Potential applications of machine learning for BIM in tunnelling

Machine Learning (ML) and Building Information Modelling (BIM) are two topics that are part of a revolutionizing transformation in the construction industry – commonly referred to as digitalization. Being part of the research for artificial intelligence (AI), most of today's ML applications dea...

Full description

Saved in:
Bibliographic Details
Published inGeomechanik und Tunnelbau Vol. 15; no. 2; pp. 216 - 221
Main Authors Erharter, Georg H., Weil, Jonas, Tschuchnigg, Franz, Marcher, Thomas
Format Journal Article
LanguageEnglish
Published Berlin Ernst & Sohn GmbH 01.04.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Machine Learning (ML) and Building Information Modelling (BIM) are two topics that are part of a revolutionizing transformation in the construction industry – commonly referred to as digitalization. Being part of the research for artificial intelligence (AI), most of today's ML applications deal with computational processes that try to make sense of data. Automatic rockmass behaviour classification based on tunnel boring machine (TBM) data or tunnel construction site surveillance via closed‐circuit television (CCTV) analysis is an example for applications of ML in tunnelling. BIM describes a new type of planning, including model‐based collaboration and information exchange, which requires well‐organized storage and handling of data – a precondition and valuable source for any automated analysis method like ML. While other sectors of the construction industry have implemented BIM systems successfully, the development in underground engineering is currently at its beginning with multiple actors working towards common standards for semantics, data exchange formats, etc. This article seeks to combine the two fields by giving an overview of the two topics and then points out four potential fields of applications: semantic enrichment and labelling, automation of technical processes, knowledge derivation and online data analysis.
AbstractList Machine Learning (ML) and Building Information Modelling (BIM) are two topics that are part of a revolutionizing transformation in the construction industry – commonly referred to as digitalization. Being part of the research for artificial intelligence (AI), most of today's ML applications deal with computational processes that try to make sense of data. Automatic rockmass behaviour classification based on tunnel boring machine (TBM) data or tunnel construction site surveillance via closed‐circuit television (CCTV) analysis is an example for applications of ML in tunnelling. BIM describes a new type of planning, including model‐based collaboration and information exchange, which requires well‐organized storage and handling of data – a precondition and valuable source for any automated analysis method like ML. While other sectors of the construction industry have implemented BIM systems successfully, the development in underground engineering is currently at its beginning with multiple actors working towards common standards for semantics, data exchange formats, etc. This article seeks to combine the two fields by giving an overview of the two topics and then points out four potential fields of applications: semantic enrichment and labelling, automation of technical processes, knowledge derivation and online data analysis.
Abstract Machine Learning (ML) and Building Information Modelling (BIM) are two topics that are part of a revolutionizing transformation in the construction industry – commonly referred to as digitalization. Being part of the research for artificial intelligence (AI), most of today's ML applications deal with computational processes that try to make sense of data. Automatic rockmass behaviour classification based on tunnel boring machine (TBM) data or tunnel construction site surveillance via closed‐circuit television (CCTV) analysis is an example for applications of ML in tunnelling. BIM describes a new type of planning, including model‐based collaboration and information exchange, which requires well‐organized storage and handling of data – a precondition and valuable source for any automated analysis method like ML. While other sectors of the construction industry have implemented BIM systems successfully, the development in underground engineering is currently at its beginning with multiple actors working towards common standards for semantics, data exchange formats, etc. This article seeks to combine the two fields by giving an overview of the two topics and then points out four potential fields of applications: semantic enrichment and labelling, automation of technical processes, knowledge derivation and online data analysis.
Author Weil, Jonas
Tschuchnigg, Franz
Erharter, Georg H.
Marcher, Thomas
Author_xml – sequence: 1
  givenname: Georg H.
  surname: Erharter
  fullname: Erharter, Georg H.
  email: erharter@tugraz.at
  organization: NAWI Graz Geocenter, Graz University of Technology
– sequence: 2
  givenname: Jonas
  surname: Weil
  fullname: Weil, Jonas
  email: j.weil@ic-group.org
  organization: iC consulenten Ziviltechniker GesmbH
– sequence: 3
  givenname: Franz
  surname: Tschuchnigg
  fullname: Tschuchnigg, Franz
  email: franz.tschuchnigg@tugraz.at
  organization: NAWI Graz Geocenter, Graz University of Technology
– sequence: 4
  givenname: Thomas
  surname: Marcher
  fullname: Marcher, Thomas
  email: thomas.marcher@tugraz.at
  organization: NAWI Graz Geocenter, Graz University of Technology
BookMark eNqFkEtPAjEURhuDiahsXTdxPdjH9LVTCSIJBhe4bspMiyWlHTtDDP_eIRhcurqPnO_e5FyDQUzRAnCH0RgjRB42NnVjgkg_IMEvwBBLzgpBpRqce06uwKhttz2CKC6F4EPw-J46GztvAjRNE3xlOp9iC5ODO1N9-mhhsCZHHzfQpQyf52_QR9jtY7Qh9NtbcOlMaO3ot96Aj5fpavJaLJaz-eRpUVSYE14YSoWqa1txjBlxpTSiMpLKCmFU1ojVWEgkmKOqdpQbYkvJzJrU1vC1YFTSG3B_utvk9LW3bae3aZ9j_1ITXkqlKFO0p8YnqsqpbbN1usl-Z_JBY6SPovRRlD6L6gPqFPj2wR7-ofVsulz9ZX8Al2ptJg
CitedBy_id crossref_primary_10_3390_buildings13102518
crossref_primary_10_3390_en16093795
crossref_primary_10_1016_j_tust_2023_105039
Cites_doi 10.1016/j.autcon.2019.103012
10.1016/j.tust.2020.103677
10.1016/j.proeng.2017.07.218
10.1002/geot.201900027
10.1016/j.autcon.2018.12.022
10.1016/j.gsf.2019.12.003
10.1016/j.acags.2021.100066
10.1016/j.tust.2020.103466
10.1016/j.autcon.2018.03.018
10.1016/j.autcon.2013.10.023
10.3390/geosciences11070265
10.1111/mice.12263
10.1016/j.tust.2020.103558
10.1061/(ASCE)CP.1943-5487.0000822
10.1007/978-3-319-92862-3
10.1007/978-3-030-32029-4_16
10.1680/jsmic.2020.173.1.180
ContentType Journal Article
Copyright 2022 Ernst & Sohn GmbH
Copyright_xml – notice: 2022 Ernst & Sohn GmbH
DBID AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H96
KR7
L.G
DOI 10.1002/geot.202100076
DatabaseName CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1865-7389
EndPage 221
ExternalDocumentID 10_1002_geot_202100076
GEOT202100076
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABDBF
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADEOM
ADIZJ
ADMGS
ADOZA
ADXAS
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DRFUL
DRSTM
EBS
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
I-F
J0M
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MM-
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RWI
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WXSBR
WYISQ
XG1
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H96
KR7
L.G
ID FETCH-LOGICAL-c1626-a3379ddec61152f48a7ca838c0104d05d178075f39df36a2e485ab2dea6b75383
ISSN 1865-7362
IngestDate Thu Oct 10 22:01:19 EDT 2024
Fri Aug 23 01:35:13 EDT 2024
Sat Aug 24 00:55:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1626-a3379ddec61152f48a7ca838c0104d05d178075f39df36a2e485ab2dea6b75383
PQID 2648993593
PQPubID 866391
PageCount 6
ParticipantIDs proquest_journals_2648993593
crossref_primary_10_1002_geot_202100076
wiley_primary_10_1002_geot_202100076_GEOT202100076
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Geomechanik und Tunnelbau
PublicationYear 2022
Publisher Ernst & Sohn GmbH
Wiley Subscription Services, Inc
Publisher_xml – name: Ernst & Sohn GmbH
– name: Wiley Subscription Services, Inc
References 2021; 11
2011
2021
2019; 33
2020
2020; 110
2017; 32
2019; 12
2014; 38
2019
2018; 91
2020; 105
2017
2016
2017; 196
2014
2020; 103
2019; 100
Erharter G. H. (e_1_2_1_15_1) 2021
e_1_2_1_20_1
e_1_2_1_23_1
e_1_2_1_24_1
e_1_2_1_22_1
e_1_2_1_27_1
e_1_2_1_28_1
e_1_2_1_25_1
Goodfellow I. (e_1_2_1_26_1) 2014
e_1_2_1_29_1
e_1_2_1_7_1
e_1_2_1_8_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_4_1
e_1_2_1_13_1
Sacks R. (e_1_2_1_21_1) 2019
e_1_2_1_10_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_16_1
e_1_2_1_17_1
e_1_2_1_14_1
e_1_2_1_9_1
e_1_2_1_18_1
e_1_2_1_19_1
References_xml – year: 2011
– volume: 105
  start-page: 103558
  year: 2020
  article-title: Integrating domain knowledge with deep learning models: An interpretable AI system for automatic work progress identification of NATM tunnels
  publication-title: Tunnelling and Underground Space Technology
– volume: 11
  start-page: 265
  issue: 7
  year: 2021
  article-title: CPT Data Interpretation Employing Different Machine Learning Techniques
  publication-title: Geosciences
– start-page: 353
  year: 2019
  end-page: 360
  article-title: Automating design review with artificial intelligence and BIM: State of the Art and Research Framework
  publication-title: Computing in Civil Engineering
– start-page: 127
  year: 2021
  article-title: Reinforcement learning based process optimization and strategy development in conventional tunneling
  publication-title: Automation in Construction
– year: 2020
– volume: 33
  start-page: 4019007
  issue: 3
  year: 2019
  article-title: Computationally Efficient Simulation in Urban Mechanized Tunneling Based on Multilevel BIM Models
  publication-title: Journal of Computing in Civil Engineering
– volume: 91
  start-page: 256
  year: 2018
  end-page: 272
  article-title: Comparing machine learning and rule‐based inferencing for semantic enrichment of BIM models
  publication-title: Automation in Construction
– start-page: 2672
  year: 2014
  end-page: 2680
– volume: 12
  start-page: 472
  issue: 5
  year: 2019
  end-page: 477
  article-title: Application of artificial neural networks for Underground construction – Chances and challenges – Insights from the BBT exploratory tunnel Ahrental Pfons
  publication-title: Geomechanik und Tunnelbau
– year: 2021
  article-title: BIM, machine learning and computer vision techniques in underground construction: Current status and future perspectives
  publication-title: Tunnelling and Underground Space Technology
– volume: 11
  start-page: 1095
  issue: 4
  year: 2021
  end-page: 1106
  article-title: State‐of‐the‐art review of soft computing applications in underground excavations
  publication-title: Geoscience Frontiers
– volume: 110
  start-page: 103012
  year: 2020
  article-title: On‐demand monitoring of construction projects through a game‐like hybrid application of BIM and machine learning
  publication-title: Automation in Construction
– start-page: 1
  year: 2020
  end-page: 18
– volume: 100
  start-page: 73
  year: 2019
  end-page: 83
  article-title: Prediction of geological conditions for a tunnel boring machine using big operational data
  publication-title: Automation in Construction
– year: 2017
– volume: 103
  start-page: 103466
  year: 2020
  article-title: MSAC: Towards data driven system behavior classification for TBM tunneling
  publication-title: Tunnelling and Underground Space Technology
– year: 2016
– volume: 38
  start-page: 109
  year: 2014
  end-page: 127
  article-title: Building Information Modeling (BIM) for existing buildings – Literature review and future needs
  publication-title: Automation in Construction
– year: 2019
– start-page: 178
  year: 2020
  end-page: 188
– volume: 196
  start-page: 415
  year: 2017
  end-page: 422
  article-title: The challenges of nonparametric cost estimation of construction works with the use of artificial intelligence tools
  publication-title: Procedia Engineering
– volume: 11
  start-page: 100066
  year: 2021
  article-title: Stochastic 3D modelling of discrete sediment bodies for geotechnical applications
  publication-title: Applied Computing and Geosciences
– volume: 32
  start-page: 361
  issue: 5
  year: 2017
  end-page: 378
  article-title: Deep Learning‐Based Crack Damage Detection Using Convolutional Neural Networks
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– start-page: 353
  year: 2019
  ident: e_1_2_1_21_1
  article-title: Automating design review with artificial intelligence and BIM: State of the Art and Research Framework
  publication-title: Computing in Civil Engineering
  contributor:
    fullname: Sacks R.
– ident: e_1_2_1_22_1
  doi: 10.1016/j.autcon.2019.103012
– ident: e_1_2_1_2_1
  doi: 10.1016/j.tust.2020.103677
– ident: e_1_2_1_19_1
  doi: 10.1016/j.proeng.2017.07.218
– ident: e_1_2_1_27_1
– ident: e_1_2_1_16_1
– ident: e_1_2_1_7_1
  doi: 10.1002/geot.201900027
– start-page: 2672
  volume-title: Advances in Neural Information Processing Systems
  year: 2014
  ident: e_1_2_1_26_1
  contributor:
    fullname: Goodfellow I.
– ident: e_1_2_1_13_1
  doi: 10.1016/j.autcon.2018.12.022
– ident: e_1_2_1_11_1
  doi: 10.1016/j.gsf.2019.12.003
– start-page: 127
  year: 2021
  ident: e_1_2_1_15_1
  article-title: Reinforcement learning based process optimization and strategy development in conventional tunneling
  publication-title: Automation in Construction
  contributor:
    fullname: Erharter G. H.
– ident: e_1_2_1_18_1
– ident: e_1_2_1_25_1
  doi: 10.1016/j.acags.2021.100066
– ident: e_1_2_1_4_1
– ident: e_1_2_1_14_1
  doi: 10.1016/j.tust.2020.103466
– ident: e_1_2_1_20_1
  doi: 10.1016/j.autcon.2018.03.018
– ident: e_1_2_1_24_1
  doi: 10.1016/j.autcon.2013.10.023
– ident: e_1_2_1_6_1
  doi: 10.3390/geosciences11070265
– ident: e_1_2_1_3_1
  doi: 10.1111/mice.12263
– ident: e_1_2_1_17_1
– ident: e_1_2_1_29_1
  doi: 10.1016/j.tust.2020.103558
– ident: e_1_2_1_8_1
– ident: e_1_2_1_5_1
– ident: e_1_2_1_10_1
  doi: 10.1061/(ASCE)CP.1943-5487.0000822
– ident: e_1_2_1_23_1
  doi: 10.1007/978-3-319-92862-3
– ident: e_1_2_1_9_1
  doi: 10.1007/978-3-030-32029-4_16
– ident: e_1_2_1_12_1
  doi: 10.1680/jsmic.2020.173.1.180
– ident: e_1_2_1_28_1
SSID ssj0000314776
ssib004858016
Score 2.2500613
Snippet Machine Learning (ML) and Building Information Modelling (BIM) are two topics that are part of a revolutionizing transformation in the construction industry –...
Abstract Machine Learning (ML) and Building Information Modelling (BIM) are two topics that are part of a revolutionizing transformation in the construction...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 216
SubjectTerms Artificial intelligence
Automation
BIM
Bodenmechanik
Boring machines
Building management systems
Closed circuit television
Computer applications
Construction
Construction industry
Construction sites
Conventional tunneling
Data analysis
Data exchange
Digitization
Drilling & boring machinery
Engineering geology
Felsmechanik
Fields
Ingenieurgeologie
Konventioneller Vortrieb
Labeling
Learning algorithms
Learning behaviour
Machine Learning
Maschineller Vortrieb
Mechanized tunneling
Potential fields
Rock mechanics
Semantics
Soil mechanics
Storage
Television
Tunnel construction
Tunneling
tunnelling
Tunnels
Underground construction
Title Potential applications of machine learning for BIM in tunnelling
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgeot.202100076
https://www.proquest.com/docview/2648993593
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegu8AB8SkKA_mAxGHKSOzEdm6s-ypIAw6ZtFtkO3aZ0JqptJf99Tw7iZ3CJAaXqLWStPH75X35954ResfAaiurZVJamSY5t2ki8lI7R44awEiZ5652-OwLm5_nny-Ki5jT9dUla7Wvb26tK_kfqcIYyNVVyf6DZMNNYQA-g3zhCBKG451k_K1dO7KPK_cfrUP7JXPPkTTDphAdWXL26czTGjee2zLYrN4zPTXtlXFlwJc_3N64e5U_S8lN8LlX3z3_M2TS9-b7cV2nTyWDXx-c9AoC543rELtYDC7yTUyArwJaIkWpzz5A4BpJK53CFKxIOO01qhmPdVsDBS1bjNBEtlQmG1lf0tVL_6HYu0axC9M6_ivJ_ApiNGHDsv1vli3wDbvezKR219fh-vtoh4B6EhO0czA7mp1EPSYKMNws5Opci3_u9ykMjzv0_0zJh-0_te3fxKBlHPp436V6jB71QQc-6BD0BN1rzFP0cNSK8hn6GLCEx1jCrcU9lvCAJQxYwoAlfLnEEUvP0fnJcXU4T_rdNRKdQRSbSEp5CcZNMwgKiM2F5FoKKrSL0Ju0aDLuGlVbWjaWMkkMzIpUpDGSKYhxBX2BJst2aV4izAulecqtMvBuF2UmGquyTDPLS7AgikzR-2FO6uuuiUp9u0imaHeYsrp_0X7WjoRZugpyOkXET-Nf7lKfHn-twrdXd_711-hBxPgumqxXG_MGfM61ettD5BfFWXsv
link.rule.ids 315,783,787,27938,27939
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+applications+of+machine+learning+for+BIM+in+tunnelling&rft.jtitle=Geomechanik+und+Tunnelbau&rft.au=Erharter%2C+Georg+H.&rft.au=Weil%2C+Jonas&rft.au=Tschuchnigg%2C+Franz&rft.au=Marcher%2C+Thomas&rft.date=2022-04-01&rft.issn=1865-7362&rft.eissn=1865-7389&rft.volume=15&rft.issue=2&rft.spage=216&rft.epage=221&rft_id=info:doi/10.1002%2Fgeot.202100076&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_geot_202100076
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-7362&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-7362&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-7362&client=summon