78. NETWORK BIOLOGY ALGORITHMS IDENTIFY BIOLOGICAL PATHWAYS UNDERLYING CIGARETTE SMOKING BEHAVIORS
Genetic risk variants in nicotinic acetylcholine receptor subunit genes (e.g., CHRNA5-A3-Br) are well-known for contributing to cigarette smoking behaviors. Recent genome-wide association studies (GWAS) from the GWAS and Sequencing Consortium of Alcohol and Nicotine Use (GSCAN) have identified hundr...
Saved in:
Published in | European neuropsychopharmacology Vol. 75; pp. S98 - S99 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | Genetic risk variants in nicotinic acetylcholine receptor subunit genes (e.g., CHRNA5-A3-Br) are well-known for contributing to cigarette smoking behaviors. Recent genome-wide association studies (GWAS) from the GWAS and Sequencing Consortium of Alcohol and Nicotine Use (GSCAN) have identified hundreds of other genome-wide significant loci contributing to the heritability of cigarette smoking behaviors. However, the biological pathways reflected by the full repertoire of cigarette smoking-associated variants are poorly understood.
To better understand the biological pathways underlying smoking behaviors, we applied the network biology algorithms GRIN and Functional Partitioning. We used publicly available GSCAN GWAS summary statistics collected from European ancestry subjects for two traits: Smoking Initiation (SmkInit; 805,431 individuals) and Cigarettes Per Day (CigsPerDay; 326,497 individuals). We assigned genome-wide significant (p < 5e-8) single nucleotide polymorphisms (SNPs) to genes using 5 different methods: SNP-nearest gene, conventional MAGMA, and H-MAGMA using Hi-C data collected from dorsolateral prefrontal cortex (dlPFC), cortical neurons, or midbrain dopaminergic neurons. Using a multiplex network of 10 gene-gene network layers from distinct types of biological experimental evidence including two dlPFC-specific layers, we used GRIN to remove false positive genes based on the premise that correctly assigned genes would be highly interconnected in the networks, as determined by the random walk with restart (RWR) network traversal algorithm. We then used Functional Partitioning to identify functional groupings of smoking-associated genes based on RWR-based network topology, followed by gene set enrichment of biological pathways.
We assigned 526 unique genes targeted by SNPs associated with CigsPerDay. Of these, GRIN retained 235 genes based on high network interconnectivity. We assigned 3013 unique genes targeted by SmkInit-associated SNPs, and GRIN retained 1329 highly interconnected genes. Using Functional Partitioning, we identified chromatin regulation as a common pathway involved in both smoking traits based on shared genes (e.g., NFAT5) and genes unique to each trait (SmkInit: DNMT3B, NFKB2; CigsPerDay: CYP2A6, DBH). Using the Functional Partitioning groupings, we also identified pathway enrichments for “regulatory T-cell differentiation” from the CigsPerDay genes, and “regulation of DNA-templated transcription” from the SmkInit genes.
We identified both shared and unique genes and biological pathways associated with significant SNPs from cigarette smoking behaviors. Understanding which genes underlie heritability of cigarette smoking behaviors can identify druggable gene targets that may inform follow-up drug repurposing efforts to treat nicotine addiction. |
---|---|
AbstractList | Genetic risk variants in nicotinic acetylcholine receptor subunit genes (e.g., CHRNA5-A3-Br) are well-known for contributing to cigarette smoking behaviors. Recent genome-wide association studies (GWAS) from the GWAS and Sequencing Consortium of Alcohol and Nicotine Use (GSCAN) have identified hundreds of other genome-wide significant loci contributing to the heritability of cigarette smoking behaviors. However, the biological pathways reflected by the full repertoire of cigarette smoking-associated variants are poorly understood.
To better understand the biological pathways underlying smoking behaviors, we applied the network biology algorithms GRIN and Functional Partitioning. We used publicly available GSCAN GWAS summary statistics collected from European ancestry subjects for two traits: Smoking Initiation (SmkInit; 805,431 individuals) and Cigarettes Per Day (CigsPerDay; 326,497 individuals). We assigned genome-wide significant (p < 5e-8) single nucleotide polymorphisms (SNPs) to genes using 5 different methods: SNP-nearest gene, conventional MAGMA, and H-MAGMA using Hi-C data collected from dorsolateral prefrontal cortex (dlPFC), cortical neurons, or midbrain dopaminergic neurons. Using a multiplex network of 10 gene-gene network layers from distinct types of biological experimental evidence including two dlPFC-specific layers, we used GRIN to remove false positive genes based on the premise that correctly assigned genes would be highly interconnected in the networks, as determined by the random walk with restart (RWR) network traversal algorithm. We then used Functional Partitioning to identify functional groupings of smoking-associated genes based on RWR-based network topology, followed by gene set enrichment of biological pathways.
We assigned 526 unique genes targeted by SNPs associated with CigsPerDay. Of these, GRIN retained 235 genes based on high network interconnectivity. We assigned 3013 unique genes targeted by SmkInit-associated SNPs, and GRIN retained 1329 highly interconnected genes. Using Functional Partitioning, we identified chromatin regulation as a common pathway involved in both smoking traits based on shared genes (e.g., NFAT5) and genes unique to each trait (SmkInit: DNMT3B, NFKB2; CigsPerDay: CYP2A6, DBH). Using the Functional Partitioning groupings, we also identified pathway enrichments for “regulatory T-cell differentiation” from the CigsPerDay genes, and “regulation of DNA-templated transcription” from the SmkInit genes.
We identified both shared and unique genes and biological pathways associated with significant SNPs from cigarette smoking behaviors. Understanding which genes underlie heritability of cigarette smoking behaviors can identify druggable gene targets that may inform follow-up drug repurposing efforts to treat nicotine addiction. |
Author | Cashman, Mikaela Hancock, Dana B. Miller, J. Izaak Quach, Bryan C. Xu, Ke Willis, Caryn Jacobson, Daniel Sullivan, Kyle Johnson, Eric O. Aouzierat, Bradley E. Kruse, Peter Kainer, David Garvin, Michael R. Lane, Matthew Townsend, Alice |
Author_xml | – sequence: 1 givenname: Kyle surname: Sullivan fullname: Sullivan, Kyle organization: Oak Ridge National Laboratory – sequence: 2 givenname: J. Izaak surname: Miller fullname: Miller, J. Izaak organization: Oak Ridge National Laboratory – sequence: 3 givenname: David surname: Kainer fullname: Kainer, David organization: Oak Ridge National Laboratory – sequence: 4 givenname: Matthew surname: Lane fullname: Lane, Matthew organization: University of Tennessee-Knoxville – sequence: 5 givenname: Mikaela surname: Cashman fullname: Cashman, Mikaela organization: Oak Ridge National Laboratory – sequence: 6 givenname: Michael R. surname: Garvin fullname: Garvin, Michael R. organization: Oak Ridge National Laboratory – sequence: 7 givenname: Alice surname: Townsend fullname: Townsend, Alice organization: University of Tennessee-Knoxville – sequence: 8 givenname: Peter surname: Kruse fullname: Kruse, Peter organization: University of Tennessee-Knoxville – sequence: 9 givenname: Bryan C. surname: Quach fullname: Quach, Bryan C. organization: RTI International – sequence: 10 givenname: Caryn surname: Willis fullname: Willis, Caryn organization: RTI International – sequence: 11 givenname: Ke surname: Xu fullname: Xu, Ke organization: Yale University – sequence: 12 givenname: Bradley E. surname: Aouzierat fullname: Aouzierat, Bradley E. organization: New York University – sequence: 13 givenname: Eric O. surname: Johnson fullname: Johnson, Eric O. organization: RTI International – sequence: 14 givenname: Dana B. surname: Hancock fullname: Hancock, Dana B. organization: RTI International – sequence: 15 givenname: Daniel surname: Jacobson fullname: Jacobson, Daniel organization: Oak Ridge National Laboratory |
BookMark | eNqNkNFOgzAUhhszE7fpM8gLgC2FFq4M2xg0Y2CAOblqoLQJczIDarK3l2WLF17t5pzkP_m_nHwTMGoPrQTgEUEDQUSedob87oZoGIYJTWxAx0AOvgFj5FCsU4eYIzCGrmnpLqVvd2DS9zsIkY2xOwYVdQwt9vNtkq60GUuiJCg0LwqSlOXhOtPYwo9ztiwuNzb3Iu3Fy8OtV2TaJl74aVSwONDmLPBSP899LVsnq1My80PvlSVpdg9uVbnv5cNlT8Fm6efzUL_wdIGIOTxaVm4lsbItlxCBpFTUxqWqKLIrosxSUKc060pRE2KnIhaylC0FqQmxbSGFwlNAz1zRHfq-k4p_ds1H2R05gvykiu_4nyp-UsWhwwdVQ9M7N-Xw3k8jO96LRrZC1k0nxRevD80VjOd_DLFv2kaU-3d5vIrwC8Q2h-k |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.euroneuro.2023.08.183 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-7862 |
EndPage | S99 |
ExternalDocumentID | 10_1016_j_euroneuro_2023_08_183 S0924977X23003371 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JO AABNK AADFP AAEDT AAEDW AAGJA AAGUQ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABOYX ABWVN ABXDB ABZDS ACDAQ ACGFO ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ACXNI ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALCLG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDW HMK HMO HMQ HMT HVGLF HZ~ IHE J1W KOM LX8 M29 M2V M34 M41 MO0 MOBAO N9A O-L O9- OAUVE OGGZJ OH0 OKEIE OU- OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SNS SPCBC SPT SSB SSH SSN SSP SSY SSZ T5K UNMZH WUQ XPP Z5R ~G- AACTN AADPK AAIAV AATCM ABLVK ABYKQ AFCTW AFKWA AFYLN AJBFU AJOXV AMFUW EFLBG LCYCR RIG AAYXX AGRNS CITATION |
ID | FETCH-LOGICAL-c1623-7ab9be3f54966c1eef753afb715b6f2ac78a2dbf72038b6414f5ec6d6655cecf3 |
IEDL.DBID | .~1 |
ISSN | 0924-977X |
IngestDate | Tue Jul 01 02:33:08 EDT 2025 Fri Feb 23 02:34:22 EST 2024 Tue Aug 26 16:38:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1623-7ab9be3f54966c1eef753afb715b6f2ac78a2dbf72038b6414f5ec6d6655cecf3 |
ParticipantIDs | crossref_primary_10_1016_j_euroneuro_2023_08_183 elsevier_sciencedirect_doi_10_1016_j_euroneuro_2023_08_183 elsevier_clinicalkey_doi_10_1016_j_euroneuro_2023_08_183 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2023 2023-10-00 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
PublicationDecade | 2020 |
PublicationTitle | European neuropsychopharmacology |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
SSID | ssj0015339 |
Score | 2.3915257 |
Snippet | Genetic risk variants in nicotinic acetylcholine receptor subunit genes (e.g., CHRNA5-A3-Br) are well-known for contributing to cigarette smoking behaviors.... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | S98 |
Title | 78. NETWORK BIOLOGY ALGORITHMS IDENTIFY BIOLOGICAL PATHWAYS UNDERLYING CIGARETTE SMOKING BEHAVIORS |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0924977X23003371 https://dx.doi.org/10.1016/j.euroneuro.2023.08.183 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA6iFy_iJ36OHMST3Zo1TVJvdXZr3daNtup2Kk2bgB5E_Djs4m836cdUEBQ8laZ9oTy8vHle8j5PATjNiSCsEMhASFgG1jIZTi1udPPCRJmTMSF1ozgOiX-Dr2f2bAX0Gi2MHqusa39V08tqXa90ajQ7T_f3ndjUrQOlM0WiTcsqdeQYU53l7fflmIemM5XfXhcb-u1vM17a_6L0jWzrv4hrL0_ErJ93qC-7Tn8TbNR0EbrVF22BFfG4Dc6mld_04hwmn_Kpl3N4BqefTtSLHcApa8PQS-4m0RBeBuWZEXRHg0kUJP44hsGVFyZBf14_09YIcOom_p07j2EpPxjNg3AAe8HAjbwk8WA8ngz1yqXnu7fBJIp3wU3fS3q-UccbOVJUx6AZd7iwpOoLCcmREFI1LJnkFNmcyG6WU5Z1Cy718SzjBCMsbZGTghDbzkUurT2w-qhA2wdQUuo42OSWzRlGTsYLYRPJbcQzxdklOwBmA2T6VHlnpM1Q2UO6xD7V2KcmSxX2B4A1gKeNNFQVs1TV999DL5ah3zLoL8GH_wk-Auv6rhrxOwarr89v4kRRlVfeKnOxBdbcXjSa6msw9MMPkdrl4Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swGLVQObDLtMHQYIz5MHEiNG7iH9ktdGnjtU2rxoz2ZMWJLZUDQsAO_PfYTVJAQgJpV1tPip6sz--Tv_cCwM-SaMIqjTyEdOCFziajaKC8Xln5qIgKpo1rFCcZSS_CPwu82AL91gvjxiqb2l_X9HW1bla6DZvdm9Wqm_uudaB0YUW0HwTOR77t0qlwB2zHfJRmm8cEq2jqyL1e6DnAizEvF4Gxjo48cz8Sd3GeiAWvX1LPLp7BJ_CxUYwwrj_qM9jS17vgZFZHTj-cQvHkoLo7hSdw9hRG_bAHFGVnMEvE5XQ-gud8_WwE4_FwOucineSQ_04ywQfLZs-lI8BZLNLLeJnDtQNhvOTZEPb5MJ4nQiQwn0xHbuU8SeO_fDrPv4CLQSL6qdfgvRJZtePRQkVKB8a2hoSUSGtje5bCKIqwIqZXlJQVvUoZ90LLFAlRaLAuSUUIxqUuTbAPOteWtK8AGkqjKPRVgBULUVSoSmNiFEaqsLLdsAPgt0TKmzo-Q7ZzZVdyw7103EufScv9AWAt4bJ1h9p6Jm2Jfxv6awN9cYjeAz78H_APsJOKyViOeTb6Bj64nXri7wh07m__6e9Wudyr4-ZkPgJO2ub9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=78.+NETWORK+BIOLOGY+ALGORITHMS+IDENTIFY+BIOLOGICAL+PATHWAYS+UNDERLYING+CIGARETTE+SMOKING+BEHAVIORS&rft.jtitle=European+neuropsychopharmacology&rft.au=Sullivan%2C+Kyle&rft.au=Miller%2C+J.+Izaak&rft.au=Kainer%2C+David&rft.au=Lane%2C+Matthew&rft.date=2023-10-01&rft.pub=Elsevier+B.V&rft.issn=0924-977X&rft.eissn=1873-7862&rft.volume=75&rft.spage=S98&rft.epage=S99&rft_id=info:doi/10.1016%2Fj.euroneuro.2023.08.183&rft.externalDocID=S0924977X23003371 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-977X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-977X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-977X&client=summon |