Excitation‐Dependent Multicolour Luminescence of Organic Materials: Internal Mechanism and Potential Applications

Excitation‐dependent emission (Ex‐de) materials have been of considerable academic interest and have potential applications in real life. Such multicolour luminescence is a characteristic exception to the ubiquitously accepted Kasha's rule. This phenomenon has been increasingly presented in som...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie Vol. 135; no. 6
Main Authors Shen, Yunxia, An, Zhongfu, Liu, Haichao, Yang, Bing, Zhang, Yujian
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Excitation‐dependent emission (Ex‐de) materials have been of considerable academic interest and have potential applications in real life. Such multicolour luminescence is a characteristic exception to the ubiquitously accepted Kasha's rule. This phenomenon has been increasingly presented in some studies on different luminescence systems; however, a systematic overview of the mechanisms underlying this phenomenon is currently absent. Herein, we resolve this issue by classifying multicolour luminescence from single chromophores and dual/ternary chromophores, as well as multiple emitting species. The underlying processes are described based on electronic and/or geometrical conditions under which the phenomenon occurs. Before we present it in categories, related photophysical and photochemical foundations are introduced. This systematic overview will provide a clear approach to designing multicolour luminescence materials for special applications. According to Kasha's rule for luminescent materials, the emitting electronic level of a given multiplicity is the lowest excited level of that multiplicity. A characteristic exception, excitation‐dependent multicolour emission, is presented systemically, with the aim of enriching fundamental photophysics and potential applications. This Minireview will serve as a timely summary of the scattered reports of multicolour phenomena and their underlying mechanisms.
AbstractList Excitation‐dependent emission (Ex‐de) materials have been of considerable academic interest and have potential applications in real life. Such multicolour luminescence is a characteristic exception to the ubiquitously accepted Kasha's rule. This phenomenon has been increasingly presented in some studies on different luminescence systems; however, a systematic overview of the mechanisms underlying this phenomenon is currently absent. Herein, we resolve this issue by classifying multicolour luminescence from single chromophores and dual/ternary chromophores, as well as multiple emitting species. The underlying processes are described based on electronic and/or geometrical conditions under which the phenomenon occurs. Before we present it in categories, related photophysical and photochemical foundations are introduced. This systematic overview will provide a clear approach to designing multicolour luminescence materials for special applications.
Excitation‐dependent emission (Ex‐de) materials have been of considerable academic interest and have potential applications in real life. Such multicolour luminescence is a characteristic exception to the ubiquitously accepted Kasha's rule. This phenomenon has been increasingly presented in some studies on different luminescence systems; however, a systematic overview of the mechanisms underlying this phenomenon is currently absent. Herein, we resolve this issue by classifying multicolour luminescence from single chromophores and dual/ternary chromophores, as well as multiple emitting species. The underlying processes are described based on electronic and/or geometrical conditions under which the phenomenon occurs. Before we present it in categories, related photophysical and photochemical foundations are introduced. This systematic overview will provide a clear approach to designing multicolour luminescence materials for special applications. According to Kasha's rule for luminescent materials, the emitting electronic level of a given multiplicity is the lowest excited level of that multiplicity. A characteristic exception, excitation‐dependent multicolour emission, is presented systemically, with the aim of enriching fundamental photophysics and potential applications. This Minireview will serve as a timely summary of the scattered reports of multicolour phenomena and their underlying mechanisms.
Abstract Excitation‐dependent emission (Ex‐de) materials have been of considerable academic interest and have potential applications in real life. Such multicolour luminescence is a characteristic exception to the ubiquitously accepted Kasha's rule. This phenomenon has been increasingly presented in some studies on different luminescence systems; however, a systematic overview of the mechanisms underlying this phenomenon is currently absent. Herein, we resolve this issue by classifying multicolour luminescence from single chromophores and dual/ternary chromophores, as well as multiple emitting species. The underlying processes are described based on electronic and/or geometrical conditions under which the phenomenon occurs. Before we present it in categories, related photophysical and photochemical foundations are introduced. This systematic overview will provide a clear approach to designing multicolour luminescence materials for special applications.
Author Shen, Yunxia
An, Zhongfu
Yang, Bing
Liu, Haichao
Zhang, Yujian
Author_xml – sequence: 1
  givenname: Yunxia
  surname: Shen
  fullname: Shen, Yunxia
  organization: Zhejiang Normal University
– sequence: 2
  givenname: Zhongfu
  orcidid: 0000-0002-6522-2654
  surname: An
  fullname: An, Zhongfu
  organization: Nanjing Tech University (NanjingTech)
– sequence: 3
  givenname: Haichao
  surname: Liu
  fullname: Liu, Haichao
  email: hcliu@jlu.edu.cn
  organization: Jilin University
– sequence: 4
  givenname: Bing
  orcidid: 0000-0003-4827-0926
  surname: Yang
  fullname: Yang, Bing
  organization: Jilin University
– sequence: 5
  givenname: Yujian
  orcidid: 0000-0003-4638-0056
  surname: Zhang
  fullname: Zhang, Yujian
  email: sciencezyj@foxmail.com
  organization: Zhejiang Normal University
BookMark eNqFkMtOwzAQRS1UJMpjy9oS6xS_YsfsqlIKUgssYB0ZZwxGqRPiRMCOT-Ab-RIMRbBkNSPNuXdm7i4ahSYAQoeUTCgh7NiEe5gwwhgVouBbaExzRjOucjVCY0KEyAom9A7ajfGRECKZ0mMU5y_W96b3Tfh4ez-FFkIFoceroe69bepm6PByWPsA0UKwgBuHr7p7E7zFK9ND500dT_BFSG0wNV6BfUjDuMYmVPi66ZNZQvC0bWtvv_fEfbTtkgoOfuoeuj2b38zOs-XV4mI2XWaWSsYzajlz8s4xwVnuqso6DlLnuSK5o3e8MoVWSjChpJOaKw1UaQ0VE4xDLh3wPXS08W275mmA2JeP6Z10ZSyZkroomKQqUZMNZbsmxg5c2XZ-bbrXkpLyK9jyK9jyN9gk0BvBs6_h9R-6nF4u5n_aT66fgMQ
CitedBy_id crossref_primary_10_1002_anie_202313590
crossref_primary_10_1039_D3SC03812B
crossref_primary_10_1002_ange_202313590
crossref_primary_10_1021_acs_jpcc_3c03787
crossref_primary_10_1016_j_cej_2024_150980
crossref_primary_10_1039_D4NR01803F
Cites_doi 10.1039/C8MH01582A
10.1016/j.ccr.2010.12.013
10.1021/ma502160w
10.1002/adma.201405070
10.1021/acs.chemrev.7b00110
10.1002/ange.201911331
10.1016/j.saa.2020.118352
10.31635/ccschem.020.202000433
10.1002/chem.201802876
10.1002/anie.202002555
10.1021/ic00034a009
10.1021/jp402666r
10.1021/acs.macromol.5b02224
10.1039/C9SC06518K
10.1002/adma.201104772
10.1002/adfm.202003693
10.1002/ange.201500426
10.1063/1.1676429
10.1021/cr200166m
10.1007/s11426-017-9114-4
10.1002/ange.201912102
10.1021/ja2107788
10.1002/anie.202000608
10.1021/jp063038s
10.1021/jp3096538
10.1021/jp1040234
10.1021/acs.accounts.2c00038
10.1002/ange.202009789
10.1002/ange.201304321
10.31635/ccschem.020.202000399
10.1002/anie.201912102
10.1021/ar300128j
10.1002/anie.202115551
10.1021/ar800153f
10.1016/j.jphotochem.2011.06.009
10.1021/ic048622z
10.1021/cr500249p
10.1002/ange.202000655
10.1002/ange.201602445
10.1021/ja902533f
10.1002/adma.201503821
10.1002/anie.201902890
10.1039/D1SC02094C
10.1021/jp0672813
10.1002/ange.202211106
10.1002/anie.201411004
10.1021/ma020319z
10.1002/anie.202211106
10.1021/acsami.2c04141
10.1039/c2jm30496a
10.1021/ja0632207
10.1002/anie.202203254
10.1002/ange.202115551
10.1038/s41467-017-00362-5
10.1002/ange.202203254
10.1016/0009-2614(69)80248-4
10.1016/j.mattod.2019.08.010
10.1021/jacs.7b11316
10.1002/ange.201411004
10.1002/ange.202000608
10.1002/adma.202202182
10.1038/s41467-022-28070-9
10.1021/acs.orglett.9b03875
10.1002/anie.201911331
10.1002/ange.202000792
10.1021/j100256a038
10.1002/adfm.201902803
10.1002/anie.202009789
10.1002/ange.202002555
10.1021/jacs.2c01248
10.1038/s41578-020-0223-z
10.1021/jp311884b
10.31635/ccschem.021.202000731
10.1039/df9500900014
10.1038/s41467-022-30368-7
10.1002/adfm.201802407
10.1039/D0CS01087A
10.1021/ja903947b
10.1002/anie.201602445
10.1021/acs.langmuir.0c00636
10.1002/anie.202000792
10.1126/sciadv.abl8392
10.1002/ange.201902890
10.1021/jacs.1c09272
10.1021/acsenergylett.8b00661
10.1038/s41467-020-14792-1
10.1002/anie.202000655
10.1002/anie.201500426
10.1039/C5SC01945A
10.1039/D0MH00688B
10.1021/jacsau.1c00311
10.1038/s41467-019-11749-x
10.1021/ja062677d
10.1016/j.cej.2021.132288
10.1002/anie.201304321
10.1021/jp061409z
10.1038/s41566-019-0408-4
10.1002/adma.202006781
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ange.202214483
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3757
EndPage n/a
ExternalDocumentID 10_1002_ange_202214483
ANGE202214483
Genre reviewArticle
GrantInformation_xml – fundername: Natural Science Foundation of Zhejiang Province
  funderid: LZ20E030001
– fundername: National Natural Science Foundation of China
  funderid: 52073089; 51873077; 52103209
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCUC
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RGC
ROL
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~IA
~WT
.Y3
31~
53G
AASGY
AAYXX
ABEFU
ACBWZ
AFFNX
AFZJQ
AI.
ASPBG
AVWKF
AZFZN
BDRZF
BZBRT
CITATION
EJD
FEDTE
G8K
HF~
HVGLF
MVM
PALCI
RIWAO
RJQFR
SAMSI
VH1
WSR
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c1623-1c32f6bf24325fddcf3e6955705f1b3da897742476f69379e1799ed2423e56fe3
IEDL.DBID DR2
ISSN 0044-8249
IngestDate Thu Oct 10 14:56:13 EDT 2024
Fri Aug 23 01:48:58 EDT 2024
Sat Aug 24 00:57:55 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1623-1c32f6bf24325fddcf3e6955705f1b3da897742476f69379e1799ed2423e56fe3
ORCID 0000-0002-6522-2654
0000-0003-4827-0926
0000-0003-4638-0056
PQID 2769882617
PQPubID 866336
PageCount 14
ParticipantIDs proquest_journals_2769882617
crossref_primary_10_1002_ange_202214483
wiley_primary_10_1002_ange_202214483_ANGE202214483
PublicationCentury 2000
PublicationDate February 1, 2023
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 1, 2023
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019 2022; 21 4
2017; 8
2009; 42
2019; 10
2019; 13
2020 2020; 59 132
2020; 11
2017; 117
2013 2013; 52 125
2020; 7
1971; 55
2015; 48
2020; 5
2022 2022; 61 134
2018; 3
1950; 9
2012; 134
2021; 33
1969; 3
2010; 114
2013; 117
2022; 34
2015 2015; 54 127
2012; 24
2016; 49
2006; 128
2012; 22
2018; 28
2021; 3
2019; 6
2013; 46
2002; 35
2006; 110
2020; 36
2018; 61
2009; 131
2021; 143
2020; 32
1992; 31
2021; 50
2021; 1
1985; 89
2014; 114
2005; 44
2011; 255
2019 2019; 58 131
2017; 139
2018; 24
2022; 144
2016; 7
2016 2016; 55 128
2015; 27
2012; 112
2021; 12
2020; 30
2007; 111
2022; 8
2021 2021; 60 133
2020; 236
2022; 13
2022; 14
2022; 429
2022; 55
2011; 222
e_1_2_9_52_2
e_1_2_9_98_2
e_1_2_9_71_2
e_1_2_9_10_2
e_1_2_9_33_2
e_1_2_9_56_2
e_1_2_9_94_1
e_1_2_9_75_2
e_1_2_9_90_1
e_1_2_9_107_1
e_1_2_9_103_2
e_1_2_9_14_2
e_1_2_9_37_2
e_1_2_9_37_3
e_1_2_9_14_3
e_1_2_9_18_2
e_1_2_9_79_2
e_1_2_9_41_2
e_1_2_9_87_2
e_1_2_9_60_2
(e_1_2_9_105_2) 2022; 134
e_1_2_9_83_1
e_1_2_9_45_2
e_1_2_9_22_2
e_1_2_9_64_2
e_1_2_9_6_1
e_1_2_9_2_1
e_1_2_9_49_2
e_1_2_9_26_2
e_1_2_9_68_2
e_1_2_9_30_1
e_1_2_9_72_2
e_1_2_9_99_2
e_1_2_9_11_1
e_1_2_9_34_2
e_1_2_9_53_3
e_1_2_9_95_2
e_1_2_9_53_2
e_1_2_9_76_1
e_1_2_9_95_3
(e_1_2_9_57_3) 2022; 134
e_1_2_9_91_2
e_1_2_9_102_1
e_1_2_9_106_1
e_1_2_9_15_1
e_1_2_9_38_2
e_1_2_9_57_2
e_1_2_9_38_3
e_1_2_9_19_2
e_1_2_9_42_1
e_1_2_9_88_2
e_1_2_9_61_1
e_1_2_9_23_2
e_1_2_9_65_2
e_1_2_9_84_2
e_1_2_9_5_3
e_1_2_9_80_1
e_1_2_9_5_2
e_1_2_9_1_1
e_1_2_9_9_2
e_1_2_9_27_2
e_1_2_9_46_2
e_1_2_9_69_1
e_1_2_9_27_3
e_1_2_9_73_1
e_1_2_9_50_2
e_1_2_9_35_1
e_1_2_9_77_2
e_1_2_9_12_2
e_1_2_9_31_2
e_1_2_9_54_2
e_1_2_9_96_2
(e_1_2_9_61_2) 2022; 134
e_1_2_9_92_2
e_1_2_9_101_1
e_1_2_9_105_1
e_1_2_9_39_1
e_1_2_9_16_2
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_2
e_1_2_9_24_1
e_1_2_9_66_1
e_1_2_9_43_2
e_1_2_9_85_2
e_1_2_9_4_3
e_1_2_9_4_2
e_1_2_9_81_2
e_1_2_9_8_2
e_1_2_9_47_2
e_1_2_9_28_3
e_1_2_9_28_2
e_1_2_9_74_2
e_1_2_9_51_1
e_1_2_9_32_3
e_1_2_9_78_2
e_1_2_9_55_1
e_1_2_9_32_2
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_104_2
e_1_2_9_13_2
e_1_2_9_59_2
e_1_2_9_36_2
e_1_2_9_78_3
e_1_2_9_17_3
e_1_2_9_17_2
e_1_2_9_40_2
e_1_2_9_63_2
e_1_2_9_44_2
e_1_2_9_67_2
e_1_2_9_82_2
e_1_2_9_21_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_3_2
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_2
e_1_2_9_29_1
References_xml – volume: 55 128
  start-page: 7231 7347
  year: 2016 2016
  end-page: 7235 7351
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 128
  start-page: 7756
  year: 2006
  end-page: 7757
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 406
  year: 2019
  end-page: 411
  publication-title: Nat. Photonics
– volume: 117
  start-page: 791
  year: 2013
  end-page: 803
  publication-title: J. Phys. Chem. C
– volume: 131
  start-page: 14043
  year: 2009
  end-page: 14049
  publication-title: J. Am. Chem. Soc.
– volume: 144
  start-page: 12652
  year: 2022
  end-page: 12660
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 64
  year: 2015
  end-page: 71
  publication-title: Macromolecules
– volume: 1
  start-page: 1805
  year: 2021
  end-page: 1814
  publication-title: JACS Au
– volume: 143
  start-page: 18317
  year: 2021
  end-page: 18324
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 416
  year: 2017
  publication-title: Nat. Commun.
– volume: 59 132
  start-page: 10173 10259
  year: 2020 2020
  end-page: 10178 10264
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 3
  start-page: 1940
  year: 2021
  end-page: 1948
  publication-title: CCS Chem.
– volume: 117
  start-page: 1400
  year: 2013
  end-page: 1405
  publication-title: J. Phys. Chem. A
– volume: 89
  start-page: 1996
  year: 1985
  end-page: 1999
  publication-title: J. Phys. Chem.
– volume: 49
  start-page: 1848
  year: 2016
  end-page: 1857
  publication-title: Macromolecules
– volume: 59 132
  start-page: 6915 6982
  year: 2020 2020
  end-page: 6922 6989
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 114
  start-page: 12174
  year: 2014
  end-page: 12277
  publication-title: Chem. Rev.
– volume: 21 4
  start-page: 9945 625
  year: 2019 2022
  end-page: 9949 637
  publication-title: Org. Lett. CCS Chem.
– volume: 9
  start-page: 14
  year: 1950
  end-page: 19
  publication-title: Discuss. Faraday Soc.
– volume: 110
  start-page: 12136
  year: 2006
  end-page: 12144
  publication-title: J. Phys. Chem. A
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 139
  start-page: 18115
  year: 2017
  end-page: 8121
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 2433
  year: 1971
  publication-title: J. Chem. Phys.
– volume: 10
  start-page: 4247
  year: 2019
  publication-title: Nat. Commun.
– volume: 13
  start-page: 2658
  year: 2022
  publication-title: Nat. Commun.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 222
  start-page: 283
  year: 2011
  end-page: 287
  publication-title: J. Photochem. Photobiol. A
– volume: 27
  start-page: 7782
  year: 2015
  end-page: 7787
  publication-title: Adv. Mater.
– volume: 14
  start-page: 15706
  year: 2022
  end-page: 15715
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 1443
  year: 2018
  end-page: 1449
  publication-title: ACS Energy Lett.
– volume: 117
  start-page: 9623
  year: 2013
  end-page: 9632
  publication-title: J. Phys. Chem. C
– volume: 55
  start-page: 1160
  year: 2022
  end-page: 1170
  publication-title: Acc. Chem. Res.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 46
  start-page: 171
  year: 2013
  end-page: 180
  publication-title: Acc. Chem. Res.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 117
  start-page: 13353
  year: 2017
  end-page: 13381
  publication-title: Chem. Rev.
– volume: 58 131
  start-page: 8773 8865
  year: 2019 2019
  end-page: 8778 8870
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 35
  start-page: 6064
  year: 2002
  end-page: 6066
  publication-title: Macromolecules
– volume: 50
  start-page: 12616
  year: 2021
  end-page: 12655
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 2926
  year: 2020
  end-page: 2933
  publication-title: Chem. Sci.
– volume: 54 127
  start-page: 2970 3013
  year: 2015 2015
  end-page: 2974 3017
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 869
  year: 2020
  end-page: 885
  publication-title: Nat. Rev. Mater.
– volume: 111
  start-page: 5828
  year: 2007
  end-page: 5832
  publication-title: J. Phys. Chem. A
– volume: 22
  start-page: 10619
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 6
  start-page: 984
  year: 2019
  end-page: 989
  publication-title: Mater. Horiz.
– volume: 12
  start-page: 9201
  year: 2021
  end-page: 9206
  publication-title: Chem. Sci.
– volume: 44
  start-page: 4737
  year: 2005
  end-page: 4746
  publication-title: Inorg. Chem.
– volume: 61
  start-page: 351
  year: 2018
  end-page: 359
  publication-title: Sci. China Chem.
– volume: 7
  start-page: 655
  year: 2016
  end-page: 665
  publication-title: Chem. Sci.
– volume: 128
  start-page: 14081
  year: 2006
  end-page: 14092
  publication-title: J. Am. Chem. Soc.
– volume: 54 127
  start-page: 6270 6368
  year: 2015 2015
  end-page: 6273 6371
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 24
  start-page: 1999
  year: 2012
  end-page: 2003
  publication-title: Adv. Mater.
– volume: 429
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 58 131
  start-page: 18776 18952
  year: 2019 2019
  end-page: 18782 18958
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 27
  start-page: 1663
  year: 2015
  end-page: 1667
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1921
  year: 2021
  end-page: 1932
  publication-title: CCS Chem.
– volume: 59 132
  start-page: 9967 10053
  year: 2020 2020
  end-page: 9971 10057
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 255
  start-page: 2653
  year: 2011
  end-page: 2665
  publication-title: Coord. Chem. Rev.
– volume: 36
  start-page: 6178
  year: 2020
  end-page: 6187
  publication-title: Langmuir
– volume: 11
  start-page: 944
  year: 2020
  publication-title: Nat. Commun.
– volume: 110
  start-page: 7086
  year: 2006
  end-page: 7091
  publication-title: J. Phys. Chem. A
– volume: 24
  start-page: 12790
  year: 2018
  end-page: 12795
  publication-title: Chem. Eur. J.
– volume: 7
  start-page: 2105
  year: 2020
  end-page: 2112
  publication-title: Mater. Horiz.
– volume: 114
  start-page: 9090
  year: 2010
  end-page: 9097
  publication-title: J. Phys. Chem. A
– volume: 59 132
  start-page: 9393 9479
  year: 2020 2020
  end-page: 9397 9483
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 31
  start-page: 1332
  year: 1992
  end-page: 1337
  publication-title: Inorg. Chem.
– volume: 52 125
  start-page: 9682 9864
  year: 2013 2013
  end-page: 9685 9867
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 10018 10104
  year: 2020 2020
  end-page: 10022 10108
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 22624 22804
  year: 2021 2021
  end-page: 22638 22820
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 112
  start-page: 4541
  year: 2012
  end-page: 4568
  publication-title: Chem. Rev.
– volume: 13
  start-page: 429
  year: 2022
  publication-title: Nat. Commun.
– volume: 42
  start-page: 509
  year: 2009
  end-page: 518
  publication-title: Acc. Chem. Res.
– volume: 131
  start-page: 13572
  year: 2009
  end-page: 13573
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 339
  year: 1969
  end-page: 342
  publication-title: Chem. Phys. Lett.
– volume: 236
  year: 2020
  publication-title: Spectrochim. Acta Part A
– volume: 134
  start-page: 7715
  year: 2012
  end-page: 7724
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 275
  year: 2020
  end-page: 292
  publication-title: Mater. Today
– ident: e_1_2_9_106_1
  doi: 10.1039/C8MH01582A
– ident: e_1_2_9_41_2
  doi: 10.1016/j.ccr.2010.12.013
– ident: e_1_2_9_48_1
– ident: e_1_2_9_99_2
  doi: 10.1021/ma502160w
– ident: e_1_2_9_23_2
  doi: 10.1002/adma.201405070
– ident: e_1_2_9_18_2
  doi: 10.1021/acs.chemrev.7b00110
– ident: e_1_2_9_27_3
  doi: 10.1002/ange.201911331
– ident: e_1_2_9_77_2
  doi: 10.1016/j.saa.2020.118352
– ident: e_1_2_9_19_2
  doi: 10.31635/ccschem.020.202000433
– ident: e_1_2_9_47_2
  doi: 10.1002/chem.201802876
– ident: e_1_2_9_78_2
  doi: 10.1002/anie.202002555
– ident: e_1_2_9_51_1
– ident: e_1_2_9_8_2
  doi: 10.1021/ic00034a009
– ident: e_1_2_9_66_1
– ident: e_1_2_9_46_2
  doi: 10.1021/jp402666r
– ident: e_1_2_9_35_1
– ident: e_1_2_9_71_2
  doi: 10.1021/acs.macromol.5b02224
– ident: e_1_2_9_101_1
  doi: 10.1039/C9SC06518K
– ident: e_1_2_9_3_2
  doi: 10.1002/adma.201104772
– ident: e_1_2_9_82_2
  doi: 10.1002/adfm.202003693
– ident: e_1_2_9_37_3
  doi: 10.1002/ange.201500426
– ident: e_1_2_9_9_2
  doi: 10.1063/1.1676429
– ident: e_1_2_9_16_2
  doi: 10.1021/cr200166m
– ident: e_1_2_9_98_2
  doi: 10.1007/s11426-017-9114-4
– ident: e_1_2_9_5_3
  doi: 10.1002/ange.201912102
– ident: e_1_2_9_45_2
  doi: 10.1021/ja2107788
– ident: e_1_2_9_53_2
  doi: 10.1002/anie.202000608
– ident: e_1_2_9_59_2
  doi: 10.1021/jp063038s
– ident: e_1_2_9_65_2
  doi: 10.1021/jp3096538
– ident: e_1_2_9_43_2
  doi: 10.1021/jp1040234
– ident: e_1_2_9_62_1
– ident: e_1_2_9_87_2
  doi: 10.1021/acs.accounts.2c00038
– ident: e_1_2_9_17_3
  doi: 10.1002/ange.202009789
– ident: e_1_2_9_7_1
– ident: e_1_2_9_32_3
  doi: 10.1002/ange.201304321
– ident: e_1_2_9_31_2
  doi: 10.31635/ccschem.020.202000399
– ident: e_1_2_9_5_2
  doi: 10.1002/anie.201912102
– ident: e_1_2_9_21_1
– ident: e_1_2_9_12_2
  doi: 10.1021/ar300128j
– ident: e_1_2_9_61_1
  doi: 10.1002/anie.202115551
– ident: e_1_2_9_60_2
  doi: 10.1021/ar800153f
– ident: e_1_2_9_75_2
  doi: 10.1016/j.jphotochem.2011.06.009
– ident: e_1_2_9_40_2
  doi: 10.1021/ic048622z
– ident: e_1_2_9_1_1
  doi: 10.1021/cr500249p
– ident: e_1_2_9_29_2
  doi: 10.1002/ange.202000655
– ident: e_1_2_9_4_3
  doi: 10.1002/ange.201602445
– ident: e_1_2_9_81_2
  doi: 10.1021/ja902533f
– ident: e_1_2_9_97_1
– ident: e_1_2_9_13_2
  doi: 10.1002/adma.201503821
– ident: e_1_2_9_28_2
  doi: 10.1002/anie.201902890
– ident: e_1_2_9_56_2
  doi: 10.1039/D1SC02094C
– ident: e_1_2_9_94_1
– ident: e_1_2_9_67_2
  doi: 10.1021/jp0672813
– volume: 134
  year: 2022
  ident: e_1_2_9_105_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202211106
– ident: e_1_2_9_15_1
– ident: e_1_2_9_14_2
  doi: 10.1002/anie.201411004
– ident: e_1_2_9_64_2
  doi: 10.1021/ma020319z
– ident: e_1_2_9_105_1
  doi: 10.1002/anie.202211106
– ident: e_1_2_9_42_1
– ident: e_1_2_9_92_2
  doi: 10.1021/acsami.2c04141
– ident: e_1_2_9_74_2
  doi: 10.1039/c2jm30496a
– ident: e_1_2_9_34_2
  doi: 10.1021/ja0632207
– ident: e_1_2_9_57_2
  doi: 10.1002/anie.202203254
– ident: e_1_2_9_25_1
– volume: 134
  year: 2022
  ident: e_1_2_9_61_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202115551
– ident: e_1_2_9_73_1
– ident: e_1_2_9_102_1
– ident: e_1_2_9_39_1
– ident: e_1_2_9_36_2
  doi: 10.1038/s41467-017-00362-5
– volume: 134
  year: 2022
  ident: e_1_2_9_57_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202203254
– ident: e_1_2_9_49_2
  doi: 10.1016/0009-2614(69)80248-4
– ident: e_1_2_9_100_1
  doi: 10.1016/j.mattod.2019.08.010
– ident: e_1_2_9_93_1
  doi: 10.1021/jacs.7b11316
– ident: e_1_2_9_14_3
  doi: 10.1002/ange.201411004
– ident: e_1_2_9_53_3
  doi: 10.1002/ange.202000608
– ident: e_1_2_9_79_2
  doi: 10.1002/adma.202202182
– ident: e_1_2_9_90_1
– ident: e_1_2_9_107_1
  doi: 10.1038/s41467-022-28070-9
– ident: e_1_2_9_2_1
– ident: e_1_2_9_38_2
  doi: 10.1021/acs.orglett.9b03875
– ident: e_1_2_9_55_1
– ident: e_1_2_9_27_2
  doi: 10.1002/anie.201911331
– ident: e_1_2_9_95_3
  doi: 10.1002/ange.202000792
– ident: e_1_2_9_10_2
  doi: 10.1021/j100256a038
– ident: e_1_2_9_33_2
  doi: 10.1002/adfm.201902803
– ident: e_1_2_9_30_1
– ident: e_1_2_9_17_2
  doi: 10.1002/anie.202009789
– ident: e_1_2_9_78_3
  doi: 10.1002/ange.202002555
– ident: e_1_2_9_72_2
  doi: 10.1021/jacs.2c01248
– ident: e_1_2_9_50_2
  doi: 10.1038/s41578-020-0223-z
– ident: e_1_2_9_11_1
– ident: e_1_2_9_63_2
  doi: 10.1021/jp311884b
– ident: e_1_2_9_38_3
  doi: 10.31635/ccschem.021.202000731
– ident: e_1_2_9_6_1
  doi: 10.1039/df9500900014
– ident: e_1_2_9_104_2
  doi: 10.1038/s41467-022-30368-7
– ident: e_1_2_9_52_2
  doi: 10.1002/adfm.201802407
– ident: e_1_2_9_88_2
  doi: 10.1039/D0CS01087A
– ident: e_1_2_9_44_2
  doi: 10.1021/ja903947b
– ident: e_1_2_9_76_1
– ident: e_1_2_9_4_2
  doi: 10.1002/anie.201602445
– ident: e_1_2_9_108_1
  doi: 10.1021/acs.langmuir.0c00636
– ident: e_1_2_9_70_1
– ident: e_1_2_9_95_2
  doi: 10.1002/anie.202000792
– ident: e_1_2_9_85_2
  doi: 10.1126/sciadv.abl8392
– ident: e_1_2_9_28_3
  doi: 10.1002/ange.201902890
– ident: e_1_2_9_96_2
  doi: 10.1021/jacs.1c09272
– ident: e_1_2_9_24_1
  doi: 10.1021/acsenergylett.8b00661
– ident: e_1_2_9_84_2
  doi: 10.1038/s41467-020-14792-1
– ident: e_1_2_9_29_1
  doi: 10.1002/anie.202000655
– ident: e_1_2_9_37_2
  doi: 10.1002/anie.201500426
– ident: e_1_2_9_58_1
– ident: e_1_2_9_68_2
  doi: 10.1039/C5SC01945A
– ident: e_1_2_9_103_2
  doi: 10.1039/D0MH00688B
– ident: e_1_2_9_89_2
  doi: 10.1021/jacsau.1c00311
– ident: e_1_2_9_86_1
– ident: e_1_2_9_91_2
  doi: 10.1038/s41467-019-11749-x
– ident: e_1_2_9_20_1
  doi: 10.1021/ja062677d
– ident: e_1_2_9_54_2
  doi: 10.1016/j.cej.2021.132288
– ident: e_1_2_9_32_2
  doi: 10.1002/anie.201304321
– ident: e_1_2_9_83_1
– ident: e_1_2_9_69_1
  doi: 10.1021/jp061409z
– ident: e_1_2_9_80_1
– ident: e_1_2_9_26_2
  doi: 10.1038/s41566-019-0408-4
– ident: e_1_2_9_22_2
  doi: 10.1002/adma.202006781
SSID ssj0006279
Score 2.2638092
Snippet Excitation‐dependent emission (Ex‐de) materials have been of considerable academic interest and have potential applications in real life. Such multicolour...
Abstract Excitation‐dependent emission (Ex‐de) materials have been of considerable academic interest and have potential applications in real life. Such...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Chemistry
Chromophores
Excitation
Excitation-Dependent Emission
Information Encryption
Kasha's Rule
Luminescence
Multicolour Emission
Organic materials
Photochemicals
Title Excitation‐Dependent Multicolour Luminescence of Organic Materials: Internal Mechanism and Potential Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202214483
https://www.proquest.com/docview/2769882617
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeD7KIXf4vTKTkInrqtaZam3sbcHOKGiIPdSpImILpNtg7Ek3-Cf6N_iXlNux9eBD32kJImL8n3pe99HkIXgirNVGA8ExHroFDOsjIvXsK59GkSSj-rsdTrs-6A3g4bw5UsfseHWFy4wcrI9mtY4ELOaktoKMTeW_-OAPOLA-4TaHqgih6W_ChGHGyvTqnHraNRUBvrpLbefP1UWkrNVcGanTidHSSKvrpAk-fqPJVV9f4D4_ifj9lF27kcxU1nP3toQ4_30WarqAJ3gGbtN5VjvL8-Pq_zkrkpzhJ3gXg9n-K7-QiC5xVsEnhisMvvVLgnUmffVzi_eHzBPQ2pxk-zERbjBN9PUohWgh6s_Eg_RINO-7HV9fJCDZ7yrXzyfBUQw6QhNCANkyTKBJpFAPdqGF8GieCgMgkNmWFWDkUaMHQ6ASmnG8zo4AiVxpOxPkbY6o2QizoPpaxTw0REMrcw8YXm2vqWZXRZTFT86ngcsSMvkxgGMV4MYhlVinmM83U5i0nIIutTWNlWRiSbkF_eEjf7N-3F08lfGp2iLahR70K9K6iUTuf6zCqZVJ5n1voNrCfsLQ
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMdPPAZYeCPK0wMSU6BxHMdhQ1Ao0FYIgcQWxY4tIWiLaCohJj4Cn5FPgi9OWmBBgjGDI8f22f9z7n4HsJsypbkKjGdiah0UJnhR5sXLhJA-yyLpFzWW2h3evGUXd2EVTYi5MI4PMbpwQ8so9ms0cLyQPhhTQzH43jp4FKFfIpiEaWvzIdrmyfWYIMWpw-3VGfOEdTUqbmOdHnxv__1cGovNr5K1OHNO50FWvXWhJg_7w1zuq9cfIMd_fc4CzJWKlBy5JbQIE7q3BDPHVSG4ZRg0XlRJ8v54ez8pq-bmpMjdRej18Jm0hl2Mn1e4T5C-IS7FU5F2mrslfkjKu8dH0taYbXw_6JK0l5Grfo4BS9iDL__SV-D2tHFz3PTKWg2e8q2C8nwVUMOloSygockyZQLNY-R7hcaXQZYKFJqURdxwq4hijSQ6naGa0yE3OliFqV6_p9eAWMkRibQuIinrzPA0poVnmPmpFtq6lzXYq2YqeXJIjsTBl2mCg5iMBrEGm9VEJqVpDhIa8di6FVa51YAWM_LLW5Kjzllj9LT-l0Y7MNO8abeS1nnncgNmsWS9i_zehKn8eai3rLDJ5XaxdD8BgxrwTQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSMCFHVFWH5A4BRrHdRxuiLasrRACiVuUeJEQtEU0lRAnPoFv5EvwxElbuCDBMQdHjmfGfs-ZeQOwlzCpuQyMZyJqCQoTPG_z4ikhUp-pMPXzHkutNj-7Yxf3tfuxKn6nDzG8cMPIyPdrDPBnZQ5HoqGYe2_5HUXNLxFMwjTjAUX6Vb8ZCUhx6tT2qox5wjKNUraxSg-_j_9-LI2w5jhizY-c5gIk5WRdpsnjwSBLD-TbDx3H_3zNIswXeJQcOwdaggndXYbZk7IN3Ar0G6-y0PH-fP-oFz1zM5JX7qLk9eCFXA06mD0vcZcgPUNcgackrSRzDn5EipvHJ9LSWGv80O-QpKvIdS_DdCWcwdif9FW4azZuT868olODJ32LnzxfBtTw1FAW0JpRSppA8wjVvWrGTwOVCISZlIXccIuHIo06dFohltM1bnSwBlPdXlevA7GAIxRJVYRpWmWGJxHNeaHyEy20JZcV2C8NFT87QY7YSS_TGBcxHi5iBbZKO8ZFYPZjGvLIkgqL2ypAc4P88pb4uH3aGD5t_GXQLsxc15vx1Xn7chPmsF-9S_vegqnsZaC3LarJ0p3ccb8Avw7u_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excitation%E2%80%90Dependent+Multicolour+Luminescence+of+Organic+Materials%3A+Internal+Mechanism+and+Potential+Applications&rft.jtitle=Angewandte+Chemie&rft.au=Shen%2C+Yunxia&rft.au=An%2C+Zhongfu&rft.au=Liu%2C+Haichao&rft.au=Yang%2C+Bing&rft.date=2023-02-01&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=135&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fange.202214483&rft.externalDBID=10.1002%252Fange.202214483&rft.externalDocID=ANGE202214483
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon