Chiral Self‐Assembled Film from Semiconductor Nanorods with Ultra‐Strong Circularly Polarized Luminescence
Chiroptical nanomaterials have generated significant levels of interest for generating strong circularly polarized luminescence (CPL) signals. We used the Langmuir–Schaeffer technique to generate the continuous and compact assembly of CdSe/CdS chiral film. We assembled achiral CdSe/CdS nanorods by c...
Saved in:
Published in | Angewandte Chemie Vol. 133; no. 50; pp. 26480 - 26484 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
06.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chiroptical nanomaterials have generated significant levels of interest for generating strong circularly polarized luminescence (CPL) signals. We used the Langmuir–Schaeffer technique to generate the continuous and compact assembly of CdSe/CdS chiral film. We assembled achiral CdSe/CdS nanorods by controlling the number of layers and angles between different layers. This allowed us to tailor chiroptical properties to achieve high CPL signals. The chiral film was symmetrical and had the highest circular dichroism (CD) response and CPL signals with ten layers (RH (right‐handed)‐/LH (left‐handed)‐5 + 5 layers) and a 45° inter‐angle. Specifically, RH‐5+5 of the chiral film exhibited 1431 mdeg of CD activity and strong CPL signals with a dissymmetry factor (glum) of 0.0997. The helical stacked crystal plates with linear birefringence resulted in strong circular birefringence, as determined by the Reusch model. Electromagnetic simulations indicated that such remarkable optical activity was attributed to the birefringence and dichroism of the well‐aligned CdSe/CdS nanorod layers in the chiral films. Under right/left circular polarized (RCP/LCP) light excitation, the well aligned semiconductor nanorods exhibited differences in the coupling efficiencies to RCP and LCP light. Our CdSe/CdS chiral films, which exhibit ultra‐strong CPL activity, will provide a novel strategy for the fabrication of chiroptical devices.
Achiral CdSe/CdS nanorods were assembled into chiral films using the Langmuir–Schaeffer technique. The CdSe/CdS nanorods films displayed intense circular dichroism response and circularly polarized luminescence signals, which can be adjusted by controlling the number of layers and angles between different layers. |
---|---|
AbstractList | Abstract
Chiroptical nanomaterials have generated significant levels of interest for generating strong circularly polarized luminescence (CPL) signals. We used the Langmuir–Schaeffer technique to generate the continuous and compact assembly of CdSe/CdS chiral film. We assembled achiral CdSe/CdS nanorods by controlling the number of layers and angles between different layers. This allowed us to tailor chiroptical properties to achieve high CPL signals. The chiral film was symmetrical and had the highest circular dichroism (CD) response and CPL signals with ten layers (RH (right‐handed)‐/LH (left‐handed)‐5 + 5 layers) and a 45° inter‐angle. Specifically, RH‐5+5 of the chiral film exhibited 1431 mdeg of CD activity and strong CPL signals with a dissymmetry factor (glum) of 0.0997. The helical stacked crystal plates with linear birefringence resulted in strong circular birefringence, as determined by the Reusch model. Electromagnetic simulations indicated that such remarkable optical activity was attributed to the birefringence and dichroism of the well‐aligned CdSe/CdS nanorod layers in the chiral films. Under right/left circular polarized (RCP/LCP) light excitation, the well aligned semiconductor nanorods exhibited differences in the coupling efficiencies to RCP and LCP light. Our CdSe/CdS chiral films, which exhibit ultra‐strong CPL activity, will provide a novel strategy for the fabrication of chiroptical devices. Chiroptical nanomaterials have generated significant levels of interest for generating strong circularly polarized luminescence (CPL) signals. We used the Langmuir–Schaeffer technique to generate the continuous and compact assembly of CdSe/CdS chiral film. We assembled achiral CdSe/CdS nanorods by controlling the number of layers and angles between different layers. This allowed us to tailor chiroptical properties to achieve high CPL signals. The chiral film was symmetrical and had the highest circular dichroism (CD) response and CPL signals with ten layers (RH (right‐handed)‐/LH (left‐handed)‐5 + 5 layers) and a 45° inter‐angle. Specifically, RH‐5+5 of the chiral film exhibited 1431 mdeg of CD activity and strong CPL signals with a dissymmetry factor (glum) of 0.0997. The helical stacked crystal plates with linear birefringence resulted in strong circular birefringence, as determined by the Reusch model. Electromagnetic simulations indicated that such remarkable optical activity was attributed to the birefringence and dichroism of the well‐aligned CdSe/CdS nanorod layers in the chiral films. Under right/left circular polarized (RCP/LCP) light excitation, the well aligned semiconductor nanorods exhibited differences in the coupling efficiencies to RCP and LCP light. Our CdSe/CdS chiral films, which exhibit ultra‐strong CPL activity, will provide a novel strategy for the fabrication of chiroptical devices. Achiral CdSe/CdS nanorods were assembled into chiral films using the Langmuir–Schaeffer technique. The CdSe/CdS nanorods films displayed intense circular dichroism response and circularly polarized luminescence signals, which can be adjusted by controlling the number of layers and angles between different layers. Chiroptical nanomaterials have generated significant levels of interest for generating strong circularly polarized luminescence (CPL) signals. We used the Langmuir–Schaeffer technique to generate the continuous and compact assembly of CdSe/CdS chiral film. We assembled achiral CdSe/CdS nanorods by controlling the number of layers and angles between different layers. This allowed us to tailor chiroptical properties to achieve high CPL signals. The chiral film was symmetrical and had the highest circular dichroism (CD) response and CPL signals with ten layers (RH (right‐handed)‐/LH (left‐handed)‐5 + 5 layers) and a 45° inter‐angle. Specifically, RH‐5+5 of the chiral film exhibited 1431 mdeg of CD activity and strong CPL signals with a dissymmetry factor (glum) of 0.0997. The helical stacked crystal plates with linear birefringence resulted in strong circular birefringence, as determined by the Reusch model. Electromagnetic simulations indicated that such remarkable optical activity was attributed to the birefringence and dichroism of the well‐aligned CdSe/CdS nanorod layers in the chiral films. Under right/left circular polarized (RCP/LCP) light excitation, the well aligned semiconductor nanorods exhibited differences in the coupling efficiencies to RCP and LCP light. Our CdSe/CdS chiral films, which exhibit ultra‐strong CPL activity, will provide a novel strategy for the fabrication of chiroptical devices. |
Author | Xu, Liguang Chen, Chen Ma, Wei Xu, Chuanlai Kuang, Hua Chen, Lijing Hao, Changlong Cai, Jiarong |
Author_xml | – sequence: 1 givenname: Lijing surname: Chen fullname: Chen, Lijing organization: Jiangnan University – sequence: 2 givenname: Changlong surname: Hao fullname: Hao, Changlong organization: Jiangnan University – sequence: 3 givenname: Jiarong surname: Cai fullname: Cai, Jiarong organization: Jiangnan University – sequence: 4 givenname: Chen surname: Chen fullname: Chen, Chen organization: Jiangnan University – sequence: 5 givenname: Wei surname: Ma fullname: Ma, Wei email: mawei209@126.com organization: Jiangnan University – sequence: 6 givenname: Chuanlai surname: Xu fullname: Xu, Chuanlai organization: Jiangnan University – sequence: 7 givenname: Liguang surname: Xu fullname: Xu, Liguang organization: Jiangnan University – sequence: 8 givenname: Hua orcidid: 0000-0002-2724-8722 surname: Kuang fullname: Kuang, Hua email: kuangh@jiangnan.edu.cn organization: Jiangnan University |
BookMark | eNqFkM1Kw0AUhQdRsK1uXQdcp85PMkmWJbRVKFWoXYfJ5KadMpmpMwmlrnwEn9EnMaWiS1dncc93LnxDdGmsAYTuCB4TjOmDMBsYU0wJoXFKL9CAxJSELImTSzTAOIrClEbZNRp6v8MYc5pkA2TyrXJCByvQ9dfH58R7aEoNVTBTuglqZ5v-1ChpTdXJ1rpgKYx1tvLBQbXbYK1bJ3pu1TprNkGunOy0cPoYvNg-1Xu_tOgaZcBLMBJu0FUttIfbnxyh9Wz6mj-Gi-f5Uz5ZhJJwSkPGOS6BRinDFeE8S3kko6qUGSW0jrKaV2UaAQPASRynNWOJqBLRS6gwEUAEG6H78-7e2bcOfFvsbOdM_7KgHLMsTTJG-9b43JLOeu-gLvZONcIdC4KLk9Pi5LT4ddoD2Rk4KA3Hf9rFZDmf_rHfQ85_jg |
CitedBy_id | crossref_primary_10_1002_ange_202206520 crossref_primary_10_1002_anie_202208349 crossref_primary_10_1002_anie_202206520 crossref_primary_10_1002_ange_202208349 |
Cites_doi | 10.1126/science.aao7172 10.1002/ange.202103336 10.1021/nn404832f 10.1126/science.abd8576 10.1002/adma.201700177 10.1021/acsnano.9b09584 10.1039/D0CC05910B 10.1021/acsnano.0c03418 10.1002/anie.201903264 10.1002/ange.201701512 10.1002/anie.202103091 10.1038/s41565-019-0606-8 10.1002/adma.201900110 10.1021/acsnano.8b00112 10.1016/j.apcatb.2019.01.038 10.1021/acs.nanolett.9b02856 10.1038/s41578-020-0181-5 10.1021/jacs.6b06278 10.1038/s41586-018-0034-1 10.1126/science.aba0980 10.1002/anie.201701512 10.1039/C6CC09476G 10.1016/j.chempr.2021.06.009 10.1126/science.aaz7949 10.1039/C7MH00966F 10.1002/ange.201812642 10.1021/acs.chemrev.6b00755 10.1002/ange.201900052 10.1021/acsnano.8b08273 10.1038/s41551-020-00634-4 10.1002/adfm.201707237 10.1021/cr400477t 10.1002/anie.202103336 10.1126/science.abf9645 10.1126/science.aax5415 10.1002/anie.201812642 10.1002/anie.201900052 10.1038/nphoton.2013.176 10.1038/nphoton.2010.123 10.1002/ange.201903264 10.1002/ange.202103091 10.1021/jacs.7b10769 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/ange.202112582 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3757 |
EndPage | 26484 |
ExternalDocumentID | 10_1002_ange_202112582 ANGE202112582 |
Genre | article |
GrantInformation_xml | – fundername: National Key R&D Program of China funderid: 2017YFA0206902 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCUC ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K RGC ROL RWI RX1 RYL SUPJJ TN5 TUS UB1 UPT V2E W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~IA ~WT AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c1622-3660be24830d1669864c4dbc9212f49f6db84e3ee07558f337ad7a002d01ae1a3 |
IEDL.DBID | DR2 |
ISSN | 0044-8249 |
IngestDate | Thu Oct 10 17:08:31 EDT 2024 Fri Aug 23 01:48:36 EDT 2024 Sat Aug 24 00:58:57 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1622-3660be24830d1669864c4dbc9212f49f6db84e3ee07558f337ad7a002d01ae1a3 |
Notes | These authors contributed equally to this work. |
ORCID | 0000-0002-2724-8722 |
PQID | 2603987932 |
PQPubID | 866336 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2603987932 crossref_primary_10_1002_ange_202112582 wiley_primary_10_1002_ange_202112582_ANGE202112582 |
PublicationCentury | 2000 |
PublicationDate | December 6, 2021 |
PublicationDateYYYYMMDD | 2021-12-06 |
PublicationDate_xml | – month: 12 year: 2021 text: December 6, 2021 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 7 2018; 28 2021; 5 2018; 140 2019; 13 2020; 368 2020; 15 2019; 245 2019; 19 2020; 14 2020; 56 2017; 29 2017 2017; 56 129 2020; 32 2013; 7 2014; 114 2019; 365 2019 2019; 58 131 2017; 117 2017; 53 2020; 5 2018; 5 2018; 359 2018; 556 2021 2021; 60 133 2021; 371 2019; 29 2021; 372 2016; 138 2018; 12 2010; 4 e_1_2_6_30_1 e_1_2_6_17_3 e_1_2_6_19_1 e_1_2_6_19_2 e_1_2_6_36_1 e_1_2_6_13_2 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_38_1 e_1_2_6_15_2 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_2 e_1_2_6_7_1 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_24_2 e_1_2_6_3_1 e_1_2_6_22_2 Hao C. (e_1_2_6_2_1) 2019; 29 e_1_2_6_28_1 e_1_2_6_26_2 e_1_2_6_31_1 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_1 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_16_3 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_14_2 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_42_2 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_2 e_1_2_6_23_1 e_1_2_6_21_2 e_1_2_6_29_1 e_1_2_6_27_2 e_1_2_6_25_2 |
References_xml | – volume: 140 start-page: 3257 year: 2018 end-page: 3263 publication-title: J. Am. Chem. Soc. – volume: 114 start-page: 4496 year: 2014 end-page: 4539 publication-title: Chem. Rev. – volume: 60 133 start-page: 14595 14716 year: 2021 2021 end-page: 14600 14721 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 556 start-page: 360 year: 2018 end-page: 365 publication-title: Nature – volume: 5 start-page: 103 year: 2021 end-page: 113 publication-title: Nat. Biomed. Eng. – volume: 60 133 start-page: 14091 14210 year: 2021 2021 end-page: 14099 14218 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 12 start-page: 5341 year: 2018 end-page: 5350 publication-title: ACS Nano – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 371 start-page: 1368 year: 2021 publication-title: Science – volume: 5 start-page: 423 year: 2020 end-page: 439 publication-title: Nat. Rev. Mater. – volume: 359 start-page: 309 year: 2018 publication-title: Science – volume: 365 start-page: 1475 year: 2019 publication-title: Science – volume: 56 129 start-page: 5055 5137 year: 2017 2017 end-page: 5060 5142 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 549 year: 2010 end-page: 552 publication-title: Nat. Photonics – volume: 7 start-page: 11094 year: 2013 end-page: 11102 publication-title: ACS Nano – volume: 7 start-page: P2695 year: 2021 end-page: 2707 publication-title: Chem – volume: 245 start-page: 691 year: 2019 end-page: 697 publication-title: Appl. Catal. B – volume: 29 year: 2019 publication-title: Adv. Mater. – volume: 7 start-page: 634 year: 2013 end-page: 638 publication-title: Nat. Photonics – volume: 368 start-page: 1472 year: 2020 publication-title: Science – volume: 372 start-page: 729 year: 2021 publication-title: Science – volume: 14 start-page: 2373 year: 2020 end-page: 2384 publication-title: ACS Nano – volume: 13 start-page: 2804 year: 2019 end-page: 2811 publication-title: ACS Nano – volume: 56 start-page: 13649 year: 2020 end-page: 13652 publication-title: Chem. Commun. – volume: 138 start-page: 12211 year: 2016 end-page: 12218 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 1269 year: 2017 end-page: 1272 publication-title: Chem. Commun. – volume: 19 start-page: 8495 year: 2019 end-page: 8502 publication-title: Nano Lett. – volume: 58 131 start-page: 7783 7865 year: 2019 2019 end-page: 7787 7869 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 368 start-page: 642 year: 2020 publication-title: Science – volume: 58 131 start-page: 4978 5032 year: 2019 2019 end-page: 4982 5036 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 58 131 start-page: 844 854 year: 2019 2019 end-page: 848 858 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 15 start-page: 192 year: 2020 end-page: 197 publication-title: Nat. Nanotechnol. – volume: 5 start-page: 141 year: 2018 end-page: 161 publication-title: Mater. Horiz. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 8816 year: 2020 end-page: 8825 publication-title: ACS Nano – volume: 117 start-page: 8041 year: 2017 end-page: 8093 publication-title: Chem. Rev. – volume: 29 start-page: e1802075 year: 2019 ident: e_1_2_6_2_1 publication-title: Adv. Mater. contributor: fullname: Hao C. – ident: e_1_2_6_23_1 – ident: e_1_2_6_9_2 doi: 10.1126/science.aao7172 – ident: e_1_2_6_38_2 doi: 10.1002/ange.202103336 – ident: e_1_2_6_31_1 – ident: e_1_2_6_35_1 doi: 10.1021/nn404832f – ident: e_1_2_6_13_2 doi: 10.1126/science.abd8576 – ident: e_1_2_6_39_1 doi: 10.1002/adma.201700177 – ident: e_1_2_6_29_1 doi: 10.1021/acsnano.9b09584 – ident: e_1_2_6_32_2 doi: 10.1039/D0CC05910B – ident: e_1_2_6_36_1 doi: 10.1021/acsnano.0c03418 – ident: e_1_2_6_42_1 doi: 10.1002/anie.201903264 – ident: e_1_2_6_18_2 doi: 10.1002/ange.201701512 – ident: e_1_2_6_19_1 doi: 10.1002/anie.202103091 – ident: e_1_2_6_4_1 – ident: e_1_2_6_21_2 doi: 10.1038/s41565-019-0606-8 – ident: e_1_2_6_28_1 doi: 10.1002/adma.201900110 – ident: e_1_2_6_30_1 doi: 10.1021/acsnano.8b00112 – ident: e_1_2_6_22_2 doi: 10.1016/j.apcatb.2019.01.038 – ident: e_1_2_6_41_1 doi: 10.1021/acs.nanolett.9b02856 – ident: e_1_2_6_34_1 doi: 10.1038/s41578-020-0181-5 – ident: e_1_2_6_43_1 doi: 10.1021/jacs.6b06278 – ident: e_1_2_6_6_2 doi: 10.1038/s41586-018-0034-1 – ident: e_1_2_6_5_2 doi: 10.1126/science.aba0980 – ident: e_1_2_6_18_1 doi: 10.1002/anie.201701512 – ident: e_1_2_6_37_1 doi: 10.1039/C6CC09476G – ident: e_1_2_6_20_1 – ident: e_1_2_6_40_1 doi: 10.1016/j.chempr.2021.06.009 – ident: e_1_2_6_14_2 doi: 10.1126/science.aaz7949 – ident: e_1_2_6_27_2 doi: 10.1039/C7MH00966F – ident: e_1_2_6_16_3 doi: 10.1002/ange.201812642 – ident: e_1_2_6_10_2 doi: 10.1021/acs.chemrev.6b00755 – ident: e_1_2_6_11_1 – ident: e_1_2_6_17_3 doi: 10.1002/ange.201900052 – ident: e_1_2_6_33_2 doi: 10.1021/acsnano.8b08273 – ident: e_1_2_6_3_1 doi: 10.1038/s41551-020-00634-4 – ident: e_1_2_6_1_1 doi: 10.1002/adfm.201707237 – ident: e_1_2_6_26_2 doi: 10.1021/cr400477t – ident: e_1_2_6_38_1 doi: 10.1002/anie.202103336 – ident: e_1_2_6_7_1 doi: 10.1126/science.abf9645 – ident: e_1_2_6_12_2 doi: 10.1126/science.aax5415 – ident: e_1_2_6_16_2 doi: 10.1002/anie.201812642 – ident: e_1_2_6_8_1 – ident: e_1_2_6_17_2 doi: 10.1002/anie.201900052 – ident: e_1_2_6_24_2 doi: 10.1038/nphoton.2013.176 – ident: e_1_2_6_25_2 doi: 10.1038/nphoton.2010.123 – ident: e_1_2_6_42_2 doi: 10.1002/ange.201903264 – ident: e_1_2_6_19_2 doi: 10.1002/ange.202103091 – ident: e_1_2_6_15_2 doi: 10.1021/jacs.7b10769 |
SSID | ssj0006279 |
Score | 2.2140267 |
Snippet | Chiroptical nanomaterials have generated significant levels of interest for generating strong circularly polarized luminescence (CPL) signals. We used the... Abstract Chiroptical nanomaterials have generated significant levels of interest for generating strong circularly polarized luminescence (CPL) signals. We used... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 26480 |
SubjectTerms | Birefringence Cadmium selenides Cadmium sulfide Chemistry chirality Circular dichroism Circular polarization circularly polarized luminescence Dichroism Fabrication Luminescence Nanomaterials Nanorods Nanotechnology Optical activity self-assembled film semiconductor nanorods |
Title | Chiral Self‐Assembled Film from Semiconductor Nanorods with Ultra‐Strong Circularly Polarized Luminescence |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202112582 https://www.proquest.com/docview/2603987932 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELYQCyz8I34K8oDEFEhsx0nGqrRUCCoEVGKL7MSBijRFaTvQiUfgGXkS7pKmpSxIMCWRYyu2z9_dOXefCTnhRjDPCbTl-a5rCcEBB4U0lgRlw5VMjHAx3_mmI9tdcfXoPn7L4i_5IWYbbrgyCrzGBa708HxOGoqx9-DfgQPDXB9B2OEexnRd3M35oyQryfZsISwfHI2KtdFm54vVF7XS3NT8brAWGqe1TlT1rWWgycvZeKTPoskPGsf_dGaDrE3NUVov5WeTLJlsi6w0qlPgtknWeO7l8Ma9SZPP9w_8R9zXqYlpq5f2KSanQFEfxClD4thBTgGuBwDKQ4o7vLSbjnIF9e5xx_2JNnp5EfeavtFb9Kl7E2jpetzH2PsIMWaHdFvNh0bbmp7RYEWOxEQAKW1tmPC5HTtSItl7JGIdBaASExEkMta-MNwYME1cP-HcU7GnoNOx7SjjKL5LlrNBZvYIBdGwmTaekwSugItigc1AlURxkHAo2Sen1RyFryUVR1iSLrMQxy-cjd8-qVVTGE6X5DAEx40HPsARFLNiLn5pJax3Lpuzp4O_VDokq3hfhL_IGlke5WNzBEbMSB8XgvoFQqfqmw |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT4MwFG-MHvTit3F-9mDiiQltKXBcpnPqXIxuiTdCoegiY4ZtBz35J_g3-pf4HoxNvZjoiUBpQ9v3zXu_EnLEtWCO5SnDcW3bEIKDHBRSGxKUDQ9krIWN9c7Xbdnsist7u8wmxFqYAh9iGnBDzsjlNTI4BqRPZqihmHwPDh54MMx2QQovAM9zPL3h9HaGICVZAbdnCmG44GqUuI0mO_ne_7temhmbX03WXOc0Vogqv7ZINXmqjkeqGr7-AHL813RWyfLEIqW1goTWyJxO18livTwIboOk9cdeBm_c6ST-eHvH38R9leiINnpJn2J9CjT1gaJSxI4dZBQk9gDk8pBikJd2k1EWQL87DLo_0Hovy1Nfkxd6g2517xVGao37mH4fopjZJN3GWafeNCbHNBihJbEWQEpTaSZcbkaWlIj3HopIhR5oxVh4sYyUKzTXGqwT2405d4LICWDSkWkF2gr4FplPB6neJhSow2RKO1bs2QIuAfNMBtokjLyYQ0uFHJeb5D8XaBx-gbvMfFw_f7p-FbJX7qE_4cqhD74b91yQSNDM8s34ZRS_1j4_m97t_KXTIVlsdq5bfuuifbVLlvB5ng0j98j8KBvrfbBpRuogp9pP6G_usw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQSMCFHVFWH5A4pU1sx0mOqFD2qqJU6i3K4kBFmlZpe6AnPoFv5EuYSZqWckGCU5Q4tmJ7_GbGmXkm5JQrwSzD8TXLNk1NCA44KKTSJCgb7slICRPznR_q8rolbttm-1sWf84PMd1ww5WR4TUu8H4YVWakoRh7D_4dODDMtAGEl4QE8xfNoscZgZRkOdueLoRmg6dR0DbqrDJff14tzWzN7xZrpnJq68QrPjaPNHktj4Z-ORj_4HH8T282yNrEHqXnuQBtkgWVbJGVanEM3DZJqi-dFN5oqjj6fP_An8RdP1YhrXXiLsXsFCjqgjwlyBzbSyngdQ9QeUBxi5e24mHqQb0mbrk_02onzQJf4zfaQKe6M4aW7kddDL4PEGR2SKt2-VS91iaHNGiBITETQErdV0zYXA8NKZHtPRChHzigEyPhRDL0baG4UmCbmHbEueWFlgedDnXDU4bHd8li0kvUHqEgGzrzlWVEjing4jFHZ6BLgtCJOJSUyFkxR24_5-Jwc9Zl5uL4udPxK5HDYgrdyZocuOC5cccGPIJils3FL6245_Wry-nd_l8qnZDlxkXNvb-p3x2QVXychcLIQ7I4TEfqCAyaoX-cyewXLEjtYg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chiral+Self%E2%80%90Assembled+Film+from+Semiconductor+Nanorods+with+Ultra%E2%80%90Strong+Circularly+Polarized+Luminescence&rft.jtitle=Angewandte+Chemie&rft.au=Chen%2C+Lijing&rft.au=Hao%2C+Changlong&rft.au=Cai%2C+Jiarong&rft.au=Chen%2C+Chen&rft.date=2021-12-06&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=133&rft.issue=50&rft.spage=26480&rft.epage=26484&rft_id=info:doi/10.1002%2Fange.202112582&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ange_202112582 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon |