78. NETWORK BIOLOGY ALGORITHMS IDENTIFY BIOLOGICAL PATHWAYS UNDERLYING CIGARETTE SMOKING BEHAVIORS

Genetic risk variants in nicotinic acetylcholine receptor subunit genes (e.g., CHRNA5-A3-Br) are well-known for contributing to cigarette smoking behaviors. Recent genome-wide association studies (GWAS) from the GWAS and Sequencing Consortium of Alcohol and Nicotine Use (GSCAN) have identified hundr...

Full description

Saved in:
Bibliographic Details
Published inEuropean neuropsychopharmacology Vol. 75; pp. S98 - S99
Main Authors Sullivan, Kyle, Miller, J. Izaak, Kainer, David, Lane, Matthew, Cashman, Mikaela, Garvin, Michael R., Townsend, Alice, Kruse, Peter, Quach, Bryan C., Willis, Caryn, Xu, Ke, Aouzierat, Bradley E., Johnson, Eric O., Hancock, Dana B., Jacobson, Daniel
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2023
Online AccessGet full text

Cover

Loading…
Abstract Genetic risk variants in nicotinic acetylcholine receptor subunit genes (e.g., CHRNA5-A3-Br) are well-known for contributing to cigarette smoking behaviors. Recent genome-wide association studies (GWAS) from the GWAS and Sequencing Consortium of Alcohol and Nicotine Use (GSCAN) have identified hundreds of other genome-wide significant loci contributing to the heritability of cigarette smoking behaviors. However, the biological pathways reflected by the full repertoire of cigarette smoking-associated variants are poorly understood. To better understand the biological pathways underlying smoking behaviors, we applied the network biology algorithms GRIN and Functional Partitioning. We used publicly available GSCAN GWAS summary statistics collected from European ancestry subjects for two traits: Smoking Initiation (SmkInit; 805,431 individuals) and Cigarettes Per Day (CigsPerDay; 326,497 individuals). We assigned genome-wide significant (p < 5e-8) single nucleotide polymorphisms (SNPs) to genes using 5 different methods: SNP-nearest gene, conventional MAGMA, and H-MAGMA using Hi-C data collected from dorsolateral prefrontal cortex (dlPFC), cortical neurons, or midbrain dopaminergic neurons. Using a multiplex network of 10 gene-gene network layers from distinct types of biological experimental evidence including two dlPFC-specific layers, we used GRIN to remove false positive genes based on the premise that correctly assigned genes would be highly interconnected in the networks, as determined by the random walk with restart (RWR) network traversal algorithm. We then used Functional Partitioning to identify functional groupings of smoking-associated genes based on RWR-based network topology, followed by gene set enrichment of biological pathways. We assigned 526 unique genes targeted by SNPs associated with CigsPerDay. Of these, GRIN retained 235 genes based on high network interconnectivity. We assigned 3013 unique genes targeted by SmkInit-associated SNPs, and GRIN retained 1329 highly interconnected genes. Using Functional Partitioning, we identified chromatin regulation as a common pathway involved in both smoking traits based on shared genes (e.g., NFAT5) and genes unique to each trait (SmkInit: DNMT3B, NFKB2; CigsPerDay: CYP2A6, DBH). Using the Functional Partitioning groupings, we also identified pathway enrichments for “regulatory T-cell differentiation” from the CigsPerDay genes, and “regulation of DNA-templated transcription” from the SmkInit genes. We identified both shared and unique genes and biological pathways associated with significant SNPs from cigarette smoking behaviors. Understanding which genes underlie heritability of cigarette smoking behaviors can identify druggable gene targets that may inform follow-up drug repurposing efforts to treat nicotine addiction.
AbstractList Genetic risk variants in nicotinic acetylcholine receptor subunit genes (e.g., CHRNA5-A3-Br) are well-known for contributing to cigarette smoking behaviors. Recent genome-wide association studies (GWAS) from the GWAS and Sequencing Consortium of Alcohol and Nicotine Use (GSCAN) have identified hundreds of other genome-wide significant loci contributing to the heritability of cigarette smoking behaviors. However, the biological pathways reflected by the full repertoire of cigarette smoking-associated variants are poorly understood. To better understand the biological pathways underlying smoking behaviors, we applied the network biology algorithms GRIN and Functional Partitioning. We used publicly available GSCAN GWAS summary statistics collected from European ancestry subjects for two traits: Smoking Initiation (SmkInit; 805,431 individuals) and Cigarettes Per Day (CigsPerDay; 326,497 individuals). We assigned genome-wide significant (p < 5e-8) single nucleotide polymorphisms (SNPs) to genes using 5 different methods: SNP-nearest gene, conventional MAGMA, and H-MAGMA using Hi-C data collected from dorsolateral prefrontal cortex (dlPFC), cortical neurons, or midbrain dopaminergic neurons. Using a multiplex network of 10 gene-gene network layers from distinct types of biological experimental evidence including two dlPFC-specific layers, we used GRIN to remove false positive genes based on the premise that correctly assigned genes would be highly interconnected in the networks, as determined by the random walk with restart (RWR) network traversal algorithm. We then used Functional Partitioning to identify functional groupings of smoking-associated genes based on RWR-based network topology, followed by gene set enrichment of biological pathways. We assigned 526 unique genes targeted by SNPs associated with CigsPerDay. Of these, GRIN retained 235 genes based on high network interconnectivity. We assigned 3013 unique genes targeted by SmkInit-associated SNPs, and GRIN retained 1329 highly interconnected genes. Using Functional Partitioning, we identified chromatin regulation as a common pathway involved in both smoking traits based on shared genes (e.g., NFAT5) and genes unique to each trait (SmkInit: DNMT3B, NFKB2; CigsPerDay: CYP2A6, DBH). Using the Functional Partitioning groupings, we also identified pathway enrichments for “regulatory T-cell differentiation” from the CigsPerDay genes, and “regulation of DNA-templated transcription” from the SmkInit genes. We identified both shared and unique genes and biological pathways associated with significant SNPs from cigarette smoking behaviors. Understanding which genes underlie heritability of cigarette smoking behaviors can identify druggable gene targets that may inform follow-up drug repurposing efforts to treat nicotine addiction.
Author Cashman, Mikaela
Hancock, Dana B.
Miller, J. Izaak
Quach, Bryan C.
Xu, Ke
Willis, Caryn
Jacobson, Daniel
Sullivan, Kyle
Johnson, Eric O.
Aouzierat, Bradley E.
Kruse, Peter
Kainer, David
Garvin, Michael R.
Lane, Matthew
Townsend, Alice
Author_xml – sequence: 1
  givenname: Kyle
  surname: Sullivan
  fullname: Sullivan, Kyle
  organization: Oak Ridge National Laboratory
– sequence: 2
  givenname: J. Izaak
  surname: Miller
  fullname: Miller, J. Izaak
  organization: Oak Ridge National Laboratory
– sequence: 3
  givenname: David
  surname: Kainer
  fullname: Kainer, David
  organization: Oak Ridge National Laboratory
– sequence: 4
  givenname: Matthew
  surname: Lane
  fullname: Lane, Matthew
  organization: University of Tennessee-Knoxville
– sequence: 5
  givenname: Mikaela
  surname: Cashman
  fullname: Cashman, Mikaela
  organization: Oak Ridge National Laboratory
– sequence: 6
  givenname: Michael R.
  surname: Garvin
  fullname: Garvin, Michael R.
  organization: Oak Ridge National Laboratory
– sequence: 7
  givenname: Alice
  surname: Townsend
  fullname: Townsend, Alice
  organization: University of Tennessee-Knoxville
– sequence: 8
  givenname: Peter
  surname: Kruse
  fullname: Kruse, Peter
  organization: University of Tennessee-Knoxville
– sequence: 9
  givenname: Bryan C.
  surname: Quach
  fullname: Quach, Bryan C.
  organization: RTI International
– sequence: 10
  givenname: Caryn
  surname: Willis
  fullname: Willis, Caryn
  organization: RTI International
– sequence: 11
  givenname: Ke
  surname: Xu
  fullname: Xu, Ke
  organization: Yale University
– sequence: 12
  givenname: Bradley E.
  surname: Aouzierat
  fullname: Aouzierat, Bradley E.
  organization: New York University
– sequence: 13
  givenname: Eric O.
  surname: Johnson
  fullname: Johnson, Eric O.
  organization: RTI International
– sequence: 14
  givenname: Dana B.
  surname: Hancock
  fullname: Hancock, Dana B.
  organization: RTI International
– sequence: 15
  givenname: Daniel
  surname: Jacobson
  fullname: Jacobson, Daniel
  organization: Oak Ridge National Laboratory
BookMark eNqNkNFOgzAUhhszE7fpM8gLgC2FFq4M2xg0Y2CAOblqoLQJczIDarK3l2WLF17t5pzkP_m_nHwTMGoPrQTgEUEDQUSedob87oZoGIYJTWxAx0AOvgFj5FCsU4eYIzCGrmnpLqVvd2DS9zsIkY2xOwYVdQwt9vNtkq60GUuiJCg0LwqSlOXhOtPYwo9ztiwuNzb3Iu3Fy8OtV2TaJl74aVSwONDmLPBSP899LVsnq1My80PvlSVpdg9uVbnv5cNlT8Fm6efzUL_wdIGIOTxaVm4lsbItlxCBpFTUxqWqKLIrosxSUKc060pRE2KnIhaylC0FqQmxbSGFwlNAz1zRHfq-k4p_ds1H2R05gvykiu_4nyp-UsWhwwdVQ9M7N-Xw3k8jO96LRrZC1k0nxRevD80VjOd_DLFv2kaU-3d5vIrwC8Q2h-k
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.euroneuro.2023.08.183
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-7862
EndPage S99
ExternalDocumentID 10_1016_j_euroneuro_2023_08_183
S0924977X23003371
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JO
AABNK
AADFP
AAEDT
AAEDW
AAGJA
AAGUQ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABOYX
ABWVN
ABXDB
ABZDS
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ACXNI
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDW
HMK
HMO
HMQ
HMT
HVGLF
HZ~
IHE
J1W
KOM
LX8
M29
M2V
M34
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OGGZJ
OH0
OKEIE
OU-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SNS
SPCBC
SPT
SSB
SSH
SSN
SSP
SSY
SSZ
T5K
UNMZH
WUQ
XPP
Z5R
~G-
AACTN
AADPK
AAIAV
AATCM
ABLVK
ABYKQ
AFCTW
AFKWA
AFYLN
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAYXX
AGRNS
CITATION
ID FETCH-LOGICAL-c1623-7ab9be3f54966c1eef753afb715b6f2ac78a2dbf72038b6414f5ec6d6655cecf3
IEDL.DBID .~1
ISSN 0924-977X
IngestDate Tue Jul 01 02:33:08 EDT 2025
Fri Feb 23 02:34:22 EST 2024
Tue Aug 26 16:38:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1623-7ab9be3f54966c1eef753afb715b6f2ac78a2dbf72038b6414f5ec6d6655cecf3
ParticipantIDs crossref_primary_10_1016_j_euroneuro_2023_08_183
elsevier_sciencedirect_doi_10_1016_j_euroneuro_2023_08_183
elsevier_clinicalkey_doi_10_1016_j_euroneuro_2023_08_183
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle European neuropsychopharmacology
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
SSID ssj0015339
Score 2.3915257
Snippet Genetic risk variants in nicotinic acetylcholine receptor subunit genes (e.g., CHRNA5-A3-Br) are well-known for contributing to cigarette smoking behaviors....
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage S98
Title 78. NETWORK BIOLOGY ALGORITHMS IDENTIFY BIOLOGICAL PATHWAYS UNDERLYING CIGARETTE SMOKING BEHAVIORS
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0924977X23003371
https://dx.doi.org/10.1016/j.euroneuro.2023.08.183
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA6iFy_iJ36OHMST3Zo1TVJvdXZr3daNtup2Kk2bgB5E_Djs4m836cdUEBQ8laZ9oTy8vHle8j5PATjNiSCsEMhASFgG1jIZTi1udPPCRJmTMSF1ozgOiX-Dr2f2bAX0Gi2MHqusa39V08tqXa90ajQ7T_f3ndjUrQOlM0WiTcsqdeQYU53l7fflmIemM5XfXhcb-u1vM17a_6L0jWzrv4hrL0_ErJ93qC-7Tn8TbNR0EbrVF22BFfG4Dc6mld_04hwmn_Kpl3N4BqefTtSLHcApa8PQS-4m0RBeBuWZEXRHg0kUJP44hsGVFyZBf14_09YIcOom_p07j2EpPxjNg3AAe8HAjbwk8WA8ngz1yqXnu7fBJIp3wU3fS3q-UccbOVJUx6AZd7iwpOoLCcmREFI1LJnkFNmcyG6WU5Z1Cy718SzjBCMsbZGTghDbzkUurT2w-qhA2wdQUuo42OSWzRlGTsYLYRPJbcQzxdklOwBmA2T6VHlnpM1Q2UO6xD7V2KcmSxX2B4A1gKeNNFQVs1TV999DL5ah3zLoL8GH_wk-Auv6rhrxOwarr89v4kRRlVfeKnOxBdbcXjSa6msw9MMPkdrl4Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swGLVQObDLtMHQYIz5MHEiNG7iH9ktdGnjtU2rxoz2ZMWJLZUDQsAO_PfYTVJAQgJpV1tPip6sz--Tv_cCwM-SaMIqjTyEdOCFziajaKC8Xln5qIgKpo1rFCcZSS_CPwu82AL91gvjxiqb2l_X9HW1bla6DZvdm9Wqm_uudaB0YUW0HwTOR77t0qlwB2zHfJRmm8cEq2jqyL1e6DnAizEvF4Gxjo48cz8Sd3GeiAWvX1LPLp7BJ_CxUYwwrj_qM9jS17vgZFZHTj-cQvHkoLo7hSdw9hRG_bAHFGVnMEvE5XQ-gud8_WwE4_FwOucineSQ_04ywQfLZs-lI8BZLNLLeJnDtQNhvOTZEPb5MJ4nQiQwn0xHbuU8SeO_fDrPv4CLQSL6qdfgvRJZtePRQkVKB8a2hoSUSGtje5bCKIqwIqZXlJQVvUoZ90LLFAlRaLAuSUUIxqUuTbAPOteWtK8AGkqjKPRVgBULUVSoSmNiFEaqsLLdsAPgt0TKmzo-Q7ZzZVdyw7103EufScv9AWAt4bJ1h9p6Jm2Jfxv6awN9cYjeAz78H_APsJOKyViOeTb6Bj64nXri7wh07m__6e9Wudyr4-ZkPgJO2ub9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=78.+NETWORK+BIOLOGY+ALGORITHMS+IDENTIFY+BIOLOGICAL+PATHWAYS+UNDERLYING+CIGARETTE+SMOKING+BEHAVIORS&rft.jtitle=European+neuropsychopharmacology&rft.au=Sullivan%2C+Kyle&rft.au=Miller%2C+J.+Izaak&rft.au=Kainer%2C+David&rft.au=Lane%2C+Matthew&rft.date=2023-10-01&rft.pub=Elsevier+B.V&rft.issn=0924-977X&rft.eissn=1873-7862&rft.volume=75&rft.spage=S98&rft.epage=S99&rft_id=info:doi/10.1016%2Fj.euroneuro.2023.08.183&rft.externalDocID=S0924977X23003371
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-977X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-977X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-977X&client=summon