The Growth Mechanism of a Conductive MOF Thin Film in Spray‐based Layer‐by‐layer Liquid Phase Epitaxy
The layer‐by‐layer liquid‐phase epitaxy (LBL‐LPE) method is widely used in preparing metal–organic framework (MOF) thin films with the merits of controlling thickness and out‐of‐plane orientation for superior performances in applications. The LBL‐LPE growth mechanism related to the grain boundary, s...
Saved in:
Published in | Angewandte Chemie Vol. 134; no. 43 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
24.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0044-8249 1521-3757 |
DOI | 10.1002/ange.202212797 |
Cover
Loading…
Abstract | The layer‐by‐layer liquid‐phase epitaxy (LBL‐LPE) method is widely used in preparing metal–organic framework (MOF) thin films with the merits of controlling thickness and out‐of‐plane orientation for superior performances in applications. The LBL‐LPE growth mechanism related to the grain boundary, structure defect, and orientation is critical but very challenging to study. In this work, a novel “in‐plane self‐limiting and self‐repairing” thin‐film growth mechanism is demonstrated by the combination study of the grain boundary, structure defect, and orientation of Cu3(HHTP)2‐xC thin film via microscopic analysis techniques and electrical measurements. This mechanism results a desired high‐quality MOF thin film with preferred in‐plane orientations at its bottom for the first time and is very helpful for optimizing the LBL‐LPE method, understanding the growth cycle‐dependent properties of MOF thin film, and inspiring the investigations of the biomimetic self‐repairing materials.
A novel in‐plane self‐limited and self‐repairing growth mechanism was demonstrated for the preparation of LBL‐LPE thin films. The method provides a high‐quality MOF thin film with preferred in‐plane orientation at its bottom part. |
---|---|
AbstractList | The layer‐by‐layer liquid‐phase epitaxy (LBL‐LPE) method is widely used in preparing metal–organic framework (MOF) thin films with the merits of controlling thickness and out‐of‐plane orientation for superior performances in applications. The LBL‐LPE growth mechanism related to the grain boundary, structure defect, and orientation is critical but very challenging to study. In this work, a novel “in‐plane self‐limiting and self‐repairing” thin‐film growth mechanism is demonstrated by the combination study of the grain boundary, structure defect, and orientation of Cu3(HHTP)2‐xC thin film via microscopic analysis techniques and electrical measurements. This mechanism results a desired high‐quality MOF thin film with preferred in‐plane orientations at its bottom for the first time and is very helpful for optimizing the LBL‐LPE method, understanding the growth cycle‐dependent properties of MOF thin film, and inspiring the investigations of the biomimetic self‐repairing materials.
A novel in‐plane self‐limited and self‐repairing growth mechanism was demonstrated for the preparation of LBL‐LPE thin films. The method provides a high‐quality MOF thin film with preferred in‐plane orientation at its bottom part. The layer‐by‐layer liquid‐phase epitaxy (LBL‐LPE) method is widely used in preparing metal–organic framework (MOF) thin films with the merits of controlling thickness and out‐of‐plane orientation for superior performances in applications. The LBL‐LPE growth mechanism related to the grain boundary, structure defect, and orientation is critical but very challenging to study. In this work, a novel “in‐plane self‐limiting and self‐repairing” thin‐film growth mechanism is demonstrated by the combination study of the grain boundary, structure defect, and orientation of Cu 3 (HHTP) 2 ‐xC thin film via microscopic analysis techniques and electrical measurements. This mechanism results a desired high‐quality MOF thin film with preferred in‐plane orientations at its bottom for the first time and is very helpful for optimizing the LBL‐LPE method, understanding the growth cycle‐dependent properties of MOF thin film, and inspiring the investigations of the biomimetic self‐repairing materials. The layer‐by‐layer liquid‐phase epitaxy (LBL‐LPE) method is widely used in preparing metal–organic framework (MOF) thin films with the merits of controlling thickness and out‐of‐plane orientation for superior performances in applications. The LBL‐LPE growth mechanism related to the grain boundary, structure defect, and orientation is critical but very challenging to study. In this work, a novel “in‐plane self‐limiting and self‐repairing” thin‐film growth mechanism is demonstrated by the combination study of the grain boundary, structure defect, and orientation of Cu3(HHTP)2‐xC thin film via microscopic analysis techniques and electrical measurements. This mechanism results a desired high‐quality MOF thin film with preferred in‐plane orientations at its bottom for the first time and is very helpful for optimizing the LBL‐LPE method, understanding the growth cycle‐dependent properties of MOF thin film, and inspiring the investigations of the biomimetic self‐repairing materials. |
Author | Zheng, Rui Deng, Wei‐Hua Wen, Yingyi Wu, Ai‐Qian Fu, Zhi‐Hua Xu, Gang Ye, Xiao‐Liang |
Author_xml | – sequence: 1 givenname: Rui surname: Zheng fullname: Zheng, Rui organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Zhi‐Hua surname: Fu fullname: Fu, Zhi‐Hua organization: Chinese Academy of Sciences – sequence: 3 givenname: Wei‐Hua surname: Deng fullname: Deng, Wei‐Hua organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Yingyi surname: Wen fullname: Wen, Yingyi organization: Chinese Academy of Sciences – sequence: 5 givenname: Ai‐Qian surname: Wu fullname: Wu, Ai‐Qian organization: Chinese Academy of Sciences – sequence: 6 givenname: Xiao‐Liang surname: Ye fullname: Ye, Xiao‐Liang organization: Chinese Academy of Sciences – sequence: 7 givenname: Gang orcidid: 0000-0001-8562-0724 surname: Xu fullname: Xu, Gang email: gxu@fjirsm.ac.cn organization: Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China |
BookMark | eNqFkMFKw0AQhhepYFu9el7wnDq7SXaTYyltFVIrWM9hu9mYrWnSbhJrbj6Cz-iTuKGiIIinYYbvmxn-AeoVZaEQuiQwIgD0WhRPakSBUkJ5yE9Qn_iUOC73eQ_1ATzPCagXnqFBVW0AgFmqj55XmcJzUx7qDC-UzEShqy0uUyzwpCySRtb6ReHFcoZXmS7wTOdbbOvDzoj24-19LSqV4Ei0ynRdN8q7Bkd63-gE32cWwNOdrsVre45OU5FX6uKrDtHjbLqa3DjRcn47GUeOJPYph4GrpEr5WgZhQAT3uOe7iiguQHIlE5akwBhJw0QkKYOE0cBnoQ-E-BAyCNwhujru3Zly36iqjjdlYwp7MqacWpa6lFrKO1LSlFVlVBpL-2Wty6I2QucxgbiLNe5ijb9jtdrol7YzeitM-7cQHoWDzlX7Dx2P7-bTH_cTwieO6w |
CitedBy_id | crossref_primary_10_1002_smll_202302913 crossref_primary_10_1002_smll_202405309 |
Cites_doi | 10.1002/chem.201704190 10.1002/anie.202111519 10.1039/C8CC02871K 10.1021/jacs.1c06434 10.1002/adfm.201101592 10.1016/j.ccr.2021.214119 10.1002/anie.202006102 10.1002/anie.201709558 10.1093/nsr/nwx127 10.1021/acscentsci.9b01006 10.1002/ange.201808242 10.1021/la200103w 10.1002/ange.201907772 10.1021/jacs.1c02176 10.1007/s41061-020-0289-5 10.1002/ange.202016608 10.1002/adma.202107836 10.1002/ange.201906222 10.1002/anie.201506219 10.1002/ange.202111519 10.1002/adma.202006980 10.1021/jacs.9b07807 10.1038/nchem.2469 10.1002/chem.201606056 10.1002/advs.202104374 10.1002/anie.202016608 10.1016/j.chempr.2021.12.008 10.1021/jacs.9b08169 10.1039/C3TA13812G 10.1002/ange.202116396 10.1002/ange.201506219 10.1002/anie.201906222 10.1002/adfm.202102855 10.1002/chem.202000594 10.1002/anie.202007827 10.1002/aenm.201802052 10.1016/j.ccr.2017.09.028 10.1002/anie.201907772 10.1002/anie.200900378 10.1016/j.joule.2017.07.018 10.1002/ange.202007827 10.1021/acs.chemmater.9b03141 10.1126/science.abj0890 10.1002/admt.201800413 10.1126/science.aar6833 10.1002/ange.200900378 10.1016/j.chempr.2019.10.012 10.1002/ange.202006102 10.1021/jacs.1c11836 10.3390/ma3021302 10.1002/adma.201806324 10.1002/aenm.202003499 10.1021/jacs.1c07379 10.1021/acs.chemrev.9b00766 10.1002/smtd.202000396 10.1002/ange.201709558 10.1002/anie.202116396 10.1021/acs.chemrev.0c00119 10.1002/anie.201808242 10.1039/b811010g 10.1021/jacs.1c02108 10.1021/acs.accounts.9b00113 10.1021/jacs.1c03960 10.1039/D0CS00955E 10.1039/c2sc20065a 10.1039/D0CS01160F 10.1002/chem.201702130 10.1039/c4qi00037d 10.1021/acsnano.9b01137 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/ange.202212797 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3757 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ange_202212797 ANGE202212797 |
Genre | article |
GrantInformation_xml | – fundername: Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China funderid: 2021ZR101 – fundername: the NSF of Fujian funderid: 2021J02017, 2020J01109 and 2022J05088 – fundername: the NSF of China funderid: 22171263, 22175176, 91961115, 21822109, 21905280 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCUC ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K RGC ROL RWI RX1 RYL SUPJJ TN5 TUS UB1 UPT V2E W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c1627-603ecef7bc8981a747453e1e7a0c7ecd6df0661f9dadf60d62856950115096083 |
IEDL.DBID | DR2 |
ISSN | 0044-8249 |
IngestDate | Sun Jul 13 04:37:54 EDT 2025 Thu Apr 24 23:07:52 EDT 2025 Tue Jul 01 02:42:25 EDT 2025 Wed Jan 22 16:22:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1627-603ecef7bc8981a747453e1e7a0c7ecd6df0661f9dadf60d62856950115096083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8562-0724 |
PQID | 2725692322 |
PQPubID | 866336 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2725692322 crossref_citationtrail_10_1002_ange_202212797 crossref_primary_10_1002_ange_202212797 wiley_primary_10_1002_ange_202212797_ANGE202212797 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 24, 2022 |
PublicationDateYYYYMMDD | 2022-10-24 |
PublicationDate_xml | – month: 10 year: 2022 text: October 24, 2022 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 1 2019; 4 2019; 5 2019; 31 2019; 52 2009 2009; 48 121 2020; 120 2019; 13 2021; 446 2017; 23 2020 2020; 59 132 2008; 10 2021; 143 2017 2017; 56 129 2021; 50 2019; 141 2019 2019; 58 131 2019; 363 2018; 24 2022; 144 2014; 1 2020; 6 2022 2022; 61 134 2018; 8 2020; 4 2021; 31 2012; 3 2016 2016; 55 128 2018; 5 2021; 33 2014; 2 2020; 50 2018 2018; 57 130 2022; 8 2022; 9 2022; 34 2022; 12 2021 2021; 60 133 2020; 26 2019; 378 2011; 21 2020; 378 2021; 374 2010; 3 2011; 27 2018; 54 2016; 8 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_62_3 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_62_2 e_1_2_7_64_3 e_1_2_7_66_1 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_64_2 e_1_2_7_45_2 e_1_2_7_47_1 e_1_2_7_68_2 e_1_2_7_26_2 e_1_2_7_26_3 e_1_2_7_49_2 e_1_2_7_28_2 e_1_2_7_28_3 e_1_2_7_71_2 e_1_2_7_50_2 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_31_2 e_1_2_7_23_1 Zhai R. (e_1_2_7_38_2) 2020; 50 e_1_2_7_52_3 e_1_2_7_54_1 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_35_2 e_1_2_7_58_2 (e_1_2_7_16_3) 2020; 132 e_1_2_7_37_2 e_1_2_7_39_1 e_1_2_7_58_3 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_16_2 e_1_2_7_61_2 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_63_1 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_10_3 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_65_3 e_1_2_7_46_2 e_1_2_7_67_3 e_1_2_7_69_1 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_2 (e_1_2_7_6_3) 2022; 134 e_1_2_7_51_1 e_1_2_7_70_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_34_1 e_1_2_7_20_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_57_2 e_1_2_7_59_2 |
References_xml | – volume: 50 start-page: 2764 year: 2021 end-page: 2793 publication-title: Chem. Soc. Rev. – volume: 60 133 start-page: 5612 5672 year: 2021 2021 end-page: 5624 5684 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 120 start-page: 8161 year: 2020 end-page: 8266 publication-title: Chem. Rev. – volume: 374 start-page: 454 year: 2021 end-page: 459 publication-title: Science – volume: 144 start-page: 1826 year: 2022 end-page: 1834 publication-title: J. Am. Chem. Soc. – volume: 378 start-page: 513 year: 2019 end-page: 532 publication-title: Coord. Chem. Rev. – volume: 27 start-page: 4309 year: 2011 end-page: 4312 publication-title: Langmuir – volume: 31 start-page: 8977 year: 2019 end-page: 8986 publication-title: Chem. Mater. – volume: 57 130 start-page: 15086 15306 year: 2018 2018 end-page: 15090 15310 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 128 start-page: 3566 3628 year: 2016 2016 end-page: 3579 3642 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 start-page: 4484 year: 2021 end-page: 4513 publication-title: Chem. Soc. Rev. – volume: 56 129 start-page: 16510 16737 year: 2017 2017 end-page: 16514 16741 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 3 start-page: 1302 year: 2010 end-page: 1315 publication-title: Materials – volume: 23 start-page: 2294 year: 2017 end-page: 2298 publication-title: Chem. Eur. J. – volume: 58 131 start-page: 14915 15057 year: 2019 2019 end-page: 14919 15061 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 143 start-page: 9040 year: 2021 end-page: 9047 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 13519 year: 2021 end-page: 13524 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 18984 year: 2019 end-page: 18993 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 543 year: 2022 end-page: 556 publication-title: Chem – volume: 446 year: 2021 publication-title: Coord. Chem. Rev. – volume: 60 133 start-page: 10147 10235 year: 2021 2021 end-page: 10154 10242 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 337 year: 2020 end-page: 363 publication-title: Chem – volume: 143 start-page: 15258 year: 2021 end-page: 15270 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 168 year: 2017 end-page: 177 publication-title: Joule – volume: 3 start-page: 1531 year: 2012 end-page: 1540 publication-title: Chem. Sci. – volume: 50 start-page: 857 year: 2020 end-page: 866 publication-title: Sci. China Chem. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2 start-page: 2018 year: 2014 end-page: 2022 publication-title: J. Mater. Chem. A – volume: 378 start-page: 27 year: 2020 publication-title: Top. Curr. Chem. – volume: 143 start-page: 8654 year: 2021 end-page: 8660 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 907 year: 2018 end-page: 919 publication-title: Natl. Sci. Rev. – volume: 59 132 start-page: 16764 16907 year: 2020 2020 end-page: 16769 16912 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 377 year: 2016 end-page: 383 publication-title: Nat. Chem. – volume: 4 year: 2019 publication-title: Adv. Mater. Technol. – volume: 120 start-page: 8536 year: 2020 end-page: 8580 publication-title: Chem. Rev. – volume: 13 start-page: 6711 year: 2019 end-page: 6719 publication-title: ACS Nano – volume: 60 133 start-page: 25758 25962 year: 2021 2021 end-page: 25761 25965 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 14089 14227 year: 2019 2019 end-page: 14094 14232 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 442 year: 2014 end-page: 463 publication-title: Inorg. Chem. Front. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 23 start-page: 10915 year: 2017 end-page: 10924 publication-title: Chem. Eur. J. – volume: 5 start-page: 1959 year: 2019 end-page: 1964 publication-title: ACS Cent. Sci. – volume: 21 start-page: 4228 year: 2011 end-page: 4231 publication-title: Adv. Funct. Mater. – volume: 48 121 start-page: 5038 5138 year: 2009 2009 end-page: 5041 5142 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 year: 2020 publication-title: Small Methods – volume: 54 start-page: 7873 year: 2018 end-page: 7891 publication-title: Chem. Commun. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 143 start-page: 12129 year: 2021 end-page: 12137 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 5185 year: 2020 end-page: 5189 publication-title: Chem. Eur. J. – volume: 24 start-page: 187 year: 2018 end-page: 195 publication-title: Chem. Eur. J. – volume: 10 start-page: 7257 year: 2008 end-page: 7261 publication-title: Phys. Chem. Chem. Phys. – volume: 363 start-page: 387 year: 2019 end-page: 391 publication-title: Science – volume: 141 start-page: 17703 year: 2019 end-page: 17712 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 1461 year: 2019 end-page: 1470 publication-title: Acc. Chem. Res. – ident: e_1_2_7_34_1 – ident: e_1_2_7_50_2 doi: 10.1002/chem.201704190 – ident: e_1_2_7_26_2 doi: 10.1002/anie.202111519 – ident: e_1_2_7_61_2 doi: 10.1039/C8CC02871K – ident: e_1_2_7_15_2 doi: 10.1021/jacs.1c06434 – ident: e_1_2_7_37_2 doi: 10.1002/adfm.201101592 – ident: e_1_2_7_51_1 – ident: e_1_2_7_56_2 doi: 10.1016/j.ccr.2021.214119 – ident: e_1_2_7_58_2 doi: 10.1002/anie.202006102 – ident: e_1_2_7_64_2 doi: 10.1002/anie.201709558 – ident: e_1_2_7_9_2 doi: 10.1093/nsr/nwx127 – ident: e_1_2_7_70_2 doi: 10.1021/acscentsci.9b01006 – ident: e_1_2_7_62_3 doi: 10.1002/ange.201808242 – ident: e_1_2_7_44_2 doi: 10.1021/la200103w – ident: e_1_2_7_65_3 doi: 10.1002/ange.201907772 – ident: e_1_2_7_4_2 doi: 10.1021/jacs.1c02176 – ident: e_1_2_7_17_1 – ident: e_1_2_7_47_1 – ident: e_1_2_7_60_2 doi: 10.1007/s41061-020-0289-5 – ident: e_1_2_7_10_3 doi: 10.1002/ange.202016608 – ident: e_1_2_7_39_1 – ident: e_1_2_7_7_2 doi: 10.1002/adma.202107836 – ident: e_1_2_7_28_3 doi: 10.1002/ange.201906222 – ident: e_1_2_7_52_2 doi: 10.1002/anie.201506219 – ident: e_1_2_7_26_3 doi: 10.1002/ange.202111519 – ident: e_1_2_7_25_2 doi: 10.1002/adma.202006980 – ident: e_1_2_7_13_2 doi: 10.1021/jacs.9b07807 – ident: e_1_2_7_27_2 doi: 10.1038/nchem.2469 – ident: e_1_2_7_36_2 doi: 10.1002/chem.201606056 – ident: e_1_2_7_19_2 doi: 10.1002/advs.202104374 – ident: e_1_2_7_10_2 doi: 10.1002/anie.202016608 – ident: e_1_2_7_11_2 doi: 10.1016/j.chempr.2021.12.008 – ident: e_1_2_7_54_1 – ident: e_1_2_7_55_2 doi: 10.1002/advs.202104374 – ident: e_1_2_7_29_2 doi: 10.1021/jacs.9b08169 – ident: e_1_2_7_42_2 doi: 10.1039/C3TA13812G – volume: 134 start-page: e202116396 year: 2022 ident: e_1_2_7_6_3 publication-title: Angew. Chem. doi: 10.1002/ange.202116396 – ident: e_1_2_7_52_3 doi: 10.1002/ange.201506219 – ident: e_1_2_7_28_2 doi: 10.1002/anie.201906222 – ident: e_1_2_7_32_2 doi: 10.1002/adfm.202102855 – ident: e_1_2_7_40_2 doi: 10.1002/chem.202000594 – ident: e_1_2_7_16_2 doi: 10.1002/anie.202007827 – ident: e_1_2_7_31_2 doi: 10.1002/aenm.201802052 – ident: e_1_2_7_35_2 doi: 10.1016/j.ccr.2017.09.028 – ident: e_1_2_7_65_2 doi: 10.1002/anie.201907772 – ident: e_1_2_7_67_2 doi: 10.1002/anie.200900378 – ident: e_1_2_7_22_2 doi: 10.1016/j.joule.2017.07.018 – volume: 132 start-page: 16907 year: 2020 ident: e_1_2_7_16_3 publication-title: Angew. Chem. doi: 10.1002/ange.202007827 – volume: 50 start-page: 857 year: 2020 ident: e_1_2_7_38_2 publication-title: Sci. China Chem. – ident: e_1_2_7_41_2 doi: 10.1021/acs.chemmater.9b03141 – ident: e_1_2_7_2_2 doi: 10.1126/science.abj0890 – ident: e_1_2_7_48_2 doi: 10.1002/admt.201800413 – ident: e_1_2_7_1_1 – ident: e_1_2_7_63_1 – ident: e_1_2_7_3_2 doi: 10.1126/science.aar6833 – ident: e_1_2_7_67_3 doi: 10.1002/ange.200900378 – ident: e_1_2_7_20_2 doi: 10.1016/j.chempr.2019.10.012 – ident: e_1_2_7_58_3 doi: 10.1002/ange.202006102 – ident: e_1_2_7_12_2 doi: 10.1021/jacs.1c11836 – ident: e_1_2_7_45_2 doi: 10.3390/ma3021302 – ident: e_1_2_7_24_2 doi: 10.1002/adma.201806324 – ident: e_1_2_7_30_2 doi: 10.1002/aenm.202003499 – ident: e_1_2_7_8_2 doi: 10.1021/jacs.1c07379 – ident: e_1_2_7_53_2 doi: 10.1021/acs.chemrev.9b00766 – ident: e_1_2_7_66_1 – ident: e_1_2_7_59_2 doi: 10.1002/smtd.202000396 – ident: e_1_2_7_64_3 doi: 10.1002/ange.201709558 – ident: e_1_2_7_69_1 – ident: e_1_2_7_6_2 doi: 10.1002/anie.202116396 – ident: e_1_2_7_21_2 doi: 10.1021/acs.chemrev.0c00119 – ident: e_1_2_7_62_2 doi: 10.1002/anie.201808242 – ident: e_1_2_7_46_2 doi: 10.1039/b811010g – ident: e_1_2_7_14_2 doi: 10.1021/jacs.1c02108 – ident: e_1_2_7_33_2 doi: 10.1021/acs.accounts.9b00113 – ident: e_1_2_7_5_2 doi: 10.1021/jacs.1c03960 – ident: e_1_2_7_18_2 doi: 10.1039/D0CS00955E – ident: e_1_2_7_43_2 doi: 10.1039/c2sc20065a – ident: e_1_2_7_57_2 doi: 10.1039/D0CS01160F – ident: e_1_2_7_23_1 – ident: e_1_2_7_68_2 doi: 10.1002/chem.201702130 – ident: e_1_2_7_49_2 doi: 10.1039/c4qi00037d – ident: e_1_2_7_71_2 doi: 10.1021/acsnano.9b01137 |
SSID | ssj0006279 |
Score | 2.1994562 |
Snippet | The layer‐by‐layer liquid‐phase epitaxy (LBL‐LPE) method is widely used in preparing metal–organic framework (MOF) thin films with the merits of controlling... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Biomimetic materials Biomimetics Chemistry Crystal defects Electrical measurement Epitaxy Film growth Gas Sensing Grain boundaries Layer-by-Layer Growth Liquid Phase Epitaxy Liquid phases Metal-organic frameworks Microscopic analysis Orientation Thin Film Thin films |
Title | The Growth Mechanism of a Conductive MOF Thin Film in Spray‐based Layer‐by‐layer Liquid Phase Epitaxy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202212797 https://www.proquest.com/docview/2725692322 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQF7iwIwoF-YDEyTSxsx6rqi1CFBCL1FtkJ7aoutJFopz4BL6RL2EmaVqKhJDglDgaR8l47HmTeN4QcmrwN6OyFANjEcxxjc9kqC2mbWGU9jV3NeY7N669i0fnsuk2v2TxZ_wQ8w9uODPS9RonuFSj0oI0FPfeQ3zHkaI8xHRy3LCFqOhuwR_l8Yxsz3IcFkCgkbM2Wry03H3ZKy2g5lfAmnqc2iaR-bNmG03a55OxOo9fv9E4_udltsjGDI7ScmY_22RF93bIWiWvArdL2mBHtA6x-viJNjSmCbdGXdo3VNJKv4dksbBc0sZNjWIFUFprdboUjveDoZx-vL2jk0zolQRgjy281MEGvWo9T1oJvX0CAVrF0iUv0z3yWKs-VC7YrEADi21QLfMsoWNtfBUHYWBLiEwcV2hb-9KKfR0nXmIA0dgmTGRiPCvBdE0vdFMUCpFTIPbJaq_f0weEqlChcKK4EI7vqVAADlUiUCqIfWl0gbB8gKJ4xl6ORTQ6Uca7zCNUYTRXYYGczeUHGW_Hj5LFfLyj2fwdRdwHKAjYl_MC4enA_XKXqHxdr85bh3_pdETW8RwdI3eKZHU8nOhjQDxjdZJa9Sdy4_nL |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa27pBd9mqHpetWHQbspMaWbMs-FmnSdE2yYW2A3gzLllAjrz4SoO1pP2G_sb9kpB0nS4GiwHYyJFCGJVHiR1n8CPDF0m9G7WiOyiK551vFk8g43LjSaqOM8A3FO_f6QWfgfTvzq9uEFAtT8kMsD9xoZRT7NS1wOpBurFhD6fI9OniCOMoj9RxeUFpvSmJw8HPFIBWIkm7P8TweoqtR8TY6orHeft0urcDm35C1sDnt16Crry2vmgz35jO9l949IHL8r-68gVcLRMr2SxV6C8_M5B3UmlUiuE0YoiqxQ3TXZ-esZyhSOL8es6llCWtOJ8QXizsm631vM0oCytr5aMzweXJxldze__pNdjJj3QSxPZWoakQF1s0v53nGfpyjAGtR9pKb2y0YtFunzQ5f5GjgqYtjywNHmtRYpdMwCt0EnRPPl8Y1KnFSZdIsyCyCGtdGWZLZwMkoYjOI_AKIovMUyvewMZlOzAdgOtIknGkhpacCHUmEolqGWoepSqypA69mKE4XBOaUR2MUl9TLIqYhjJdDWIevS_mLkrrjUcmdasLjxRK-joVCNIjwV4g6iGLmnnhLvN8_bC1L2__SaBdqndNeN-4e9Y8_wkuqJzspvB3YmF3NzScEQDP9uVDxPw0j_eU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED_BkICX8V90G-CHSTx5S-wkTh6n0uwPbTcBk_YW2bGtVevasrUS42kfYZ9xn4S7pGk3JIQET5Gtc5TYd77fJb7fAWx6-s1oAsNRWSSPYq-4zlzAXSi9ccqJ2FG-c6-f7B1HByfxyZ0s_pofYvHBjSyj2q_JwCfWby9JQ-nsPcZ3gijKM_UQHkUJWgzBoi9LAqlE1Gx7QRTxFCONhrYxENv3x993S0useRexVi4nfwa6edj6pMnZ1mxqtsqfv_E4_s_bPIfVOR5lO7UCvYAHbvQSnrSbMnCv4AwVie1isD49ZT1HecKDy3M29kyz9nhEbLG4X7LeYc6oBCjLB8Nzhtevkwt9dXt9Q17Ssq5GZE8t6hpSg3UH32cDy45OUYB1qHbJj6vXcJx3vrX3-LxCAy9DnFqeBNKVzitTplkaagxNoli60CkdlMqVNrEeIU3oM6utTwJL-ZpJFlcwFEOnVL6BldF45N4CM5khYWuElJFKTCYRiBqZGpOWSnvXAt4sUFHO6cupisawqImXRUFTWCymsAUfF_KTmrjjj5IbzXoXcwO-LIRCLIjgV4gWiGrh_nKXYqe_21m01v5l0Ad4fPQpL7r7_c_r8JS6yUmKaANWphcz9w7Rz9S8rxT8Fy69_J0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Growth+Mechanism+of+a+Conductive+MOF+Thin+Film+in+Spray%E2%80%90based+Layer%E2%80%90by%E2%80%90layer+Liquid+Phase+Epitaxy&rft.jtitle=Angewandte+Chemie&rft.au=Zheng%2C+Rui&rft.au=Fu%2C+Zhi%E2%80%90Hua&rft.au=Deng%2C+Wei%E2%80%90Hua&rft.au=Wen%2C+Yingyi&rft.date=2022-10-24&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=134&rft.issue=43&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fange.202212797&rft.externalDBID=10.1002%252Fange.202212797&rft.externalDocID=ANGE202212797 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon |