Curr. Org. Chem. – volume: 358 start-page: 1368 year: 2016 publication-title: Adv. Synth. Catal. – volume: 59 132 start-page: 17984 18140 year: 2020 2020 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 2844 year: 2013 publication-title: Chem. Sci. – volume: 10 start-page: 1042 year: 2015 publication-title: Chem. Asian J. – start-page: 1711 year: 2005 publication-title: Synlett – year: 2006 – volume: 104 start-page: 4952 year: 1982 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 2260 year: 2014 publication-title: Acc. Chem. Res. – volume: 21 start-page: 11671 year: 2015 publication-title: Chem. Eur. J. – volume: 83 start-page: 8341 year: 2018 publication-title: J. Org. Chem. – volume: 10 start-page: 4479 year: 1969 publication-title: Tetrahedron Lett. – volume: 38 start-page: 3072 year: 2009 publication-title: Chem. Soc. Rev. – volume: 56 129 start-page: 3364 3413 year: 2017 2017 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 22 start-page: 449 year: 2012 publication-title: Bioorg. Med. Chem. Lett. – volume: 65 start-page: 20 year: 2022 publication-title: Sci. China Chem. – volume: 50 123 start-page: 11152 11348 year: 2011 2011 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 start-page: 2582 year: 2021 publication-title: Chem. Soc. Rev. – ident: e_1_2_7_26_3 doi: 10.1002/ange.201105557 – ident: e_1_2_7_53_2 doi: 10.1002/anie.202115554 – ident: e_1_2_7_32_2 doi: 10.1021/ol015600x – ident: e_1_2_7_27_2 doi: 10.1016/j.tetlet.2011.02.052 – ident: e_1_2_7_96_1 doi: 10.1016/j.chempr.2018.02.001 – ident: e_1_2_7_55_2 doi: 10.1039/D0CS00283F – ident: e_1_2_7_40_2 doi: 10.1021/ja00997a060 – ident: e_1_2_7_50_2 doi: 10.1021/jacs.9b09303 – ident: e_1_2_7_60_2 doi: 10.1021/acscatal.9b01851 – ident: e_1_2_7_31_2 doi: 10.1016/S0040-4039(01)01415-0 – ident: e_1_2_7_33_2 doi: 10.1021/ol016703i – ident: e_1_2_7_38_2 doi: 10.1021/om0609970 – ident: e_1_2_7_10_1 – ident: e_1_2_7_68_2 doi: 10.1016/j.xcrp.2021.100448 – ident: e_1_2_7_72_2 doi: 10.1039/C9CC06078B – ident: e_1_2_7_36_3 doi: 10.1002/ange.201100551 – ident: e_1_2_7_48_3 doi: 10.1002/ange.201700057 – ident: e_1_2_7_13_2 doi: 10.1002/asia.201403325 – ident: e_1_2_7_14_2 doi: 10.1002/chem.201502009 – ident: e_1_2_7_44_2 doi: 10.1021/ja068344y – ident: e_1_2_7_67_3 doi: 10.1002/ange.202113464 – ident: e_1_2_7_54_1 – ident: e_1_2_7_3_2 doi: 10.24820/ark.5550190.p010.416 – ident: e_1_2_7_21_2 doi: 10.1021/jacs.7b12673 – ident: e_1_2_7_76_2 doi: 10.1021/cs400437s – ident: e_1_2_7_69_2 doi: 10.1021/jacs.9b13975 – ident: e_1_2_7_36_2 doi: 10.1002/anie.201100551 – ident: e_1_2_7_45_1 – ident: e_1_2_7_48_2 doi: 10.1002/anie.201700057 – ident: e_1_2_7_24_2 doi: 10.1016/j.tetlet.2014.03.105 – ident: e_1_2_7_91_2 doi: 10.1002/3527607862 – ident: e_1_2_7_41_2 doi: 10.1016/S0040-4039(00)90743-3 – ident: e_1_2_7_71_1 – ident: e_1_2_7_89_2 doi: 10.1002/ejoc.201001693 – volume: 134 start-page: e202115554 year: 2022 ident: e_1_2_7_53_3 publication-title: Angew. Chem. doi: 10.1002/ange.202115554 – ident: e_1_2_7_70_3 doi: 10.1002/ange.202007206 – ident: e_1_2_7_29_2 doi: 10.1055/s-2004-817750 – ident: e_1_2_7_59_2 doi: 10.1021/acscatal.0c04180 – ident: e_1_2_7_62_2 doi: 10.1021/ar400193g – ident: e_1_2_7_77_1 – start-page: 598 year: 2003 ident: e_1_2_7_92_2 publication-title: Synthesis – volume: 134 start-page: e202204603 year: 2022 ident: e_1_2_7_64_3 publication-title: Angew. Chem. doi: 10.1002/ange.202204603 – ident: e_1_2_7_15_2 doi: 10.1002/anie.200800568 – ident: e_1_2_7_16_3 doi: 10.1002/ange.200602056 – ident: e_1_2_7_42_1 – ident: e_1_2_7_37_2 doi: 10.1016/j.tetlet.2007.11.197 – ident: e_1_2_7_52_2 doi: 10.1039/D1SC02773E – ident: e_1_2_7_30_2 doi: 10.1021/jo049403y – ident: e_1_2_7_4_2 doi: 10.1007/s11172-016-1566-x – start-page: 1711 year: 2005 ident: e_1_2_7_28_2 publication-title: Synlett – ident: e_1_2_7_2_2 doi: 10.1039/D1NJ02034J – ident: e_1_2_7_56_2 doi: 10.1039/D0CS00769B – ident: e_1_2_7_34_2 doi: 10.1021/ja00382a038 – ident: e_1_2_7_82_1 – ident: e_1_2_7_88_3 doi: 10.1002/ange.201400241 – ident: e_1_2_7_12_2 doi: 10.1016/j.tetlet.2018.05.069 – ident: e_1_2_7_25_2 doi: 10.1039/c3sc50425e – ident: e_1_2_7_47_2 doi: 10.1002/anie.201810701 – ident: e_1_2_7_9_2 doi: 10.1016/j.tet.2008.04.074 – ident: e_1_2_7_79_2 doi: 10.1021/acs.joc.8b01027 – ident: e_1_2_7_39_2 doi: 10.1016/S0040-4039(01)88729-3 – ident: e_1_2_7_78_2 doi: 10.2174/1570193X17999200807141622 – ident: e_1_2_7_57_2 doi: 10.1039/D0CS00474J – ident: e_1_2_7_81_2 doi: 10.1002/ejoc.200500489 – ident: e_1_2_7_75_2 doi: 10.1021/ar500015k – ident: e_1_2_7_35_1 – ident: e_1_2_7_19_1 – ident: e_1_2_7_49_1 – ident: e_1_2_7_95_1 – ident: e_1_2_7_87_2 doi: 10.1021/jacs.6b02158 – volume: 134 start-page: e202201436 year: 2022 ident: e_1_2_7_65_3 publication-title: Angew. Chem. doi: 10.1002/ange.202201436 – volume: 48 start-page: 59 year: 2015 ident: e_1_2_7_61_2 publication-title: Aldrichimica Acta – ident: e_1_2_7_7_2 doi: 10.1021/acs.chemrev.5b00121 – ident: e_1_2_7_20_2 doi: 10.1002/ajoc.202000123 – ident: e_1_2_7_8_2 doi: 10.1039/b816701j – ident: e_1_2_7_5_2 doi: 10.2174/1385272819666150810225618 – ident: e_1_2_7_83_2 doi: 10.1016/j.bmcl.2011.10.127 – ident: e_1_2_7_58_2 doi: 10.1021/acs.accounts.0c00417 – ident: e_1_2_7_88_2 doi: 10.1002/anie.201400241 – ident: e_1_2_7_66_2 doi: 10.1038/s41557-021-00778-z – ident: e_1_2_7_46_2 doi: 10.1007/s11426-021-1117-2 – ident: e_1_2_7_70_2 doi: 10.1002/anie.202007206 – ident: e_1_2_7_74_2 doi: 10.1002/adsc.201600005 – ident: e_1_2_7_85_1 – ident: e_1_2_7_65_2 doi: 10.1002/anie.202201436 – ident: e_1_2_7_90_2 doi: 10.1021/ol060266w – ident: e_1_2_7_1_1 – ident: e_1_2_7_15_3 doi: 10.1002/ange.200800568 – ident: e_1_2_7_80_2 doi: 10.1002/9783527634880 – ident: e_1_2_7_63_1 – ident: e_1_2_7_86_2 doi: 10.2174/1385272821666170221151356 – ident: e_1_2_7_23_2 doi: 10.1016/j.tet.2015.06.076 – ident: e_1_2_7_64_2 doi: 10.1002/anie.202204603 – ident: e_1_2_7_6_2 doi: 10.1021/cr5006974 – ident: e_1_2_7_17_2 doi: 10.1021/ol061137i – ident: e_1_2_7_18_2 doi: 10.1021/ja0057979 – ident: e_1_2_7_94_1 – ident: e_1_2_7_26_2 doi: 10.1002/anie.201105557 – ident: e_1_2_7_16_2 doi: 10.1002/anie.200602056 – ident: e_1_2_7_11_2 doi: 10.1039/C7QO01150D – ident: e_1_2_7_67_2 doi: 10.1002/anie.202113464 – ident: e_1_2_7_73_2 doi: 10.1039/C6CS00023A – ident: e_1_2_7_43_2 doi: 10.1021/cs400019u – ident: e_1_2_7_22_2 doi: 10.1021/acscatal.6b02929 – ident: e_1_2_7_84_2 doi: 10.1021/np970030o – ident: e_1_2_7_47_3 doi: 10.1002/ange.201810701 – ident: e_1_2_7_93_1 doi: 10.1021/ar800104y – ident: e_1_2_7_51_2 doi: 10.1021/jacs.0c01918 |
SSID | ssj0006279 |
Score | 2.199287 |
Snippet | Carbonyl ylides have proven to be powerful synthons for the efficient construction of various valuable O‐heterocycles, and the formation of carbonyl ylides by... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Alkynes Annulation Asymmetric Catalysis Asymmetry Carbenes Carbonyl compounds Carbonyl Ylides Carbonyls Catalysts Cations Chemistry Copper Divergence Enantiomers Epoxidation Heterocycles Ketones |
Title | Enantioselective Copper‐Catalyzed Formal [2+1] and [4+1] Annulations of Diynes with Ketones via Carbonyl Ylides |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202210637 https://www.proquest.com/docview/2725691216 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7iRS--xfoiB8GDbNvNZtPuUdbWotiDKFSKLMkmgWJpa7cV9ORP8Df6S5zZR6uCCHrLQrKbzWQm34SZbwg58oytWmNrjq8ZOCh1oRwp6tyxPPZ5TcS2bjDf-aotWrf8ouN3PmXxZ_wQsws31IzUXqOCS5VU5qShGHsP_h0Dn0V4mE6OAVuIiq7n_FGCZWR7Vc6dOjgaBWtjlVW-Dv96Ks2h5mfAmp44zVUii7lmgSYP5elEleOXbzSO__mZNbKSw1F6mu2fdbJgBhtkKSyqwG2SxwZGyvSGSVovB0wjDYejkRm_v76FePPz_GI0bSLw7dMuO3HvqRxo2uXYQu7-PNSODi096z2DXaV480svDZKAJ_SpJ2koxwrj4-ldv6dNskVum42bsOXkZRqc2IUFdoS2NpaAFGJfeTYGLdcCbKy2CnyvmrWu8QOrhG88bWrgbSkAQUxyFSjlSy2lt00WB_DNHUItlp8xAVhRrThYF8W11lUbSKa50MIvEacQUxTnHOZYSqMfZezLLMKFjGYLWSLHs_6jjL3jx577hdSjXIuTiMF0ReAyV5QIS8X3y1ui0_Z5Y_a0-5dBe2QZ23g8Mr5PFifjqTkA3DNRh-ne_gC0q_te |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xOMCFxwKiuyz4sNIeUKBxHKc5otDSXaCHFUisEIrs2JYqqrbblpXgxE_gN_JLdiaPFpBWSLu3JLITZ-wZfzMafwPwJbCu7qyLvNBwdFAaUntKNoTnRBaKSGauYem883lHti_F96uwyiakszAFP8Q04EaakdtrUnAKSB_OWEMp-R4dPI5OiwyieVikst5En3_8Y8YgJXlBt1cXwmugq1HxNtb54ev-r_elGdh8CVnzPae1CroabZFqcntwN9EH2cMbIsf_-p01WCkRKTsqltA6zNn-B1hKqkJwG_CrScky3cE4L5mD1pElg-HQjp4fnxIK_tw_WMNahH177Jrv-zdM9Q27FnRF9P1lth0bOHbcvUfTyij4y04t8YCP2e-uYokaaUqRZz97XWPHm3DZal4kba-s1OBlPkrYk8a5TCFYyEIduAwV3Ug0s8ZpdL8i53wbxk7L0AbGRuhwacRBXAkdax0qo1SwBQt9_OY2MEcVaGyMhtRogQZGC2NM3cWKGyGNDGvgVfOUZiWNOVXT6KUFATNPSZDpVJA1-DptPywIPP7acqea9rRU5HHKcbgy9rkva8Dz-XvnLelR56Q5vfv4L532YKl9cX6Wnn3rnH6CZXpOuyUXO7AwGd3ZzwiDJno3X-h_AG-q_3o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED9tTGJ7YYOBKGPMD5N4QIHEcZzmEaUtbGzVhEBiQiiyY1uqqNquLZPgaR9hn5FPwl3-tDBpQoK3JLITx-e7-511_h3A59A631kXe5HhGKA0pfaUbArPiTwSscxd09J55-9deXgqvp5FZ_dO8Zf8ELMNN9KMwl6Tgo-M25uThlLuPcZ3HGMWGcYv4ZWQfkLFG1rHcwIpyUu2PV8Ir4mRRk3b6PO9h_0fuqU51ryPWAuX03kLqh5smWlyuXs11bv5zT88js_5m3ewVOFRtl8uoGV4YQcr8Dqty8C9h19tSpXpDSdFwRy0jSwdjkZ2fPvnb0pbP9c31rAOId8-O-c7wQVTA8POBV0ReX-Va8eGjrV612hYGW39siNLLOAT9runWKrGmhLk2c9-z9jJKpx22ifpoVfVafDyACfYk8a5XCFUyCMduhzV3Eg0ssZpDL5i5wIbJU7LyIbGxhhuaURBXAmdaB0po1S4BgsD_OY6MEf1Z2yCZtRogeZFC2OM7xLFjZBGRg3wajFleUViTrU0-llJv8wzmshsNpEN2J61H5X0Hf9tuVlLPavUeJJxHK5MAh7IBvBCfI-8JdvvHrRndxtP6fQJFn-0Otm3L92jD_CGHpOr5GITFqbjK_sRMdBUbxXL_A5vNv4p |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enantioselective+Copper%E2%80%90Catalyzed+Formal+%5B2%2B1%5D+and+%5B4%2B1%5D+Annulations+of+Diynes+with+Ketones+via+Carbonyl+Ylides&rft.jtitle=Angewandte+Chemie&rft.au=Qi%2C+Lin%E2%80%90Jun&rft.au=Li%2C+Cui%E2%80%90Ting&rft.au=Huang%2C+Zheng%E2%80%90Qi&rft.au=Jiang%2C+Jia%E2%80%90Tian&rft.date=2022-10-24&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=134&rft.issue=43&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fange.202210637&rft.externalDBID=10.1002%252Fange.202210637&rft.externalDocID=ANGE202210637 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon |