Red to Near‐Infrared Mechanochromism from Metal‐free Polycrystals: Noncovalent Conformational Locks Facilitating Wide‐Range Redshift
Piezochromic organic materials that present a large difference in fluorescence wavelength in the near‐infrared region have important potential applications; however, few such metal‐free luminophores have been reported. In this study, we design and prepare π‐conjugated electron acceptors whose planar...
Saved in:
Published in | Angewandte Chemie Vol. 133; no. 15; pp. 8591 - 8595 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
06.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Piezochromic organic materials that present a large difference in fluorescence wavelength in the near‐infrared region have important potential applications; however, few such metal‐free luminophores have been reported. In this study, we design and prepare π‐conjugated electron acceptors whose planar conformation can be locked by the noncovalent interactions. The planar fused‐ring geometry can narrow the optical band gap, enhance the molecular stability and rigidity, as well as increase the radiative rate. As expected, the polymorphs Re‐phase and Ni‐phase emit the high‐brightness fluorescence with wavelength maxima (λem,max) at 615 and 727 nm, respectively. Upon full grinding, the λem,max of Re‐phase is bathochromically shifted to 775 nm. The ground powder of Re‐phase becomes metastable as a consequence of noncovalent conformational locking and that the red to near‐infrared (large colour difference) mechanochromism arises from the high degree of conformational coplanarity. This strategy is both conceptually and synthetically simple and offers a promising approach to the development of organic piezochromic materials with wide‐range redshift and excellent penetrability.
Noncovalent conformational locks are shown to be an effective strategy to endow the highly coplanar luminophore with good stability and high fluorescence efficiency. The high degree of conformational coplanarity is responsible for red to near‐infrared mechanochromism of metal‐free crystals. |
---|---|
AbstractList | Piezochromic organic materials that present a large difference in fluorescence wavelength in the near‐infrared region have important potential applications; however, few such metal‐free luminophores have been reported. In this study, we design and prepare π‐conjugated electron acceptors whose planar conformation can be locked by the noncovalent interactions. The planar fused‐ring geometry can narrow the optical band gap, enhance the molecular stability and rigidity, as well as increase the radiative rate. As expected, the polymorphs Re‐phase and Ni‐phase emit the high‐brightness fluorescence with wavelength maxima (λem,max) at 615 and 727 nm, respectively. Upon full grinding, the λem,max of Re‐phase is bathochromically shifted to 775 nm. The ground powder of Re‐phase becomes metastable as a consequence of noncovalent conformational locking and that the red to near‐infrared (large colour difference) mechanochromism arises from the high degree of conformational coplanarity. This strategy is both conceptually and synthetically simple and offers a promising approach to the development of organic piezochromic materials with wide‐range redshift and excellent penetrability.
Noncovalent conformational locks are shown to be an effective strategy to endow the highly coplanar luminophore with good stability and high fluorescence efficiency. The high degree of conformational coplanarity is responsible for red to near‐infrared mechanochromism of metal‐free crystals. Abstract Piezochromic organic materials that present a large difference in fluorescence wavelength in the near‐infrared region have important potential applications; however, few such metal‐free luminophores have been reported. In this study, we design and prepare π‐conjugated electron acceptors whose planar conformation can be locked by the noncovalent interactions. The planar fused‐ring geometry can narrow the optical band gap, enhance the molecular stability and rigidity, as well as increase the radiative rate. As expected, the polymorphs Re‐phase and Ni‐phase emit the high‐brightness fluorescence with wavelength maxima ( λ em,max ) at 615 and 727 nm, respectively. Upon full grinding, the λ em,max of Re‐phase is bathochromically shifted to 775 nm. The ground powder of Re‐phase becomes metastable as a consequence of noncovalent conformational locking and that the red to near‐infrared (large colour difference) mechanochromism arises from the high degree of conformational coplanarity. This strategy is both conceptually and synthetically simple and offers a promising approach to the development of organic piezochromic materials with wide‐range redshift and excellent penetrability. Piezochromic organic materials that present a large difference in fluorescence wavelength in the near‐infrared region have important potential applications; however, few such metal‐free luminophores have been reported. In this study, we design and prepare π‐conjugated electron acceptors whose planar conformation can be locked by the noncovalent interactions. The planar fused‐ring geometry can narrow the optical band gap, enhance the molecular stability and rigidity, as well as increase the radiative rate. As expected, the polymorphs Re‐phase and Ni‐phase emit the high‐brightness fluorescence with wavelength maxima (λem,max) at 615 and 727 nm, respectively. Upon full grinding, the λem,max of Re‐phase is bathochromically shifted to 775 nm. The ground powder of Re‐phase becomes metastable as a consequence of noncovalent conformational locking and that the red to near‐infrared (large colour difference) mechanochromism arises from the high degree of conformational coplanarity. This strategy is both conceptually and synthetically simple and offers a promising approach to the development of organic piezochromic materials with wide‐range redshift and excellent penetrability. |
Author | Wang, Kunyan Shen, Yunxia Zhu, Chenfei Zhao, Sanhu Cao, Feng Zhang, Cheng Luo, Qing Song, Qingbao Lv, Xiaojing Lv, Chunyan Zhang, Yujian |
Author_xml | – sequence: 1 givenname: Chenfei surname: Zhu fullname: Zhu, Chenfei organization: Zhejiang University of Technology – sequence: 2 givenname: Qing surname: Luo fullname: Luo, Qing organization: Zhejiang University of Technology – sequence: 3 givenname: Yunxia surname: Shen fullname: Shen, Yunxia organization: Zhejiang University of Technology – sequence: 4 givenname: Chunyan surname: Lv fullname: Lv, Chunyan organization: Huzhou University – sequence: 5 givenname: Sanhu surname: Zhao fullname: Zhao, Sanhu organization: Xinzhou Teachers University – sequence: 6 givenname: Xiaojing surname: Lv fullname: Lv, Xiaojing organization: Zhejiang University of Technology – sequence: 7 givenname: Feng surname: Cao fullname: Cao, Feng email: caofeng@zjhu.edu.cn organization: Huzhou University – sequence: 8 givenname: Kunyan surname: Wang fullname: Wang, Kunyan organization: Huzhou University – sequence: 9 givenname: Qingbao surname: Song fullname: Song, Qingbao organization: Zhejiang University of Technology – sequence: 10 givenname: Cheng surname: Zhang fullname: Zhang, Cheng organization: Zhejiang University of Technology – sequence: 11 givenname: Yujian orcidid: 0000-0003-4638-0056 surname: Zhang fullname: Zhang, Yujian email: yjzhang@zjhu.edu.cn organization: Huzhou University |
BookMark | eNqFUEtPAjEYbIwmAnr13MTzYttt9-GNEEASREM0HjfdPmBxt8V20XDz7Mnf6C-xBKNHT5NvMjOZb7rg2FijALjAqI8RIlfcLFWfIBKOGOEj0MGM4ChOWXoMOghRGmWE5qeg6_0aIZSQNO-Aj4WSsLVwrrj7ev-cGu24C9StEiturFg521S-gTpgIFteB5V2SsF7W--E2_lA-Ws4t0bYV14r08KhNdq6hreVNbyGMyuePRxzUdVVG0izhE-VVCFnsa8MQwO_qnR7Bk50yFLnP9gDj-PRw_Ammt1NpsPBLBI4CQ9JGiuicSnzGEtRUkoQRWWSxjylkrIyoblIGMmkLGmuEWJaspjIslSCxhnL4h64PORunH3ZKt8Wa7t1oakvCEM5STDOWFD1DyrhrPdO6WLjqoa7XYFRsd-72JcvfvcOhvxgeKtqtftHXQzmk9Gf9xuDHorz |
CitedBy_id | crossref_primary_10_1002_anie_202207817 crossref_primary_10_1002_anie_202115551 crossref_primary_10_1002_ange_202115551 crossref_primary_10_1002_ange_202207817 crossref_primary_10_1002_chem_202300029 crossref_primary_10_1002_chem_202203797 crossref_primary_10_1002_ange_202207426 crossref_primary_10_1002_chem_202300049 crossref_primary_10_1002_anie_202207426 |
Cites_doi | 10.1021/jp902962h 10.1002/adma.201205043 10.1002/anie.201811542 10.1021/acs.chemrev.7b00084 10.1023/A:1011625728803 10.1021/ja1044665 10.1039/C8SC00833G 10.1246/bcsj.29.465 10.1002/ange.201806861 10.1021/acs.accounts.6b00239 10.1021/jacs.6b11057 10.1039/D0SC01095B 10.1021/jacs.7b00587 10.1038/s41566-017-0087-y 10.1002/ange.201811542 10.1002/adfm.201807623 10.1002/adom.201901836 10.1021/ja00366a051 10.1021/acs.accounts.7b00087 10.1021/ja0269082 10.1002/ange.202005933 10.1002/adfm.201606384 10.1002/anie.201507031 10.1002/anie.202005584 10.1002/ange.201105459 10.1039/C9SC02580D 10.1021/ja0637550 10.1002/anie.201914900 10.1039/C9SC06567A 10.1002/adom.201901021 10.1021/ja0677362 10.1002/anie.202005933 10.1002/anie.201105459 10.1039/c2cs35016e 10.1002/adma.202003471 10.1002/ange.201507031 10.1039/C9SC06441A 10.1002/ange.202005584 10.1039/D0SC01873B 10.1021/ja951345y 10.1021/ja046215g 10.1021/ja010986s 10.1002/adma.201808242 10.1002/adom.201600608 10.1021/ja403667s 10.1021/acs.jpclett.5b01090 10.1002/adma.201606025 10.1002/ange.201914900 10.1002/adfm.201200116 10.1002/anie.201806861 10.1021/acs.chemrev.5b00263 10.1002/chem.201705780 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/ange.202100301 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3757 |
EndPage | 8595 |
ExternalDocumentID | 10_1002_ange_202100301 ANGE202100301 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: Natural Science Foundation of Zhejiang Province funderid: LZ20E030001 – fundername: National Natural Science Foundation of China funderid: 52073089; 21875219 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCUC ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K RGC ROL RWI RX1 RYL SUPJJ TN5 TUS UB1 UPT V2E W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~IA ~WT AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c1621-d43e2f1bd931dcb442040b673a74d45b649c6528ddb49f005fd532dbbec438583 |
IEDL.DBID | DR2 |
ISSN | 0044-8249 |
IngestDate | Thu Oct 10 15:51:58 EDT 2024 Fri Aug 23 01:48:28 EDT 2024 Sat Aug 24 01:03:44 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1621-d43e2f1bd931dcb442040b673a74d45b649c6528ddb49f005fd532dbbec438583 |
Notes | These authors contributed equally to this work. |
ORCID | 0000-0003-4638-0056 |
PQID | 2509261185 |
PQPubID | 866336 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2509261185 crossref_primary_10_1002_ange_202100301 wiley_primary_10_1002_ange_202100301_ANGE202100301 |
PublicationCentury | 2000 |
PublicationDate | April 6, 2021 |
PublicationDateYYYYMMDD | 2021-04-06 |
PublicationDate_xml | – month: 04 year: 2021 text: April 6, 2021 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2001; 123 2015; 6 2007; 129 2013; 25 2004; 126 2019; 31 2019; 10 2017; 27 2020 2020; 59 132 2009; 113 1982; 104 2017; 29 2020; 11 2020; 32 2019 2019; 58 131 2017; 139 2017; 117 2018; 24 2016; 4 2020; 8 2017; 50 2018; 9 2016 2016; 55 128 1957; 61 2015; 115 2012 2012; 51 124 2002; 124 2018 2018; 57 130 2010; 132 2019; 29 2013; 135 1956; 29 2001; 37 2018; 12 2016; 49 2012; 22 2006; 128 1996; 118 2012; 41 e_1_2_2_2_3 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_49_1 e_1_2_2_6_1 e_1_2_2_22_2 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_60_3 e_1_2_2_41_2 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_43_2 e_1_2_2_45_1 e_1_2_2_26_2 e_1_2_2_60_2 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_59_2 e_1_2_2_38_2 e_1_2_2_11_1 Lippert V. E. Z. (e_1_2_2_35_2) 1957; 61 e_1_2_2_51_2 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_17_3 e_1_2_2_30_3 e_1_2_2_53_1 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_55_2 e_1_2_2_34_1 e_1_2_2_15_2 e_1_2_2_57_1 e_1_2_2_3_2 e_1_2_2_25_1 e_1_2_2_23_2 e_1_2_2_48_2 e_1_2_2_5_2 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_40_1 e_1_2_2_42_2 e_1_2_2_7_2 e_1_2_2_29_1 e_1_2_2_27_2 e_1_2_2_44_2 e_1_2_2_9_2 e_1_2_2_46_2 e_1_2_2_37_1 e_1_2_2_12_2 e_1_2_2_10_3 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_50_3 e_1_2_2_50_2 e_1_2_2_52_3 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_52_2 e_1_2_2_56_1 e_1_2_2_33_2 e_1_2_2_54_2 e_1_2_2_16_1 e_1_2_2_58_1 e_1_2_2_14_2 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 98 year: 2018 publication-title: Nat. Photonics – volume: 129 start-page: 1520 year: 2007 end-page: 1521 publication-title: J. Am. Chem. Soc. – volume: 126 start-page: 10232 year: 2004 end-page: 10233 publication-title: J. Am. Chem. Soc. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 59 132 start-page: 17580 17733 year: 2020 2020 end-page: 17586 17739 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 49 start-page: 1731 year: 2016 end-page: 1740 publication-title: Acc. Chem. Res. – volume: 115 start-page: 11718 year: 2015 end-page: 11940 publication-title: Chem. Rev. – volume: 10 start-page: 8367 year: 2019 end-page: 8373 publication-title: Chem. Sci. – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 4 start-page: 2109 year: 2016 end-page: 2118 publication-title: Adv. Opt. Mater. – volume: 41 start-page: 3878 year: 2012 end-page: 3896 publication-title: Chem. Soc. Rev. – volume: 29 start-page: 465 year: 1956 end-page: 470 publication-title: Bull. Chem. Soc. Jpn. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 124 start-page: 14410 year: 2002 end-page: 14415 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 4007 year: 2020 end-page: 4015 publication-title: Chem. Sci. – volume: 59 132 start-page: 13955 14059 year: 2020 2020 end-page: 13961 14065 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 123 start-page: 9412 year: 2001 end-page: 9417 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 2621 year: 2020 end-page: 2626 publication-title: Chem. Sci. – volume: 24 start-page: 3671 year: 2018 end-page: 3676 publication-title: Chem. Eur. J. – volume: 9 start-page: 5270 year: 2018 end-page: 5277 publication-title: Chem. Sci. – volume: 25 start-page: 2837 year: 2013 end-page: 2843 publication-title: Adv. Mater. – volume: 61 start-page: 962 year: 1957 publication-title: Electrochemistry – volume: 128 start-page: 15934 year: 2006 end-page: 15935 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 10475 year: 2013 end-page: 10483 publication-title: J. Am. Chem. Soc. – volume: 132 start-page: 13675 year: 2010 end-page: 13683 publication-title: J. Am. Chem. Soc. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 6020 year: 2020 end-page: 6025 publication-title: Chem. Sci. – volume: 113 start-page: 15845 year: 2009 publication-title: J. Phys. Chem. C – volume: 59 132 start-page: 9940 10026 year: 2020 2020 end-page: 9945 10031 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 51 124 start-page: 3532 3590 year: 2012 2012 end-page: 3554 3614 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 37 start-page: 871 year: 2001 end-page: 885 publication-title: Inorg. Mater. – volume: 57 130 start-page: 12727 12909 year: 2018 2018 end-page: 12732 12914 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 3429 year: 2015 end-page: 3436 publication-title: J. Phys. Chem. Lett. – volume: 58 131 start-page: 7922 8004 year: 2019 2019 end-page: 7932 8014 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 start-page: 1410 year: 2017 end-page: 1422 publication-title: Acc. Chem. Res. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 11 start-page: 2494 year: 2020 end-page: 2503 publication-title: Chem. Sci. – volume: 139 start-page: 436 year: 2017 end-page: 441 publication-title: J. Am. Chem. Soc. – volume: 118 start-page: 1949 year: 1996 end-page: 1960 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 6514 year: 2017 end-page: 6517 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 2797 year: 2012 end-page: 2803 publication-title: Adv. Funct. Mater. – volume: 117 start-page: 10291 year: 2017 end-page: 10318 publication-title: Chem. Rev. – volume: 55 128 start-page: 155 163 year: 2016 2016 end-page: 159 167 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 104 start-page: 630 year: 1982 end-page: 632 publication-title: J. Am. Chem. Soc. – ident: e_1_2_2_41_2 doi: 10.1021/jp902962h – ident: e_1_2_2_20_2 doi: 10.1002/adma.201205043 – ident: e_1_2_2_40_1 – ident: e_1_2_2_10_2 doi: 10.1002/anie.201811542 – ident: e_1_2_2_55_2 doi: 10.1021/acs.chemrev.7b00084 – ident: e_1_2_2_56_1 doi: 10.1023/A:1011625728803 – ident: e_1_2_2_57_1 doi: 10.1021/ja1044665 – ident: e_1_2_2_18_2 doi: 10.1039/C8SC00833G – ident: e_1_2_2_37_1 – ident: e_1_2_2_36_2 doi: 10.1246/bcsj.29.465 – ident: e_1_2_2_60_3 doi: 10.1002/ange.201806861 – ident: e_1_2_2_12_2 doi: 10.1021/acs.accounts.6b00239 – ident: e_1_2_2_45_1 – ident: e_1_2_2_29_1 – ident: e_1_2_2_3_2 doi: 10.1021/jacs.6b11057 – ident: e_1_2_2_4_2 doi: 10.1039/D0SC01095B – ident: e_1_2_2_19_2 doi: 10.1021/jacs.7b00587 – ident: e_1_2_2_15_2 doi: 10.1038/s41566-017-0087-y – ident: e_1_2_2_10_3 doi: 10.1002/ange.201811542 – ident: e_1_2_2_11_1 – ident: e_1_2_2_24_2 doi: 10.1002/adfm.201807623 – ident: e_1_2_2_25_1 – ident: e_1_2_2_33_2 doi: 10.1002/adom.201901836 – ident: e_1_2_2_46_2 doi: 10.1021/ja00366a051 – volume: 61 start-page: 962 year: 1957 ident: e_1_2_2_35_2 publication-title: Electrochemistry contributor: fullname: Lippert V. E. Z. – ident: e_1_2_2_13_2 doi: 10.1021/acs.accounts.7b00087 – ident: e_1_2_2_38_2 doi: 10.1021/ja0269082 – ident: e_1_2_2_58_1 – ident: e_1_2_2_17_3 doi: 10.1002/ange.202005933 – ident: e_1_2_2_42_2 doi: 10.1002/adfm.201606384 – ident: e_1_2_2_6_1 – ident: e_1_2_2_30_2 doi: 10.1002/anie.201507031 – ident: e_1_2_2_50_2 doi: 10.1002/anie.202005584 – ident: e_1_2_2_2_3 doi: 10.1002/ange.201105459 – ident: e_1_2_2_5_2 doi: 10.1039/C9SC02580D – ident: e_1_2_2_32_2 doi: 10.1021/ja0637550 – ident: e_1_2_2_49_1 – ident: e_1_2_2_52_2 doi: 10.1002/anie.201914900 – ident: e_1_2_2_43_2 doi: 10.1039/C9SC06567A – ident: e_1_2_2_1_1 – ident: e_1_2_2_51_2 doi: 10.1002/adom.201901021 – ident: e_1_2_2_59_2 doi: 10.1021/ja0677362 – ident: e_1_2_2_17_2 doi: 10.1002/anie.202005933 – ident: e_1_2_2_2_2 doi: 10.1002/anie.201105459 – ident: e_1_2_2_8_2 doi: 10.1039/c2cs35016e – ident: e_1_2_2_22_2 doi: 10.1002/adma.202003471 – ident: e_1_2_2_30_3 doi: 10.1002/ange.201507031 – ident: e_1_2_2_44_2 doi: 10.1039/C9SC06441A – ident: e_1_2_2_50_3 doi: 10.1002/ange.202005584 – ident: e_1_2_2_34_1 – ident: e_1_2_2_31_2 doi: 10.1039/D0SC01873B – ident: e_1_2_2_47_2 doi: 10.1021/ja951345y – ident: e_1_2_2_39_2 doi: 10.1021/ja046215g – ident: e_1_2_2_53_1 – ident: e_1_2_2_48_2 doi: 10.1021/ja010986s – ident: e_1_2_2_23_2 doi: 10.1002/adma.201808242 – ident: e_1_2_2_27_2 doi: 10.1002/adom.201600608 – ident: e_1_2_2_54_2 doi: 10.1021/ja403667s – ident: e_1_2_2_9_2 doi: 10.1021/acs.jpclett.5b01090 – ident: e_1_2_2_28_2 doi: 10.1002/adma.201606025 – ident: e_1_2_2_52_3 doi: 10.1002/ange.201914900 – ident: e_1_2_2_26_2 doi: 10.1002/adfm.201200116 – ident: e_1_2_2_60_2 doi: 10.1002/anie.201806861 – ident: e_1_2_2_7_2 doi: 10.1021/acs.chemrev.5b00263 – ident: e_1_2_2_16_1 – ident: e_1_2_2_21_1 – ident: e_1_2_2_14_2 doi: 10.1002/chem.201705780 |
SSID | ssj0006279 |
Score | 2.1953332 |
Snippet | Piezochromic organic materials that present a large difference in fluorescence wavelength in the near‐infrared region have important potential applications;... Abstract Piezochromic organic materials that present a large difference in fluorescence wavelength in the near‐infrared region have important potential... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 8591 |
SubjectTerms | Chemistry Conformation Coplanarity Fluorescence Locking Locks mechanochromism Near infrared radiation near-infrared noncovalent conformational locking Organic materials Polycrystals Red shift Rigidity Wavelength wide-range redshift |
Title | Red to Near‐Infrared Mechanochromism from Metal‐free Polycrystals: Noncovalent Conformational Locks Facilitating Wide‐Range Redshift |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202100301 https://www.proquest.com/docview/2509261185 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQCyy8EYWCPCAxBYjtuDUbAspDtEIVCLYofgGiJChJhzIxM_Eb-SWck6alLEiwRElkJ5fYd_7OvvuM0DblqslVw3jMWDgQRZxKGU9EIhDgbAti3NRAu8PPbtjFXXD3LYu_5IcYTbg5zSjstVPwSGZ7Y9JQF3sP_h24LA7VgxH2acPFdB13x_xRnJRke_uMeU1wNCrWxn2yN1l9clQaQ83vgLUYcVrzKKpkLQNNnnb7udxVrz9oHP_zMQtobghH8WHZfxbRlImX0MxRtQvcMnrvGo3zBHdAIz7fPs5jm7qQddw2LmU4UQ9pAkWfsUtTgZsA5aGUTY3BV0lvoNIBoM9edoA7SawS6NUwxmGXZVjlTMLLL8EkZ7gVqSFheHyPbx-1ged0ncAYJMgeHm2-gm5aJ9dHZ95w_wZP-Zz4nmbUEOtLLaivlWSMgMWQvEGjBtMskJwJxQPS1FoyYcEcWB1QoiV0K-bWK-kqmo6T2KwhzC0VRoogspIyHflSqaaRyrhVU1_LqIZ2qvYLX0qajrAkZCahEzUc_dsaqlfNGw7VNQsBBwpwJQG71BAp2umXp4SHndOT0dX6XyptoFl3XkQB8TqaztO-2QSAk8utohN_AWPh94Y |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VeqAX6FNdoNSHSj0FiOOYNTcELAvdjaoVqL1F8QtQIUHZcIBTzz3xG_klzCSb3dJLJbhESmQ7k3jG_sae-QzwJZKmK82WC4TzeOGGk0m5QGUqVuhsK-5oaWCYyP6JOPoZt9GElAvT8ENMF9zIMurxmgycFqQ3ZqyhFHyPDh76LATr5-Al2nxEhxjsjWYMUpI3dHubQgRddDVa3sZNvvG4_uN5aQY2_4as9ZzTWwLdStuEmvxav670urn9h8jxWZ_zGhYniJTtNCr0Bl64_C0s7LYHwb2DPyNnWVWwBI3i_vfdYe5LilpnQ0dZw4U5KwsseskoUwUfIprHUr50jn0vLm5MeYMA9GK8zZIiNwUqNk5zjBIN27RJfPkAR-Ux62Vmwhmen7If59ZhOyMSmKEE47NzX72Hk97-8W4_mBzhEJhQ8jCwInLch9qqKLRGC8Fx0NDYT9mWsCLWUigjY961VgvlcUTwNo641ahZgrYsow8wnxe5-whM-kg5reLM60jYLNTGdJ02jjZOQ6uzDnxtOzC9apg60oaTmackajr9tx1Ybfs3nVjsOEUoqNCbRPjSAV531H9aSXeSg_3p3fJTKn2Ghf7xcJAODpNvK_CKntdBQXIV5qvy2n1CvFPptVqjHwDM9vug |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RkGgvlKe6lIIPSJwCG9vxrntDwJZnhFYguEXxCxCQoGw4wKnnnvob-0s6Tja7wAWpvURKZDuTeMb-xp75DLDOhO4K3bEBtw4vVFNvUjaQqYwkOtuSWr80cBKL_XN-eBldvsjir_khRgtu3jKq8dob-INxW2PSUB97j_4duiwe1X-AKS5Y2wd17fbHBFKC1mx7bc6DLnoaDW1jm269rv96WhpjzZeItZpyep8hbYStI01uNx9Ltamf3_A4_s_XzMLMEI-S7VqB5mDCZvPwcac5Bm4BfvWtIWVOYjSJPz9_H2Su8DHr5MT6nOFcXxc5Fr0nPk8FHyKWx1KusJac5ndPunhC-Hk3-E7iPNM5qjVOcsSnGTZJk_jyYxyTB6SX6iFjeHZFLm6MxXb6XmCCEgyub1y5COe9vbOd_WB4gEOgQ0HDwHBmqQuVkSw0WnFOcchQosPSDjc8UoJLLSLaNUZx6XA8cCZi1CjUK-43LNkSTGZ5Zr8AEY5Jq2SUOsW4SUOlddcqbf22aWhU2oKNpv-Sh5qnI6kZmWniRU1G_7YFK033JkN7HSQIBCX6kgheWkCrfnqnlWQ7_rE3ulv-l0prMH2620uOD-Kjr_DJP64igsQKTJbFo_2GYKdUq5U-_wXn_vpP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Red+to+Near%E2%80%90Infrared+Mechanochromism+from+Metal%E2%80%90free+Polycrystals%3A+Noncovalent+Conformational+Locks+Facilitating+Wide%E2%80%90Range+Redshift&rft.jtitle=Angewandte+Chemie&rft.au=Zhu%2C+Chenfei&rft.au=Luo%2C+Qing&rft.au=Shen%2C+Yunxia&rft.au=Lv%2C+Chunyan&rft.date=2021-04-06&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=133&rft.issue=15&rft.spage=8591&rft.epage=8595&rft_id=info:doi/10.1002%2Fange.202100301&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ange_202100301 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon |