The Growth Mechanism of a Conductive MOF Thin Film in Spray‐based Layer‐by‐layer Liquid Phase Epitaxy

The layer‐by‐layer liquid‐phase epitaxy (LBL‐LPE) method is widely used in preparing metal–organic framework (MOF) thin films with the merits of controlling thickness and out‐of‐plane orientation for superior performances in applications. The LBL‐LPE growth mechanism related to the grain boundary, s...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie Vol. 134; no. 43
Main Authors Zheng, Rui, Fu, Zhi‐Hua, Deng, Wei‐Hua, Wen, Yingyi, Wu, Ai‐Qian, Ye, Xiao‐Liang, Xu, Gang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 24.10.2022
Subjects
Online AccessGet full text
ISSN0044-8249
1521-3757
DOI10.1002/ange.202212797

Cover

Loading…
Abstract The layer‐by‐layer liquid‐phase epitaxy (LBL‐LPE) method is widely used in preparing metal–organic framework (MOF) thin films with the merits of controlling thickness and out‐of‐plane orientation for superior performances in applications. The LBL‐LPE growth mechanism related to the grain boundary, structure defect, and orientation is critical but very challenging to study. In this work, a novel “in‐plane self‐limiting and self‐repairing” thin‐film growth mechanism is demonstrated by the combination study of the grain boundary, structure defect, and orientation of Cu3(HHTP)2‐xC thin film via microscopic analysis techniques and electrical measurements. This mechanism results a desired high‐quality MOF thin film with preferred in‐plane orientations at its bottom for the first time and is very helpful for optimizing the LBL‐LPE method, understanding the growth cycle‐dependent properties of MOF thin film, and inspiring the investigations of the biomimetic self‐repairing materials. A novel in‐plane self‐limited and self‐repairing growth mechanism was demonstrated for the preparation of LBL‐LPE thin films. The method provides a high‐quality MOF thin film with preferred in‐plane orientation at its bottom part.
AbstractList The layer‐by‐layer liquid‐phase epitaxy (LBL‐LPE) method is widely used in preparing metal–organic framework (MOF) thin films with the merits of controlling thickness and out‐of‐plane orientation for superior performances in applications. The LBL‐LPE growth mechanism related to the grain boundary, structure defect, and orientation is critical but very challenging to study. In this work, a novel “in‐plane self‐limiting and self‐repairing” thin‐film growth mechanism is demonstrated by the combination study of the grain boundary, structure defect, and orientation of Cu3(HHTP)2‐xC thin film via microscopic analysis techniques and electrical measurements. This mechanism results a desired high‐quality MOF thin film with preferred in‐plane orientations at its bottom for the first time and is very helpful for optimizing the LBL‐LPE method, understanding the growth cycle‐dependent properties of MOF thin film, and inspiring the investigations of the biomimetic self‐repairing materials. A novel in‐plane self‐limited and self‐repairing growth mechanism was demonstrated for the preparation of LBL‐LPE thin films. The method provides a high‐quality MOF thin film with preferred in‐plane orientation at its bottom part.
The layer‐by‐layer liquid‐phase epitaxy (LBL‐LPE) method is widely used in preparing metal–organic framework (MOF) thin films with the merits of controlling thickness and out‐of‐plane orientation for superior performances in applications. The LBL‐LPE growth mechanism related to the grain boundary, structure defect, and orientation is critical but very challenging to study. In this work, a novel “in‐plane self‐limiting and self‐repairing” thin‐film growth mechanism is demonstrated by the combination study of the grain boundary, structure defect, and orientation of Cu 3 (HHTP) 2 ‐xC thin film via microscopic analysis techniques and electrical measurements. This mechanism results a desired high‐quality MOF thin film with preferred in‐plane orientations at its bottom for the first time and is very helpful for optimizing the LBL‐LPE method, understanding the growth cycle‐dependent properties of MOF thin film, and inspiring the investigations of the biomimetic self‐repairing materials.
The layer‐by‐layer liquid‐phase epitaxy (LBL‐LPE) method is widely used in preparing metal–organic framework (MOF) thin films with the merits of controlling thickness and out‐of‐plane orientation for superior performances in applications. The LBL‐LPE growth mechanism related to the grain boundary, structure defect, and orientation is critical but very challenging to study. In this work, a novel “in‐plane self‐limiting and self‐repairing” thin‐film growth mechanism is demonstrated by the combination study of the grain boundary, structure defect, and orientation of Cu3(HHTP)2‐xC thin film via microscopic analysis techniques and electrical measurements. This mechanism results a desired high‐quality MOF thin film with preferred in‐plane orientations at its bottom for the first time and is very helpful for optimizing the LBL‐LPE method, understanding the growth cycle‐dependent properties of MOF thin film, and inspiring the investigations of the biomimetic self‐repairing materials.
Author Zheng, Rui
Deng, Wei‐Hua
Wen, Yingyi
Wu, Ai‐Qian
Fu, Zhi‐Hua
Xu, Gang
Ye, Xiao‐Liang
Author_xml – sequence: 1
  givenname: Rui
  surname: Zheng
  fullname: Zheng, Rui
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Zhi‐Hua
  surname: Fu
  fullname: Fu, Zhi‐Hua
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Wei‐Hua
  surname: Deng
  fullname: Deng, Wei‐Hua
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Yingyi
  surname: Wen
  fullname: Wen, Yingyi
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Ai‐Qian
  surname: Wu
  fullname: Wu, Ai‐Qian
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Xiao‐Liang
  surname: Ye
  fullname: Ye, Xiao‐Liang
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Gang
  orcidid: 0000-0001-8562-0724
  surname: Xu
  fullname: Xu, Gang
  email: gxu@fjirsm.ac.cn
  organization: Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
BookMark eNqFkMFKw0AQhhepYFu9el7wnDq7SXaTYyltFVIrWM9hu9mYrWnSbhJrbj6Cz-iTuKGiIIinYYbvmxn-AeoVZaEQuiQwIgD0WhRPakSBUkJ5yE9Qn_iUOC73eQ_1ATzPCagXnqFBVW0AgFmqj55XmcJzUx7qDC-UzEShqy0uUyzwpCySRtb6ReHFcoZXmS7wTOdbbOvDzoj24-19LSqV4Ei0ynRdN8q7Bkd63-gE32cWwNOdrsVre45OU5FX6uKrDtHjbLqa3DjRcn47GUeOJPYph4GrpEr5WgZhQAT3uOe7iiguQHIlE5akwBhJw0QkKYOE0cBnoQ-E-BAyCNwhujru3Zly36iqjjdlYwp7MqacWpa6lFrKO1LSlFVlVBpL-2Wty6I2QucxgbiLNe5ijb9jtdrol7YzeitM-7cQHoWDzlX7Dx2P7-bTH_cTwieO6w
CitedBy_id crossref_primary_10_1002_smll_202302913
crossref_primary_10_1002_smll_202405309
Cites_doi 10.1002/chem.201704190
10.1002/anie.202111519
10.1039/C8CC02871K
10.1021/jacs.1c06434
10.1002/adfm.201101592
10.1016/j.ccr.2021.214119
10.1002/anie.202006102
10.1002/anie.201709558
10.1093/nsr/nwx127
10.1021/acscentsci.9b01006
10.1002/ange.201808242
10.1021/la200103w
10.1002/ange.201907772
10.1021/jacs.1c02176
10.1007/s41061-020-0289-5
10.1002/ange.202016608
10.1002/adma.202107836
10.1002/ange.201906222
10.1002/anie.201506219
10.1002/ange.202111519
10.1002/adma.202006980
10.1021/jacs.9b07807
10.1038/nchem.2469
10.1002/chem.201606056
10.1002/advs.202104374
10.1002/anie.202016608
10.1016/j.chempr.2021.12.008
10.1021/jacs.9b08169
10.1039/C3TA13812G
10.1002/ange.202116396
10.1002/ange.201506219
10.1002/anie.201906222
10.1002/adfm.202102855
10.1002/chem.202000594
10.1002/anie.202007827
10.1002/aenm.201802052
10.1016/j.ccr.2017.09.028
10.1002/anie.201907772
10.1002/anie.200900378
10.1016/j.joule.2017.07.018
10.1002/ange.202007827
10.1021/acs.chemmater.9b03141
10.1126/science.abj0890
10.1002/admt.201800413
10.1126/science.aar6833
10.1002/ange.200900378
10.1016/j.chempr.2019.10.012
10.1002/ange.202006102
10.1021/jacs.1c11836
10.3390/ma3021302
10.1002/adma.201806324
10.1002/aenm.202003499
10.1021/jacs.1c07379
10.1021/acs.chemrev.9b00766
10.1002/smtd.202000396
10.1002/ange.201709558
10.1002/anie.202116396
10.1021/acs.chemrev.0c00119
10.1002/anie.201808242
10.1039/b811010g
10.1021/jacs.1c02108
10.1021/acs.accounts.9b00113
10.1021/jacs.1c03960
10.1039/D0CS00955E
10.1039/c2sc20065a
10.1039/D0CS01160F
10.1002/chem.201702130
10.1039/c4qi00037d
10.1021/acsnano.9b01137
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ange.202212797
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3757
EndPage n/a
ExternalDocumentID 10_1002_ange_202212797
ANGE202212797
Genre article
GrantInformation_xml – fundername: Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
  funderid: 2021ZR101
– fundername: the NSF of Fujian
  funderid: 2021J02017, 2020J01109 and 2022J05088
– fundername: the NSF of China
  funderid: 22171263, 22175176, 91961115, 21822109, 21905280
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCUC
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RGC
ROL
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c1627-603ecef7bc8981a747453e1e7a0c7ecd6df0661f9dadf60d62856950115096083
IEDL.DBID DR2
ISSN 0044-8249
IngestDate Sun Jul 13 04:37:54 EDT 2025
Thu Apr 24 23:07:52 EDT 2025
Tue Jul 01 02:42:25 EDT 2025
Wed Jan 22 16:22:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1627-603ecef7bc8981a747453e1e7a0c7ecd6df0661f9dadf60d62856950115096083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8562-0724
PQID 2725692322
PQPubID 866336
PageCount 6
ParticipantIDs proquest_journals_2725692322
crossref_citationtrail_10_1002_ange_202212797
crossref_primary_10_1002_ange_202212797
wiley_primary_10_1002_ange_202212797_ANGE202212797
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 24, 2022
PublicationDateYYYYMMDD 2022-10-24
PublicationDate_xml – month: 10
  year: 2022
  text: October 24, 2022
  day: 24
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 1
2019; 4
2019; 5
2019; 31
2019; 52
2009 2009; 48 121
2020; 120
2019; 13
2021; 446
2017; 23
2020 2020; 59 132
2008; 10
2021; 143
2017 2017; 56 129
2021; 50
2019; 141
2019 2019; 58 131
2019; 363
2018; 24
2022; 144
2014; 1
2020; 6
2022 2022; 61 134
2018; 8
2020; 4
2021; 31
2012; 3
2016 2016; 55 128
2018; 5
2021; 33
2014; 2
2020; 50
2018 2018; 57 130
2022; 8
2022; 9
2022; 34
2022; 12
2021 2021; 60 133
2020; 26
2019; 378
2011; 21
2020; 378
2021; 374
2010; 3
2011; 27
2018; 54
2016; 8
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_62_3
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_62_2
e_1_2_7_64_3
e_1_2_7_66_1
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_64_2
e_1_2_7_45_2
e_1_2_7_47_1
e_1_2_7_68_2
e_1_2_7_26_2
e_1_2_7_26_3
e_1_2_7_49_2
e_1_2_7_28_2
e_1_2_7_28_3
e_1_2_7_71_2
e_1_2_7_50_2
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_31_2
e_1_2_7_23_1
Zhai R. (e_1_2_7_38_2) 2020; 50
e_1_2_7_52_3
e_1_2_7_54_1
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_35_2
e_1_2_7_58_2
(e_1_2_7_16_3) 2020; 132
e_1_2_7_37_2
e_1_2_7_39_1
e_1_2_7_58_3
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_2
e_1_2_7_61_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_63_1
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_10_3
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_65_3
e_1_2_7_46_2
e_1_2_7_67_3
e_1_2_7_69_1
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
(e_1_2_7_6_3) 2022; 134
e_1_2_7_51_1
e_1_2_7_70_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_34_1
e_1_2_7_20_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_57_2
e_1_2_7_59_2
References_xml – volume: 50
  start-page: 2764
  year: 2021
  end-page: 2793
  publication-title: Chem. Soc. Rev.
– volume: 60 133
  start-page: 5612 5672
  year: 2021 2021
  end-page: 5624 5684
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 120
  start-page: 8161
  year: 2020
  end-page: 8266
  publication-title: Chem. Rev.
– volume: 374
  start-page: 454
  year: 2021
  end-page: 459
  publication-title: Science
– volume: 144
  start-page: 1826
  year: 2022
  end-page: 1834
  publication-title: J. Am. Chem. Soc.
– volume: 378
  start-page: 513
  year: 2019
  end-page: 532
  publication-title: Coord. Chem. Rev.
– volume: 27
  start-page: 4309
  year: 2011
  end-page: 4312
  publication-title: Langmuir
– volume: 31
  start-page: 8977
  year: 2019
  end-page: 8986
  publication-title: Chem. Mater.
– volume: 57 130
  start-page: 15086 15306
  year: 2018 2018
  end-page: 15090 15310
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 3566 3628
  year: 2016 2016
  end-page: 3579 3642
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50
  start-page: 4484
  year: 2021
  end-page: 4513
  publication-title: Chem. Soc. Rev.
– volume: 56 129
  start-page: 16510 16737
  year: 2017 2017
  end-page: 16514 16741
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1302
  year: 2010
  end-page: 1315
  publication-title: Materials
– volume: 23
  start-page: 2294
  year: 2017
  end-page: 2298
  publication-title: Chem. Eur. J.
– volume: 58 131
  start-page: 14915 15057
  year: 2019 2019
  end-page: 14919 15061
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 143
  start-page: 9040
  year: 2021
  end-page: 9047
  publication-title: J. Am. Chem. Soc.
– volume: 143
  start-page: 13519
  year: 2021
  end-page: 13524
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 18984
  year: 2019
  end-page: 18993
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 543
  year: 2022
  end-page: 556
  publication-title: Chem
– volume: 446
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 60 133
  start-page: 10147 10235
  year: 2021 2021
  end-page: 10154 10242
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 337
  year: 2020
  end-page: 363
  publication-title: Chem
– volume: 143
  start-page: 15258
  year: 2021
  end-page: 15270
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 168
  year: 2017
  end-page: 177
  publication-title: Joule
– volume: 3
  start-page: 1531
  year: 2012
  end-page: 1540
  publication-title: Chem. Sci.
– volume: 50
  start-page: 857
  year: 2020
  end-page: 866
  publication-title: Sci. China Chem.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  start-page: 2018
  year: 2014
  end-page: 2022
  publication-title: J. Mater. Chem. A
– volume: 378
  start-page: 27
  year: 2020
  publication-title: Top. Curr. Chem.
– volume: 143
  start-page: 8654
  year: 2021
  end-page: 8660
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 907
  year: 2018
  end-page: 919
  publication-title: Natl. Sci. Rev.
– volume: 59 132
  start-page: 16764 16907
  year: 2020 2020
  end-page: 16769 16912
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 377
  year: 2016
  end-page: 383
  publication-title: Nat. Chem.
– volume: 4
  year: 2019
  publication-title: Adv. Mater. Technol.
– volume: 120
  start-page: 8536
  year: 2020
  end-page: 8580
  publication-title: Chem. Rev.
– volume: 13
  start-page: 6711
  year: 2019
  end-page: 6719
  publication-title: ACS Nano
– volume: 60 133
  start-page: 25758 25962
  year: 2021 2021
  end-page: 25761 25965
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 14089 14227
  year: 2019 2019
  end-page: 14094 14232
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 442
  year: 2014
  end-page: 463
  publication-title: Inorg. Chem. Front.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 23
  start-page: 10915
  year: 2017
  end-page: 10924
  publication-title: Chem. Eur. J.
– volume: 5
  start-page: 1959
  year: 2019
  end-page: 1964
  publication-title: ACS Cent. Sci.
– volume: 21
  start-page: 4228
  year: 2011
  end-page: 4231
  publication-title: Adv. Funct. Mater.
– volume: 48 121
  start-page: 5038 5138
  year: 2009 2009
  end-page: 5041 5142
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  year: 2020
  publication-title: Small Methods
– volume: 54
  start-page: 7873
  year: 2018
  end-page: 7891
  publication-title: Chem. Commun.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 143
  start-page: 12129
  year: 2021
  end-page: 12137
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 5185
  year: 2020
  end-page: 5189
  publication-title: Chem. Eur. J.
– volume: 24
  start-page: 187
  year: 2018
  end-page: 195
  publication-title: Chem. Eur. J.
– volume: 10
  start-page: 7257
  year: 2008
  end-page: 7261
  publication-title: Phys. Chem. Chem. Phys.
– volume: 363
  start-page: 387
  year: 2019
  end-page: 391
  publication-title: Science
– volume: 141
  start-page: 17703
  year: 2019
  end-page: 17712
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 1461
  year: 2019
  end-page: 1470
  publication-title: Acc. Chem. Res.
– ident: e_1_2_7_34_1
– ident: e_1_2_7_50_2
  doi: 10.1002/chem.201704190
– ident: e_1_2_7_26_2
  doi: 10.1002/anie.202111519
– ident: e_1_2_7_61_2
  doi: 10.1039/C8CC02871K
– ident: e_1_2_7_15_2
  doi: 10.1021/jacs.1c06434
– ident: e_1_2_7_37_2
  doi: 10.1002/adfm.201101592
– ident: e_1_2_7_51_1
– ident: e_1_2_7_56_2
  doi: 10.1016/j.ccr.2021.214119
– ident: e_1_2_7_58_2
  doi: 10.1002/anie.202006102
– ident: e_1_2_7_64_2
  doi: 10.1002/anie.201709558
– ident: e_1_2_7_9_2
  doi: 10.1093/nsr/nwx127
– ident: e_1_2_7_70_2
  doi: 10.1021/acscentsci.9b01006
– ident: e_1_2_7_62_3
  doi: 10.1002/ange.201808242
– ident: e_1_2_7_44_2
  doi: 10.1021/la200103w
– ident: e_1_2_7_65_3
  doi: 10.1002/ange.201907772
– ident: e_1_2_7_4_2
  doi: 10.1021/jacs.1c02176
– ident: e_1_2_7_17_1
– ident: e_1_2_7_47_1
– ident: e_1_2_7_60_2
  doi: 10.1007/s41061-020-0289-5
– ident: e_1_2_7_10_3
  doi: 10.1002/ange.202016608
– ident: e_1_2_7_39_1
– ident: e_1_2_7_7_2
  doi: 10.1002/adma.202107836
– ident: e_1_2_7_28_3
  doi: 10.1002/ange.201906222
– ident: e_1_2_7_52_2
  doi: 10.1002/anie.201506219
– ident: e_1_2_7_26_3
  doi: 10.1002/ange.202111519
– ident: e_1_2_7_25_2
  doi: 10.1002/adma.202006980
– ident: e_1_2_7_13_2
  doi: 10.1021/jacs.9b07807
– ident: e_1_2_7_27_2
  doi: 10.1038/nchem.2469
– ident: e_1_2_7_36_2
  doi: 10.1002/chem.201606056
– ident: e_1_2_7_19_2
  doi: 10.1002/advs.202104374
– ident: e_1_2_7_10_2
  doi: 10.1002/anie.202016608
– ident: e_1_2_7_11_2
  doi: 10.1016/j.chempr.2021.12.008
– ident: e_1_2_7_54_1
– ident: e_1_2_7_55_2
  doi: 10.1002/advs.202104374
– ident: e_1_2_7_29_2
  doi: 10.1021/jacs.9b08169
– ident: e_1_2_7_42_2
  doi: 10.1039/C3TA13812G
– volume: 134
  start-page: e202116396
  year: 2022
  ident: e_1_2_7_6_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202116396
– ident: e_1_2_7_52_3
  doi: 10.1002/ange.201506219
– ident: e_1_2_7_28_2
  doi: 10.1002/anie.201906222
– ident: e_1_2_7_32_2
  doi: 10.1002/adfm.202102855
– ident: e_1_2_7_40_2
  doi: 10.1002/chem.202000594
– ident: e_1_2_7_16_2
  doi: 10.1002/anie.202007827
– ident: e_1_2_7_31_2
  doi: 10.1002/aenm.201802052
– ident: e_1_2_7_35_2
  doi: 10.1016/j.ccr.2017.09.028
– ident: e_1_2_7_65_2
  doi: 10.1002/anie.201907772
– ident: e_1_2_7_67_2
  doi: 10.1002/anie.200900378
– ident: e_1_2_7_22_2
  doi: 10.1016/j.joule.2017.07.018
– volume: 132
  start-page: 16907
  year: 2020
  ident: e_1_2_7_16_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202007827
– volume: 50
  start-page: 857
  year: 2020
  ident: e_1_2_7_38_2
  publication-title: Sci. China Chem.
– ident: e_1_2_7_41_2
  doi: 10.1021/acs.chemmater.9b03141
– ident: e_1_2_7_2_2
  doi: 10.1126/science.abj0890
– ident: e_1_2_7_48_2
  doi: 10.1002/admt.201800413
– ident: e_1_2_7_1_1
– ident: e_1_2_7_63_1
– ident: e_1_2_7_3_2
  doi: 10.1126/science.aar6833
– ident: e_1_2_7_67_3
  doi: 10.1002/ange.200900378
– ident: e_1_2_7_20_2
  doi: 10.1016/j.chempr.2019.10.012
– ident: e_1_2_7_58_3
  doi: 10.1002/ange.202006102
– ident: e_1_2_7_12_2
  doi: 10.1021/jacs.1c11836
– ident: e_1_2_7_45_2
  doi: 10.3390/ma3021302
– ident: e_1_2_7_24_2
  doi: 10.1002/adma.201806324
– ident: e_1_2_7_30_2
  doi: 10.1002/aenm.202003499
– ident: e_1_2_7_8_2
  doi: 10.1021/jacs.1c07379
– ident: e_1_2_7_53_2
  doi: 10.1021/acs.chemrev.9b00766
– ident: e_1_2_7_66_1
– ident: e_1_2_7_59_2
  doi: 10.1002/smtd.202000396
– ident: e_1_2_7_64_3
  doi: 10.1002/ange.201709558
– ident: e_1_2_7_69_1
– ident: e_1_2_7_6_2
  doi: 10.1002/anie.202116396
– ident: e_1_2_7_21_2
  doi: 10.1021/acs.chemrev.0c00119
– ident: e_1_2_7_62_2
  doi: 10.1002/anie.201808242
– ident: e_1_2_7_46_2
  doi: 10.1039/b811010g
– ident: e_1_2_7_14_2
  doi: 10.1021/jacs.1c02108
– ident: e_1_2_7_33_2
  doi: 10.1021/acs.accounts.9b00113
– ident: e_1_2_7_5_2
  doi: 10.1021/jacs.1c03960
– ident: e_1_2_7_18_2
  doi: 10.1039/D0CS00955E
– ident: e_1_2_7_43_2
  doi: 10.1039/c2sc20065a
– ident: e_1_2_7_57_2
  doi: 10.1039/D0CS01160F
– ident: e_1_2_7_23_1
– ident: e_1_2_7_68_2
  doi: 10.1002/chem.201702130
– ident: e_1_2_7_49_2
  doi: 10.1039/c4qi00037d
– ident: e_1_2_7_71_2
  doi: 10.1021/acsnano.9b01137
SSID ssj0006279
Score 2.1994562
Snippet The layer‐by‐layer liquid‐phase epitaxy (LBL‐LPE) method is widely used in preparing metal–organic framework (MOF) thin films with the merits of controlling...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Biomimetic materials
Biomimetics
Chemistry
Crystal defects
Electrical measurement
Epitaxy
Film growth
Gas Sensing
Grain boundaries
Layer-by-Layer Growth
Liquid Phase Epitaxy
Liquid phases
Metal-organic frameworks
Microscopic analysis
Orientation
Thin Film
Thin films
Title The Growth Mechanism of a Conductive MOF Thin Film in Spray‐based Layer‐by‐layer Liquid Phase Epitaxy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202212797
https://www.proquest.com/docview/2725692322
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQF7iwIwoF-YDEyTSxsx6rqi1CFBCL1FtkJ7aoutJFopz4BL6RL2EmaVqKhJDglDgaR8l47HmTeN4QcmrwN6OyFANjEcxxjc9kqC2mbWGU9jV3NeY7N669i0fnsuk2v2TxZ_wQ8w9uODPS9RonuFSj0oI0FPfeQ3zHkaI8xHRy3LCFqOhuwR_l8Yxsz3IcFkCgkbM2Wry03H3ZKy2g5lfAmnqc2iaR-bNmG03a55OxOo9fv9E4_udltsjGDI7ScmY_22RF93bIWiWvArdL2mBHtA6x-viJNjSmCbdGXdo3VNJKv4dksbBc0sZNjWIFUFprdboUjveDoZx-vL2jk0zolQRgjy281MEGvWo9T1oJvX0CAVrF0iUv0z3yWKs-VC7YrEADi21QLfMsoWNtfBUHYWBLiEwcV2hb-9KKfR0nXmIA0dgmTGRiPCvBdE0vdFMUCpFTIPbJaq_f0weEqlChcKK4EI7vqVAADlUiUCqIfWl0gbB8gKJ4xl6ORTQ6Uca7zCNUYTRXYYGczeUHGW_Hj5LFfLyj2fwdRdwHKAjYl_MC4enA_XKXqHxdr85bh3_pdETW8RwdI3eKZHU8nOhjQDxjdZJa9Sdy4_nL
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa27pBd9mqHpetWHQbspMaWbMs-FmnSdE2yYW2A3gzLllAjrz4SoO1pP2G_sb9kpB0nS4GiwHYyJFCGJVHiR1n8CPDF0m9G7WiOyiK551vFk8g43LjSaqOM8A3FO_f6QWfgfTvzq9uEFAtT8kMsD9xoZRT7NS1wOpBurFhD6fI9OniCOMoj9RxeUFpvSmJw8HPFIBWIkm7P8TweoqtR8TY6orHeft0urcDm35C1sDnt16Crry2vmgz35jO9l949IHL8r-68gVcLRMr2SxV6C8_M5B3UmlUiuE0YoiqxQ3TXZ-esZyhSOL8es6llCWtOJ8QXizsm631vM0oCytr5aMzweXJxldze__pNdjJj3QSxPZWoakQF1s0v53nGfpyjAGtR9pKb2y0YtFunzQ5f5GjgqYtjywNHmtRYpdMwCt0EnRPPl8Y1KnFSZdIsyCyCGtdGWZLZwMkoYjOI_AKIovMUyvewMZlOzAdgOtIknGkhpacCHUmEolqGWoepSqypA69mKE4XBOaUR2MUl9TLIqYhjJdDWIevS_mLkrrjUcmdasLjxRK-joVCNIjwV4g6iGLmnnhLvN8_bC1L2__SaBdqndNeN-4e9Y8_wkuqJzspvB3YmF3NzScEQDP9uVDxPw0j_eU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED_BkICX8V90G-CHSTx5S-wkTh6n0uwPbTcBk_YW2bGtVevasrUS42kfYZ9xn4S7pGk3JIQET5Gtc5TYd77fJb7fAWx6-s1oAsNRWSSPYq-4zlzAXSi9ccqJ2FG-c6-f7B1HByfxyZ0s_pofYvHBjSyj2q_JwCfWby9JQ-nsPcZ3gijKM_UQHkUJWgzBoi9LAqlE1Gx7QRTxFCONhrYxENv3x993S0useRexVi4nfwa6edj6pMnZ1mxqtsqfv_E4_s_bPIfVOR5lO7UCvYAHbvQSnrSbMnCv4AwVie1isD49ZT1HecKDy3M29kyz9nhEbLG4X7LeYc6oBCjLB8Nzhtevkwt9dXt9Q17Ssq5GZE8t6hpSg3UH32cDy45OUYB1qHbJj6vXcJx3vrX3-LxCAy9DnFqeBNKVzitTplkaagxNoli60CkdlMqVNrEeIU3oM6utTwJL-ZpJFlcwFEOnVL6BldF45N4CM5khYWuElJFKTCYRiBqZGpOWSnvXAt4sUFHO6cupisawqImXRUFTWCymsAUfF_KTmrjjj5IbzXoXcwO-LIRCLIjgV4gWiGrh_nKXYqe_21m01v5l0Ad4fPQpL7r7_c_r8JS6yUmKaANWphcz9w7Rz9S8rxT8Fy69_J0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Growth+Mechanism+of+a+Conductive+MOF+Thin+Film+in+Spray%E2%80%90based+Layer%E2%80%90by%E2%80%90layer+Liquid+Phase+Epitaxy&rft.jtitle=Angewandte+Chemie&rft.au=Zheng%2C+Rui&rft.au=Fu%2C+Zhi%E2%80%90Hua&rft.au=Deng%2C+Wei%E2%80%90Hua&rft.au=Wen%2C+Yingyi&rft.date=2022-10-24&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=134&rft.issue=43&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fange.202212797&rft.externalDBID=10.1002%252Fange.202212797&rft.externalDocID=ANGE202212797
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon