Chiral Self‐Assembled Film from Semiconductor Nanorods with Ultra‐Strong Circularly Polarized Luminescence

Chiroptical nanomaterials have generated significant levels of interest for generating strong circularly polarized luminescence (CPL) signals. We used the Langmuir–Schaeffer technique to generate the continuous and compact assembly of CdSe/CdS chiral film. We assembled achiral CdSe/CdS nanorods by c...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie Vol. 133; no. 50; pp. 26480 - 26484
Main Authors Chen, Lijing, Hao, Changlong, Cai, Jiarong, Chen, Chen, Ma, Wei, Xu, Chuanlai, Xu, Liguang, Kuang, Hua
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 06.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chiroptical nanomaterials have generated significant levels of interest for generating strong circularly polarized luminescence (CPL) signals. We used the Langmuir–Schaeffer technique to generate the continuous and compact assembly of CdSe/CdS chiral film. We assembled achiral CdSe/CdS nanorods by controlling the number of layers and angles between different layers. This allowed us to tailor chiroptical properties to achieve high CPL signals. The chiral film was symmetrical and had the highest circular dichroism (CD) response and CPL signals with ten layers (RH (right‐handed)‐/LH (left‐handed)‐5 + 5 layers) and a 45° inter‐angle. Specifically, RH‐5+5 of the chiral film exhibited 1431 mdeg of CD activity and strong CPL signals with a dissymmetry factor (glum) of 0.0997. The helical stacked crystal plates with linear birefringence resulted in strong circular birefringence, as determined by the Reusch model. Electromagnetic simulations indicated that such remarkable optical activity was attributed to the birefringence and dichroism of the well‐aligned CdSe/CdS nanorod layers in the chiral films. Under right/left circular polarized (RCP/LCP) light excitation, the well aligned semiconductor nanorods exhibited differences in the coupling efficiencies to RCP and LCP light. Our CdSe/CdS chiral films, which exhibit ultra‐strong CPL activity, will provide a novel strategy for the fabrication of chiroptical devices. Achiral CdSe/CdS nanorods were assembled into chiral films using the Langmuir–Schaeffer technique. The CdSe/CdS nanorods films displayed intense circular dichroism response and circularly polarized luminescence signals, which can be adjusted by controlling the number of layers and angles between different layers.
AbstractList Abstract Chiroptical nanomaterials have generated significant levels of interest for generating strong circularly polarized luminescence (CPL) signals. We used the Langmuir–Schaeffer technique to generate the continuous and compact assembly of CdSe/CdS chiral film. We assembled achiral CdSe/CdS nanorods by controlling the number of layers and angles between different layers. This allowed us to tailor chiroptical properties to achieve high CPL signals. The chiral film was symmetrical and had the highest circular dichroism (CD) response and CPL signals with ten layers (RH (right‐handed)‐/LH (left‐handed)‐5 + 5 layers) and a 45° inter‐angle. Specifically, RH‐5+5 of the chiral film exhibited 1431 mdeg of CD activity and strong CPL signals with a dissymmetry factor (glum) of 0.0997. The helical stacked crystal plates with linear birefringence resulted in strong circular birefringence, as determined by the Reusch model. Electromagnetic simulations indicated that such remarkable optical activity was attributed to the birefringence and dichroism of the well‐aligned CdSe/CdS nanorod layers in the chiral films. Under right/left circular polarized (RCP/LCP) light excitation, the well aligned semiconductor nanorods exhibited differences in the coupling efficiencies to RCP and LCP light. Our CdSe/CdS chiral films, which exhibit ultra‐strong CPL activity, will provide a novel strategy for the fabrication of chiroptical devices.
Chiroptical nanomaterials have generated significant levels of interest for generating strong circularly polarized luminescence (CPL) signals. We used the Langmuir–Schaeffer technique to generate the continuous and compact assembly of CdSe/CdS chiral film. We assembled achiral CdSe/CdS nanorods by controlling the number of layers and angles between different layers. This allowed us to tailor chiroptical properties to achieve high CPL signals. The chiral film was symmetrical and had the highest circular dichroism (CD) response and CPL signals with ten layers (RH (right‐handed)‐/LH (left‐handed)‐5 + 5 layers) and a 45° inter‐angle. Specifically, RH‐5+5 of the chiral film exhibited 1431 mdeg of CD activity and strong CPL signals with a dissymmetry factor (glum) of 0.0997. The helical stacked crystal plates with linear birefringence resulted in strong circular birefringence, as determined by the Reusch model. Electromagnetic simulations indicated that such remarkable optical activity was attributed to the birefringence and dichroism of the well‐aligned CdSe/CdS nanorod layers in the chiral films. Under right/left circular polarized (RCP/LCP) light excitation, the well aligned semiconductor nanorods exhibited differences in the coupling efficiencies to RCP and LCP light. Our CdSe/CdS chiral films, which exhibit ultra‐strong CPL activity, will provide a novel strategy for the fabrication of chiroptical devices. Achiral CdSe/CdS nanorods were assembled into chiral films using the Langmuir–Schaeffer technique. The CdSe/CdS nanorods films displayed intense circular dichroism response and circularly polarized luminescence signals, which can be adjusted by controlling the number of layers and angles between different layers.
Chiroptical nanomaterials have generated significant levels of interest for generating strong circularly polarized luminescence (CPL) signals. We used the Langmuir–Schaeffer technique to generate the continuous and compact assembly of CdSe/CdS chiral film. We assembled achiral CdSe/CdS nanorods by controlling the number of layers and angles between different layers. This allowed us to tailor chiroptical properties to achieve high CPL signals. The chiral film was symmetrical and had the highest circular dichroism (CD) response and CPL signals with ten layers (RH (right‐handed)‐/LH (left‐handed)‐5 + 5 layers) and a 45° inter‐angle. Specifically, RH‐5+5 of the chiral film exhibited 1431 mdeg of CD activity and strong CPL signals with a dissymmetry factor (glum) of 0.0997. The helical stacked crystal plates with linear birefringence resulted in strong circular birefringence, as determined by the Reusch model. Electromagnetic simulations indicated that such remarkable optical activity was attributed to the birefringence and dichroism of the well‐aligned CdSe/CdS nanorod layers in the chiral films. Under right/left circular polarized (RCP/LCP) light excitation, the well aligned semiconductor nanorods exhibited differences in the coupling efficiencies to RCP and LCP light. Our CdSe/CdS chiral films, which exhibit ultra‐strong CPL activity, will provide a novel strategy for the fabrication of chiroptical devices.
Author Xu, Liguang
Chen, Chen
Ma, Wei
Xu, Chuanlai
Kuang, Hua
Chen, Lijing
Hao, Changlong
Cai, Jiarong
Author_xml – sequence: 1
  givenname: Lijing
  surname: Chen
  fullname: Chen, Lijing
  organization: Jiangnan University
– sequence: 2
  givenname: Changlong
  surname: Hao
  fullname: Hao, Changlong
  organization: Jiangnan University
– sequence: 3
  givenname: Jiarong
  surname: Cai
  fullname: Cai, Jiarong
  organization: Jiangnan University
– sequence: 4
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
  organization: Jiangnan University
– sequence: 5
  givenname: Wei
  surname: Ma
  fullname: Ma, Wei
  email: mawei209@126.com
  organization: Jiangnan University
– sequence: 6
  givenname: Chuanlai
  surname: Xu
  fullname: Xu, Chuanlai
  organization: Jiangnan University
– sequence: 7
  givenname: Liguang
  surname: Xu
  fullname: Xu, Liguang
  organization: Jiangnan University
– sequence: 8
  givenname: Hua
  orcidid: 0000-0002-2724-8722
  surname: Kuang
  fullname: Kuang, Hua
  email: kuangh@jiangnan.edu.cn
  organization: Jiangnan University
BookMark eNqFkM1Kw0AUhQdRsK1uXQdcp85PMkmWJbRVKFWoXYfJ5KadMpmpMwmlrnwEn9EnMaWiS1dncc93LnxDdGmsAYTuCB4TjOmDMBsYU0wJoXFKL9CAxJSELImTSzTAOIrClEbZNRp6v8MYc5pkA2TyrXJCByvQ9dfH58R7aEoNVTBTuglqZ5v-1ChpTdXJ1rpgKYx1tvLBQbXbYK1bJ3pu1TprNkGunOy0cPoYvNg-1Xu_tOgaZcBLMBJu0FUttIfbnxyh9Wz6mj-Gi-f5Uz5ZhJJwSkPGOS6BRinDFeE8S3kko6qUGSW0jrKaV2UaAQPASRynNWOJqBLRS6gwEUAEG6H78-7e2bcOfFvsbOdM_7KgHLMsTTJG-9b43JLOeu-gLvZONcIdC4KLk9Pi5LT4ddoD2Rk4KA3Hf9rFZDmf_rHfQ85_jg
CitedBy_id crossref_primary_10_1002_ange_202206520
crossref_primary_10_1002_anie_202208349
crossref_primary_10_1002_anie_202206520
crossref_primary_10_1002_ange_202208349
Cites_doi 10.1126/science.aao7172
10.1002/ange.202103336
10.1021/nn404832f
10.1126/science.abd8576
10.1002/adma.201700177
10.1021/acsnano.9b09584
10.1039/D0CC05910B
10.1021/acsnano.0c03418
10.1002/anie.201903264
10.1002/ange.201701512
10.1002/anie.202103091
10.1038/s41565-019-0606-8
10.1002/adma.201900110
10.1021/acsnano.8b00112
10.1016/j.apcatb.2019.01.038
10.1021/acs.nanolett.9b02856
10.1038/s41578-020-0181-5
10.1021/jacs.6b06278
10.1038/s41586-018-0034-1
10.1126/science.aba0980
10.1002/anie.201701512
10.1039/C6CC09476G
10.1016/j.chempr.2021.06.009
10.1126/science.aaz7949
10.1039/C7MH00966F
10.1002/ange.201812642
10.1021/acs.chemrev.6b00755
10.1002/ange.201900052
10.1021/acsnano.8b08273
10.1038/s41551-020-00634-4
10.1002/adfm.201707237
10.1021/cr400477t
10.1002/anie.202103336
10.1126/science.abf9645
10.1126/science.aax5415
10.1002/anie.201812642
10.1002/anie.201900052
10.1038/nphoton.2013.176
10.1038/nphoton.2010.123
10.1002/ange.201903264
10.1002/ange.202103091
10.1021/jacs.7b10769
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ange.202112582
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3757
EndPage 26484
ExternalDocumentID 10_1002_ange_202112582
ANGE202112582
Genre article
GrantInformation_xml – fundername: National Key R&D Program of China
  funderid: 2017YFA0206902
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCUC
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RGC
ROL
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~IA
~WT
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c1622-3660be24830d1669864c4dbc9212f49f6db84e3ee07558f337ad7a002d01ae1a3
IEDL.DBID DR2
ISSN 0044-8249
IngestDate Thu Oct 10 17:08:31 EDT 2024
Fri Aug 23 01:48:36 EDT 2024
Sat Aug 24 00:58:57 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 50
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1622-3660be24830d1669864c4dbc9212f49f6db84e3ee07558f337ad7a002d01ae1a3
Notes These authors contributed equally to this work.
ORCID 0000-0002-2724-8722
PQID 2603987932
PQPubID 866336
PageCount 5
ParticipantIDs proquest_journals_2603987932
crossref_primary_10_1002_ange_202112582
wiley_primary_10_1002_ange_202112582_ANGE202112582
PublicationCentury 2000
PublicationDate December 6, 2021
PublicationDateYYYYMMDD 2021-12-06
PublicationDate_xml – month: 12
  year: 2021
  text: December 6, 2021
  day: 06
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 7
2018; 28
2021; 5
2018; 140
2019; 13
2020; 368
2020; 15
2019; 245
2019; 19
2020; 14
2020; 56
2017; 29
2017 2017; 56 129
2020; 32
2013; 7
2014; 114
2019; 365
2019 2019; 58 131
2017; 117
2017; 53
2020; 5
2018; 5
2018; 359
2018; 556
2021 2021; 60 133
2021; 371
2019; 29
2021; 372
2016; 138
2018; 12
2010; 4
e_1_2_6_30_1
e_1_2_6_17_3
e_1_2_6_19_1
e_1_2_6_19_2
e_1_2_6_36_1
e_1_2_6_13_2
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_38_1
e_1_2_6_15_2
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_2
e_1_2_6_7_1
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_24_2
e_1_2_6_3_1
e_1_2_6_22_2
Hao C. (e_1_2_6_2_1) 2019; 29
e_1_2_6_28_1
e_1_2_6_26_2
e_1_2_6_31_1
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_1
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_16_3
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_14_2
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_42_2
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_2
e_1_2_6_23_1
e_1_2_6_21_2
e_1_2_6_29_1
e_1_2_6_27_2
e_1_2_6_25_2
References_xml – volume: 140
  start-page: 3257
  year: 2018
  end-page: 3263
  publication-title: J. Am. Chem. Soc.
– volume: 114
  start-page: 4496
  year: 2014
  end-page: 4539
  publication-title: Chem. Rev.
– volume: 60 133
  start-page: 14595 14716
  year: 2021 2021
  end-page: 14600 14721
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 556
  start-page: 360
  year: 2018
  end-page: 365
  publication-title: Nature
– volume: 5
  start-page: 103
  year: 2021
  end-page: 113
  publication-title: Nat. Biomed. Eng.
– volume: 60 133
  start-page: 14091 14210
  year: 2021 2021
  end-page: 14099 14218
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 12
  start-page: 5341
  year: 2018
  end-page: 5350
  publication-title: ACS Nano
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 371
  start-page: 1368
  year: 2021
  publication-title: Science
– volume: 5
  start-page: 423
  year: 2020
  end-page: 439
  publication-title: Nat. Rev. Mater.
– volume: 359
  start-page: 309
  year: 2018
  publication-title: Science
– volume: 365
  start-page: 1475
  year: 2019
  publication-title: Science
– volume: 56 129
  start-page: 5055 5137
  year: 2017 2017
  end-page: 5060 5142
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 549
  year: 2010
  end-page: 552
  publication-title: Nat. Photonics
– volume: 7
  start-page: 11094
  year: 2013
  end-page: 11102
  publication-title: ACS Nano
– volume: 7
  start-page: P2695
  year: 2021
  end-page: 2707
  publication-title: Chem
– volume: 245
  start-page: 691
  year: 2019
  end-page: 697
  publication-title: Appl. Catal. B
– volume: 29
  year: 2019
  publication-title: Adv. Mater.
– volume: 7
  start-page: 634
  year: 2013
  end-page: 638
  publication-title: Nat. Photonics
– volume: 368
  start-page: 1472
  year: 2020
  publication-title: Science
– volume: 372
  start-page: 729
  year: 2021
  publication-title: Science
– volume: 14
  start-page: 2373
  year: 2020
  end-page: 2384
  publication-title: ACS Nano
– volume: 13
  start-page: 2804
  year: 2019
  end-page: 2811
  publication-title: ACS Nano
– volume: 56
  start-page: 13649
  year: 2020
  end-page: 13652
  publication-title: Chem. Commun.
– volume: 138
  start-page: 12211
  year: 2016
  end-page: 12218
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 1269
  year: 2017
  end-page: 1272
  publication-title: Chem. Commun.
– volume: 19
  start-page: 8495
  year: 2019
  end-page: 8502
  publication-title: Nano Lett.
– volume: 58 131
  start-page: 7783 7865
  year: 2019 2019
  end-page: 7787 7869
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 368
  start-page: 642
  year: 2020
  publication-title: Science
– volume: 58 131
  start-page: 4978 5032
  year: 2019 2019
  end-page: 4982 5036
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 58 131
  start-page: 844 854
  year: 2019 2019
  end-page: 848 858
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 15
  start-page: 192
  year: 2020
  end-page: 197
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 141
  year: 2018
  end-page: 161
  publication-title: Mater. Horiz.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 8816
  year: 2020
  end-page: 8825
  publication-title: ACS Nano
– volume: 117
  start-page: 8041
  year: 2017
  end-page: 8093
  publication-title: Chem. Rev.
– volume: 29
  start-page: e1802075
  year: 2019
  ident: e_1_2_6_2_1
  publication-title: Adv. Mater.
  contributor:
    fullname: Hao C.
– ident: e_1_2_6_23_1
– ident: e_1_2_6_9_2
  doi: 10.1126/science.aao7172
– ident: e_1_2_6_38_2
  doi: 10.1002/ange.202103336
– ident: e_1_2_6_31_1
– ident: e_1_2_6_35_1
  doi: 10.1021/nn404832f
– ident: e_1_2_6_13_2
  doi: 10.1126/science.abd8576
– ident: e_1_2_6_39_1
  doi: 10.1002/adma.201700177
– ident: e_1_2_6_29_1
  doi: 10.1021/acsnano.9b09584
– ident: e_1_2_6_32_2
  doi: 10.1039/D0CC05910B
– ident: e_1_2_6_36_1
  doi: 10.1021/acsnano.0c03418
– ident: e_1_2_6_42_1
  doi: 10.1002/anie.201903264
– ident: e_1_2_6_18_2
  doi: 10.1002/ange.201701512
– ident: e_1_2_6_19_1
  doi: 10.1002/anie.202103091
– ident: e_1_2_6_4_1
– ident: e_1_2_6_21_2
  doi: 10.1038/s41565-019-0606-8
– ident: e_1_2_6_28_1
  doi: 10.1002/adma.201900110
– ident: e_1_2_6_30_1
  doi: 10.1021/acsnano.8b00112
– ident: e_1_2_6_22_2
  doi: 10.1016/j.apcatb.2019.01.038
– ident: e_1_2_6_41_1
  doi: 10.1021/acs.nanolett.9b02856
– ident: e_1_2_6_34_1
  doi: 10.1038/s41578-020-0181-5
– ident: e_1_2_6_43_1
  doi: 10.1021/jacs.6b06278
– ident: e_1_2_6_6_2
  doi: 10.1038/s41586-018-0034-1
– ident: e_1_2_6_5_2
  doi: 10.1126/science.aba0980
– ident: e_1_2_6_18_1
  doi: 10.1002/anie.201701512
– ident: e_1_2_6_37_1
  doi: 10.1039/C6CC09476G
– ident: e_1_2_6_20_1
– ident: e_1_2_6_40_1
  doi: 10.1016/j.chempr.2021.06.009
– ident: e_1_2_6_14_2
  doi: 10.1126/science.aaz7949
– ident: e_1_2_6_27_2
  doi: 10.1039/C7MH00966F
– ident: e_1_2_6_16_3
  doi: 10.1002/ange.201812642
– ident: e_1_2_6_10_2
  doi: 10.1021/acs.chemrev.6b00755
– ident: e_1_2_6_11_1
– ident: e_1_2_6_17_3
  doi: 10.1002/ange.201900052
– ident: e_1_2_6_33_2
  doi: 10.1021/acsnano.8b08273
– ident: e_1_2_6_3_1
  doi: 10.1038/s41551-020-00634-4
– ident: e_1_2_6_1_1
  doi: 10.1002/adfm.201707237
– ident: e_1_2_6_26_2
  doi: 10.1021/cr400477t
– ident: e_1_2_6_38_1
  doi: 10.1002/anie.202103336
– ident: e_1_2_6_7_1
  doi: 10.1126/science.abf9645
– ident: e_1_2_6_12_2
  doi: 10.1126/science.aax5415
– ident: e_1_2_6_16_2
  doi: 10.1002/anie.201812642
– ident: e_1_2_6_8_1
– ident: e_1_2_6_17_2
  doi: 10.1002/anie.201900052
– ident: e_1_2_6_24_2
  doi: 10.1038/nphoton.2013.176
– ident: e_1_2_6_25_2
  doi: 10.1038/nphoton.2010.123
– ident: e_1_2_6_42_2
  doi: 10.1002/ange.201903264
– ident: e_1_2_6_19_2
  doi: 10.1002/ange.202103091
– ident: e_1_2_6_15_2
  doi: 10.1021/jacs.7b10769
SSID ssj0006279
Score 2.2140267
Snippet Chiroptical nanomaterials have generated significant levels of interest for generating strong circularly polarized luminescence (CPL) signals. We used the...
Abstract Chiroptical nanomaterials have generated significant levels of interest for generating strong circularly polarized luminescence (CPL) signals. We used...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 26480
SubjectTerms Birefringence
Cadmium selenides
Cadmium sulfide
Chemistry
chirality
Circular dichroism
Circular polarization
circularly polarized luminescence
Dichroism
Fabrication
Luminescence
Nanomaterials
Nanorods
Nanotechnology
Optical activity
self-assembled film
semiconductor nanorods
Title Chiral Self‐Assembled Film from Semiconductor Nanorods with Ultra‐Strong Circularly Polarized Luminescence
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202112582
https://www.proquest.com/docview/2603987932
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELYQCyz8I34K8oDEFEhsx0nGqrRUCCoEVGKL7MSBijRFaTvQiUfgGXkS7pKmpSxIMCWRYyu2z9_dOXefCTnhRjDPCbTl-a5rCcEBB4U0lgRlw5VMjHAx3_mmI9tdcfXoPn7L4i_5IWYbbrgyCrzGBa708HxOGoqx9-DfgQPDXB9B2OEexnRd3M35oyQryfZsISwfHI2KtdFm54vVF7XS3NT8brAWGqe1TlT1rWWgycvZeKTPoskPGsf_dGaDrE3NUVov5WeTLJlsi6w0qlPgtknWeO7l8Ma9SZPP9w_8R9zXqYlpq5f2KSanQFEfxClD4thBTgGuBwDKQ4o7vLSbjnIF9e5xx_2JNnp5EfeavtFb9Kl7E2jpetzH2PsIMWaHdFvNh0bbmp7RYEWOxEQAKW1tmPC5HTtSItl7JGIdBaASExEkMta-MNwYME1cP-HcU7GnoNOx7SjjKL5LlrNBZvYIBdGwmTaekwSugItigc1AlURxkHAo2Sen1RyFryUVR1iSLrMQxy-cjd8-qVVTGE6X5DAEx40HPsARFLNiLn5pJax3Lpuzp4O_VDokq3hfhL_IGlke5WNzBEbMSB8XgvoFQqfqmw
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT4MwFG-MHvTit3F-9mDiiQltKXBcpnPqXIxuiTdCoegiY4ZtBz35J_g3-pf4HoxNvZjoiUBpQ9v3zXu_EnLEtWCO5SnDcW3bEIKDHBRSGxKUDQ9krIWN9c7Xbdnsist7u8wmxFqYAh9iGnBDzsjlNTI4BqRPZqihmHwPDh54MMx2QQovAM9zPL3h9HaGICVZAbdnCmG44GqUuI0mO_ne_7temhmbX03WXOc0Vogqv7ZINXmqjkeqGr7-AHL813RWyfLEIqW1goTWyJxO18livTwIboOk9cdeBm_c6ST-eHvH38R9leiINnpJn2J9CjT1gaJSxI4dZBQk9gDk8pBikJd2k1EWQL87DLo_0Hovy1Nfkxd6g2517xVGao37mH4fopjZJN3GWafeNCbHNBihJbEWQEpTaSZcbkaWlIj3HopIhR5oxVh4sYyUKzTXGqwT2405d4LICWDSkWkF2gr4FplPB6neJhSow2RKO1bs2QIuAfNMBtokjLyYQ0uFHJeb5D8XaBx-gbvMfFw_f7p-FbJX7qE_4cqhD74b91yQSNDM8s34ZRS_1j4_m97t_KXTIVlsdq5bfuuifbVLlvB5ng0j98j8KBvrfbBpRuogp9pP6G_usw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQSMCFHVFWH5A4pU1sx0mOqFD2qqJU6i3K4kBFmlZpe6AnPoFv5EuYSZqWckGCU5Q4tmJ7_GbGmXkm5JQrwSzD8TXLNk1NCA44KKTSJCgb7slICRPznR_q8rolbttm-1sWf84PMd1ww5WR4TUu8H4YVWakoRh7D_4dODDMtAGEl4QE8xfNoscZgZRkOdueLoRmg6dR0DbqrDJff14tzWzN7xZrpnJq68QrPjaPNHktj4Z-ORj_4HH8T282yNrEHqXnuQBtkgWVbJGVanEM3DZJqi-dFN5oqjj6fP_An8RdP1YhrXXiLsXsFCjqgjwlyBzbSyngdQ9QeUBxi5e24mHqQb0mbrk_02onzQJf4zfaQKe6M4aW7kddDL4PEGR2SKt2-VS91iaHNGiBITETQErdV0zYXA8NKZHtPRChHzigEyPhRDL0baG4UmCbmHbEueWFlgedDnXDU4bHd8li0kvUHqEgGzrzlWVEjing4jFHZ6BLgtCJOJSUyFkxR24_5-Jwc9Zl5uL4udPxK5HDYgrdyZocuOC5cccGPIJils3FL6245_Wry-nd_l8qnZDlxkXNvb-p3x2QVXychcLIQ7I4TEfqCAyaoX-cyewXLEjtYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chiral+Self%E2%80%90Assembled+Film+from+Semiconductor+Nanorods+with+Ultra%E2%80%90Strong+Circularly+Polarized+Luminescence&rft.jtitle=Angewandte+Chemie&rft.au=Chen%2C+Lijing&rft.au=Hao%2C+Changlong&rft.au=Cai%2C+Jiarong&rft.au=Chen%2C+Chen&rft.date=2021-12-06&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=133&rft.issue=50&rft.spage=26480&rft.epage=26484&rft_id=info:doi/10.1002%2Fange.202112582&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ange_202112582
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon