Potential applications of machine learning for BIM in tunnelling
Machine Learning (ML) and Building Information Modelling (BIM) are two topics that are part of a revolutionizing transformation in the construction industry – commonly referred to as digitalization. Being part of the research for artificial intelligence (AI), most of today's ML applications dea...
Saved in:
Published in | Geomechanik und Tunnelbau Vol. 15; no. 2; pp. 216 - 221 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin
Ernst & Sohn GmbH
01.04.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Machine Learning (ML) and Building Information Modelling (BIM) are two topics that are part of a revolutionizing transformation in the construction industry – commonly referred to as digitalization. Being part of the research for artificial intelligence (AI), most of today's ML applications deal with computational processes that try to make sense of data. Automatic rockmass behaviour classification based on tunnel boring machine (TBM) data or tunnel construction site surveillance via closed‐circuit television (CCTV) analysis is an example for applications of ML in tunnelling. BIM describes a new type of planning, including model‐based collaboration and information exchange, which requires well‐organized storage and handling of data – a precondition and valuable source for any automated analysis method like ML. While other sectors of the construction industry have implemented BIM systems successfully, the development in underground engineering is currently at its beginning with multiple actors working towards common standards for semantics, data exchange formats, etc. This article seeks to combine the two fields by giving an overview of the two topics and then points out four potential fields of applications: semantic enrichment and labelling, automation of technical processes, knowledge derivation and online data analysis. |
---|---|
AbstractList | Machine Learning (ML) and Building Information Modelling (BIM) are two topics that are part of a revolutionizing transformation in the construction industry – commonly referred to as digitalization. Being part of the research for artificial intelligence (AI), most of today's ML applications deal with computational processes that try to make sense of data. Automatic rockmass behaviour classification based on tunnel boring machine (TBM) data or tunnel construction site surveillance via closed‐circuit television (CCTV) analysis is an example for applications of ML in tunnelling. BIM describes a new type of planning, including model‐based collaboration and information exchange, which requires well‐organized storage and handling of data – a precondition and valuable source for any automated analysis method like ML. While other sectors of the construction industry have implemented BIM systems successfully, the development in underground engineering is currently at its beginning with multiple actors working towards common standards for semantics, data exchange formats, etc. This article seeks to combine the two fields by giving an overview of the two topics and then points out four potential fields of applications: semantic enrichment and labelling, automation of technical processes, knowledge derivation and online data analysis. Abstract Machine Learning (ML) and Building Information Modelling (BIM) are two topics that are part of a revolutionizing transformation in the construction industry – commonly referred to as digitalization. Being part of the research for artificial intelligence (AI), most of today's ML applications deal with computational processes that try to make sense of data. Automatic rockmass behaviour classification based on tunnel boring machine (TBM) data or tunnel construction site surveillance via closed‐circuit television (CCTV) analysis is an example for applications of ML in tunnelling. BIM describes a new type of planning, including model‐based collaboration and information exchange, which requires well‐organized storage and handling of data – a precondition and valuable source for any automated analysis method like ML. While other sectors of the construction industry have implemented BIM systems successfully, the development in underground engineering is currently at its beginning with multiple actors working towards common standards for semantics, data exchange formats, etc. This article seeks to combine the two fields by giving an overview of the two topics and then points out four potential fields of applications: semantic enrichment and labelling, automation of technical processes, knowledge derivation and online data analysis. |
Author | Weil, Jonas Tschuchnigg, Franz Erharter, Georg H. Marcher, Thomas |
Author_xml | – sequence: 1 givenname: Georg H. surname: Erharter fullname: Erharter, Georg H. email: erharter@tugraz.at organization: NAWI Graz Geocenter, Graz University of Technology – sequence: 2 givenname: Jonas surname: Weil fullname: Weil, Jonas email: j.weil@ic-group.org organization: iC consulenten Ziviltechniker GesmbH – sequence: 3 givenname: Franz surname: Tschuchnigg fullname: Tschuchnigg, Franz email: franz.tschuchnigg@tugraz.at organization: NAWI Graz Geocenter, Graz University of Technology – sequence: 4 givenname: Thomas surname: Marcher fullname: Marcher, Thomas email: thomas.marcher@tugraz.at organization: NAWI Graz Geocenter, Graz University of Technology |
BookMark | eNqFkEtPAjEURhuDiahsXTdxPdjH9LVTCSIJBhe4bspMiyWlHTtDDP_eIRhcurqPnO_e5FyDQUzRAnCH0RgjRB42NnVjgkg_IMEvwBBLzgpBpRqce06uwKhttz2CKC6F4EPw-J46GztvAjRNE3xlOp9iC5ODO1N9-mhhsCZHHzfQpQyf52_QR9jtY7Qh9NtbcOlMaO3ot96Aj5fpavJaLJaz-eRpUVSYE14YSoWqa1txjBlxpTSiMpLKCmFU1ojVWEgkmKOqdpQbYkvJzJrU1vC1YFTSG3B_utvk9LW3bae3aZ9j_1ITXkqlKFO0p8YnqsqpbbN1usl-Z_JBY6SPovRRlD6L6gPqFPj2wR7-ofVsulz9ZX8Al2ptJg |
CitedBy_id | crossref_primary_10_3390_buildings13102518 crossref_primary_10_3390_en16093795 crossref_primary_10_1016_j_tust_2023_105039 |
Cites_doi | 10.1016/j.autcon.2019.103012 10.1016/j.tust.2020.103677 10.1016/j.proeng.2017.07.218 10.1002/geot.201900027 10.1016/j.autcon.2018.12.022 10.1016/j.gsf.2019.12.003 10.1016/j.acags.2021.100066 10.1016/j.tust.2020.103466 10.1016/j.autcon.2018.03.018 10.1016/j.autcon.2013.10.023 10.3390/geosciences11070265 10.1111/mice.12263 10.1016/j.tust.2020.103558 10.1061/(ASCE)CP.1943-5487.0000822 10.1007/978-3-319-92862-3 10.1007/978-3-030-32029-4_16 10.1680/jsmic.2020.173.1.180 |
ContentType | Journal Article |
Copyright | 2022 Ernst & Sohn GmbH |
Copyright_xml | – notice: 2022 Ernst & Sohn GmbH |
DBID | AAYXX CITATION 7UA 8FD C1K F1W FR3 H96 KR7 L.G |
DOI | 10.1002/geot.202100076 |
DatabaseName | CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1865-7389 |
EndPage | 221 |
ExternalDocumentID | 10_1002_geot_202100076 GEOT202100076 |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABDBF ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADEOM ADIZJ ADMGS ADOZA ADXAS ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DRFUL DRSTM EBS EJD ESX F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZ~ I-F J0M LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MM- MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 R.K ROL RWI RX1 SUPJJ UB1 W8V W99 WBKPD WIH WIK WLBEL WOHZO WXSBR WYISQ XG1 XV2 ZZTAW ~02 ~IA ~WT AAYXX CITATION 7UA 8FD C1K F1W FR3 H96 KR7 L.G |
ID | FETCH-LOGICAL-c1626-a3379ddec61152f48a7ca838c0104d05d178075f39df36a2e485ab2dea6b75383 |
ISSN | 1865-7362 |
IngestDate | Thu Oct 10 22:01:19 EDT 2024 Fri Aug 23 01:35:13 EDT 2024 Sat Aug 24 00:55:45 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1626-a3379ddec61152f48a7ca838c0104d05d178075f39df36a2e485ab2dea6b75383 |
PQID | 2648993593 |
PQPubID | 866391 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2648993593 crossref_primary_10_1002_geot_202100076 wiley_primary_10_1002_geot_202100076_GEOT202100076 |
PublicationCentury | 2000 |
PublicationDate | April 2022 2022-04-00 20220401 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Geomechanik und Tunnelbau |
PublicationYear | 2022 |
Publisher | Ernst & Sohn GmbH Wiley Subscription Services, Inc |
Publisher_xml | – name: Ernst & Sohn GmbH – name: Wiley Subscription Services, Inc |
References | 2021; 11 2011 2021 2019; 33 2020 2020; 110 2017; 32 2019; 12 2014; 38 2019 2018; 91 2020; 105 2017 2016 2017; 196 2014 2020; 103 2019; 100 Erharter G. H. (e_1_2_1_15_1) 2021 e_1_2_1_20_1 e_1_2_1_23_1 e_1_2_1_24_1 e_1_2_1_22_1 e_1_2_1_27_1 e_1_2_1_28_1 e_1_2_1_25_1 Goodfellow I. (e_1_2_1_26_1) 2014 e_1_2_1_29_1 e_1_2_1_7_1 e_1_2_1_8_1 e_1_2_1_5_1 e_1_2_1_6_1 e_1_2_1_3_1 e_1_2_1_12_1 e_1_2_1_4_1 e_1_2_1_13_1 Sacks R. (e_1_2_1_21_1) 2019 e_1_2_1_10_1 e_1_2_1_2_1 e_1_2_1_11_1 e_1_2_1_16_1 e_1_2_1_17_1 e_1_2_1_14_1 e_1_2_1_9_1 e_1_2_1_18_1 e_1_2_1_19_1 |
References_xml | – year: 2011 – volume: 105 start-page: 103558 year: 2020 article-title: Integrating domain knowledge with deep learning models: An interpretable AI system for automatic work progress identification of NATM tunnels publication-title: Tunnelling and Underground Space Technology – volume: 11 start-page: 265 issue: 7 year: 2021 article-title: CPT Data Interpretation Employing Different Machine Learning Techniques publication-title: Geosciences – start-page: 353 year: 2019 end-page: 360 article-title: Automating design review with artificial intelligence and BIM: State of the Art and Research Framework publication-title: Computing in Civil Engineering – start-page: 127 year: 2021 article-title: Reinforcement learning based process optimization and strategy development in conventional tunneling publication-title: Automation in Construction – year: 2020 – volume: 33 start-page: 4019007 issue: 3 year: 2019 article-title: Computationally Efficient Simulation in Urban Mechanized Tunneling Based on Multilevel BIM Models publication-title: Journal of Computing in Civil Engineering – volume: 91 start-page: 256 year: 2018 end-page: 272 article-title: Comparing machine learning and rule‐based inferencing for semantic enrichment of BIM models publication-title: Automation in Construction – start-page: 2672 year: 2014 end-page: 2680 – volume: 12 start-page: 472 issue: 5 year: 2019 end-page: 477 article-title: Application of artificial neural networks for Underground construction – Chances and challenges – Insights from the BBT exploratory tunnel Ahrental Pfons publication-title: Geomechanik und Tunnelbau – year: 2021 article-title: BIM, machine learning and computer vision techniques in underground construction: Current status and future perspectives publication-title: Tunnelling and Underground Space Technology – volume: 11 start-page: 1095 issue: 4 year: 2021 end-page: 1106 article-title: State‐of‐the‐art review of soft computing applications in underground excavations publication-title: Geoscience Frontiers – volume: 110 start-page: 103012 year: 2020 article-title: On‐demand monitoring of construction projects through a game‐like hybrid application of BIM and machine learning publication-title: Automation in Construction – start-page: 1 year: 2020 end-page: 18 – volume: 100 start-page: 73 year: 2019 end-page: 83 article-title: Prediction of geological conditions for a tunnel boring machine using big operational data publication-title: Automation in Construction – year: 2017 – volume: 103 start-page: 103466 year: 2020 article-title: MSAC: Towards data driven system behavior classification for TBM tunneling publication-title: Tunnelling and Underground Space Technology – year: 2016 – volume: 38 start-page: 109 year: 2014 end-page: 127 article-title: Building Information Modeling (BIM) for existing buildings – Literature review and future needs publication-title: Automation in Construction – year: 2019 – start-page: 178 year: 2020 end-page: 188 – volume: 196 start-page: 415 year: 2017 end-page: 422 article-title: The challenges of nonparametric cost estimation of construction works with the use of artificial intelligence tools publication-title: Procedia Engineering – volume: 11 start-page: 100066 year: 2021 article-title: Stochastic 3D modelling of discrete sediment bodies for geotechnical applications publication-title: Applied Computing and Geosciences – volume: 32 start-page: 361 issue: 5 year: 2017 end-page: 378 article-title: Deep Learning‐Based Crack Damage Detection Using Convolutional Neural Networks publication-title: Computer‐Aided Civil and Infrastructure Engineering – start-page: 353 year: 2019 ident: e_1_2_1_21_1 article-title: Automating design review with artificial intelligence and BIM: State of the Art and Research Framework publication-title: Computing in Civil Engineering contributor: fullname: Sacks R. – ident: e_1_2_1_22_1 doi: 10.1016/j.autcon.2019.103012 – ident: e_1_2_1_2_1 doi: 10.1016/j.tust.2020.103677 – ident: e_1_2_1_19_1 doi: 10.1016/j.proeng.2017.07.218 – ident: e_1_2_1_27_1 – ident: e_1_2_1_16_1 – ident: e_1_2_1_7_1 doi: 10.1002/geot.201900027 – start-page: 2672 volume-title: Advances in Neural Information Processing Systems year: 2014 ident: e_1_2_1_26_1 contributor: fullname: Goodfellow I. – ident: e_1_2_1_13_1 doi: 10.1016/j.autcon.2018.12.022 – ident: e_1_2_1_11_1 doi: 10.1016/j.gsf.2019.12.003 – start-page: 127 year: 2021 ident: e_1_2_1_15_1 article-title: Reinforcement learning based process optimization and strategy development in conventional tunneling publication-title: Automation in Construction contributor: fullname: Erharter G. H. – ident: e_1_2_1_18_1 – ident: e_1_2_1_25_1 doi: 10.1016/j.acags.2021.100066 – ident: e_1_2_1_4_1 – ident: e_1_2_1_14_1 doi: 10.1016/j.tust.2020.103466 – ident: e_1_2_1_20_1 doi: 10.1016/j.autcon.2018.03.018 – ident: e_1_2_1_24_1 doi: 10.1016/j.autcon.2013.10.023 – ident: e_1_2_1_6_1 doi: 10.3390/geosciences11070265 – ident: e_1_2_1_3_1 doi: 10.1111/mice.12263 – ident: e_1_2_1_17_1 – ident: e_1_2_1_29_1 doi: 10.1016/j.tust.2020.103558 – ident: e_1_2_1_8_1 – ident: e_1_2_1_5_1 – ident: e_1_2_1_10_1 doi: 10.1061/(ASCE)CP.1943-5487.0000822 – ident: e_1_2_1_23_1 doi: 10.1007/978-3-319-92862-3 – ident: e_1_2_1_9_1 doi: 10.1007/978-3-030-32029-4_16 – ident: e_1_2_1_12_1 doi: 10.1680/jsmic.2020.173.1.180 – ident: e_1_2_1_28_1 |
SSID | ssj0000314776 ssib004858016 |
Score | 2.2500613 |
Snippet | Machine Learning (ML) and Building Information Modelling (BIM) are two topics that are part of a revolutionizing transformation in the construction industry –... Abstract Machine Learning (ML) and Building Information Modelling (BIM) are two topics that are part of a revolutionizing transformation in the construction... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 216 |
SubjectTerms | Artificial intelligence Automation BIM Bodenmechanik Boring machines Building management systems Closed circuit television Computer applications Construction Construction industry Construction sites Conventional tunneling Data analysis Data exchange Digitization Drilling & boring machinery Engineering geology Felsmechanik Fields Ingenieurgeologie Konventioneller Vortrieb Labeling Learning algorithms Learning behaviour Machine Learning Maschineller Vortrieb Mechanized tunneling Potential fields Rock mechanics Semantics Soil mechanics Storage Television Tunnel construction Tunneling tunnelling Tunnels Underground construction |
Title | Potential applications of machine learning for BIM in tunnelling |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgeot.202100076 https://www.proquest.com/docview/2648993593 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegu8AB8SkKA_mAxGHKSOzEdm6s-ypIAw6ZtFtkO3aZ0JqptJf99Tw7iZ3CJAaXqLWStPH75X35954ResfAaiurZVJamSY5t2ki8lI7R44awEiZ5652-OwLm5_nny-Ki5jT9dUla7Wvb26tK_kfqcIYyNVVyf6DZMNNYQA-g3zhCBKG451k_K1dO7KPK_cfrUP7JXPPkTTDphAdWXL26czTGjee2zLYrN4zPTXtlXFlwJc_3N64e5U_S8lN8LlX3z3_M2TS9-b7cV2nTyWDXx-c9AoC543rELtYDC7yTUyArwJaIkWpzz5A4BpJK53CFKxIOO01qhmPdVsDBS1bjNBEtlQmG1lf0tVL_6HYu0axC9M6_ivJ_ApiNGHDsv1vli3wDbvezKR219fh-vtoh4B6EhO0czA7mp1EPSYKMNws5Opci3_u9ykMjzv0_0zJh-0_te3fxKBlHPp436V6jB71QQc-6BD0BN1rzFP0cNSK8hn6GLCEx1jCrcU9lvCAJQxYwoAlfLnEEUvP0fnJcXU4T_rdNRKdQRSbSEp5CcZNMwgKiM2F5FoKKrSL0Ju0aDLuGlVbWjaWMkkMzIpUpDGSKYhxBX2BJst2aV4izAulecqtMvBuF2UmGquyTDPLS7AgikzR-2FO6uuuiUp9u0imaHeYsrp_0X7WjoRZugpyOkXET-Nf7lKfHn-twrdXd_711-hBxPgumqxXG_MGfM61ettD5BfFWXsv |
link.rule.ids | 315,783,787,27938,27939 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+applications+of+machine+learning+for+BIM+in+tunnelling&rft.jtitle=Geomechanik+und+Tunnelbau&rft.au=Erharter%2C+Georg+H.&rft.au=Weil%2C+Jonas&rft.au=Tschuchnigg%2C+Franz&rft.au=Marcher%2C+Thomas&rft.date=2022-04-01&rft.issn=1865-7362&rft.eissn=1865-7389&rft.volume=15&rft.issue=2&rft.spage=216&rft.epage=221&rft_id=info:doi/10.1002%2Fgeot.202100076&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_geot_202100076 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-7362&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-7362&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-7362&client=summon |