Red to Near‐Infrared Mechanochromism from Metal‐free Polycrystals: Noncovalent Conformational Locks Facilitating Wide‐Range Redshift

Piezochromic organic materials that present a large difference in fluorescence wavelength in the near‐infrared region have important potential applications; however, few such metal‐free luminophores have been reported. In this study, we design and prepare π‐conjugated electron acceptors whose planar...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie Vol. 133; no. 15; pp. 8591 - 8595
Main Authors Zhu, Chenfei, Luo, Qing, Shen, Yunxia, Lv, Chunyan, Zhao, Sanhu, Lv, Xiaojing, Cao, Feng, Wang, Kunyan, Song, Qingbao, Zhang, Cheng, Zhang, Yujian
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 06.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Piezochromic organic materials that present a large difference in fluorescence wavelength in the near‐infrared region have important potential applications; however, few such metal‐free luminophores have been reported. In this study, we design and prepare π‐conjugated electron acceptors whose planar conformation can be locked by the noncovalent interactions. The planar fused‐ring geometry can narrow the optical band gap, enhance the molecular stability and rigidity, as well as increase the radiative rate. As expected, the polymorphs Re‐phase and Ni‐phase emit the high‐brightness fluorescence with wavelength maxima (λem,max) at 615 and 727 nm, respectively. Upon full grinding, the λem,max of Re‐phase is bathochromically shifted to 775 nm. The ground powder of Re‐phase becomes metastable as a consequence of noncovalent conformational locking and that the red to near‐infrared (large colour difference) mechanochromism arises from the high degree of conformational coplanarity. This strategy is both conceptually and synthetically simple and offers a promising approach to the development of organic piezochromic materials with wide‐range redshift and excellent penetrability. Noncovalent conformational locks are shown to be an effective strategy to endow the highly coplanar luminophore with good stability and high fluorescence efficiency. The high degree of conformational coplanarity is responsible for red to near‐infrared mechanochromism of metal‐free crystals.
AbstractList Piezochromic organic materials that present a large difference in fluorescence wavelength in the near‐infrared region have important potential applications; however, few such metal‐free luminophores have been reported. In this study, we design and prepare π‐conjugated electron acceptors whose planar conformation can be locked by the noncovalent interactions. The planar fused‐ring geometry can narrow the optical band gap, enhance the molecular stability and rigidity, as well as increase the radiative rate. As expected, the polymorphs Re‐phase and Ni‐phase emit the high‐brightness fluorescence with wavelength maxima (λem,max) at 615 and 727 nm, respectively. Upon full grinding, the λem,max of Re‐phase is bathochromically shifted to 775 nm. The ground powder of Re‐phase becomes metastable as a consequence of noncovalent conformational locking and that the red to near‐infrared (large colour difference) mechanochromism arises from the high degree of conformational coplanarity. This strategy is both conceptually and synthetically simple and offers a promising approach to the development of organic piezochromic materials with wide‐range redshift and excellent penetrability. Noncovalent conformational locks are shown to be an effective strategy to endow the highly coplanar luminophore with good stability and high fluorescence efficiency. The high degree of conformational coplanarity is responsible for red to near‐infrared mechanochromism of metal‐free crystals.
Abstract Piezochromic organic materials that present a large difference in fluorescence wavelength in the near‐infrared region have important potential applications; however, few such metal‐free luminophores have been reported. In this study, we design and prepare π‐conjugated electron acceptors whose planar conformation can be locked by the noncovalent interactions. The planar fused‐ring geometry can narrow the optical band gap, enhance the molecular stability and rigidity, as well as increase the radiative rate. As expected, the polymorphs Re‐phase and Ni‐phase emit the high‐brightness fluorescence with wavelength maxima ( λ em,max ) at 615 and 727 nm, respectively. Upon full grinding, the λ em,max of Re‐phase is bathochromically shifted to 775 nm. The ground powder of Re‐phase becomes metastable as a consequence of noncovalent conformational locking and that the red to near‐infrared (large colour difference) mechanochromism arises from the high degree of conformational coplanarity. This strategy is both conceptually and synthetically simple and offers a promising approach to the development of organic piezochromic materials with wide‐range redshift and excellent penetrability.
Piezochromic organic materials that present a large difference in fluorescence wavelength in the near‐infrared region have important potential applications; however, few such metal‐free luminophores have been reported. In this study, we design and prepare π‐conjugated electron acceptors whose planar conformation can be locked by the noncovalent interactions. The planar fused‐ring geometry can narrow the optical band gap, enhance the molecular stability and rigidity, as well as increase the radiative rate. As expected, the polymorphs Re‐phase and Ni‐phase emit the high‐brightness fluorescence with wavelength maxima (λem,max) at 615 and 727 nm, respectively. Upon full grinding, the λem,max of Re‐phase is bathochromically shifted to 775 nm. The ground powder of Re‐phase becomes metastable as a consequence of noncovalent conformational locking and that the red to near‐infrared (large colour difference) mechanochromism arises from the high degree of conformational coplanarity. This strategy is both conceptually and synthetically simple and offers a promising approach to the development of organic piezochromic materials with wide‐range redshift and excellent penetrability.
Author Wang, Kunyan
Shen, Yunxia
Zhu, Chenfei
Zhao, Sanhu
Cao, Feng
Zhang, Cheng
Luo, Qing
Song, Qingbao
Lv, Xiaojing
Lv, Chunyan
Zhang, Yujian
Author_xml – sequence: 1
  givenname: Chenfei
  surname: Zhu
  fullname: Zhu, Chenfei
  organization: Zhejiang University of Technology
– sequence: 2
  givenname: Qing
  surname: Luo
  fullname: Luo, Qing
  organization: Zhejiang University of Technology
– sequence: 3
  givenname: Yunxia
  surname: Shen
  fullname: Shen, Yunxia
  organization: Zhejiang University of Technology
– sequence: 4
  givenname: Chunyan
  surname: Lv
  fullname: Lv, Chunyan
  organization: Huzhou University
– sequence: 5
  givenname: Sanhu
  surname: Zhao
  fullname: Zhao, Sanhu
  organization: Xinzhou Teachers University
– sequence: 6
  givenname: Xiaojing
  surname: Lv
  fullname: Lv, Xiaojing
  organization: Zhejiang University of Technology
– sequence: 7
  givenname: Feng
  surname: Cao
  fullname: Cao, Feng
  email: caofeng@zjhu.edu.cn
  organization: Huzhou University
– sequence: 8
  givenname: Kunyan
  surname: Wang
  fullname: Wang, Kunyan
  organization: Huzhou University
– sequence: 9
  givenname: Qingbao
  surname: Song
  fullname: Song, Qingbao
  organization: Zhejiang University of Technology
– sequence: 10
  givenname: Cheng
  surname: Zhang
  fullname: Zhang, Cheng
  organization: Zhejiang University of Technology
– sequence: 11
  givenname: Yujian
  orcidid: 0000-0003-4638-0056
  surname: Zhang
  fullname: Zhang, Yujian
  email: yjzhang@zjhu.edu.cn
  organization: Huzhou University
BookMark eNqFUEtPAjEYbIwmAnr13MTzYttt9-GNEEASREM0HjfdPmBxt8V20XDz7Mnf6C-xBKNHT5NvMjOZb7rg2FijALjAqI8RIlfcLFWfIBKOGOEj0MGM4ChOWXoMOghRGmWE5qeg6_0aIZSQNO-Aj4WSsLVwrrj7ev-cGu24C9StEiturFg521S-gTpgIFteB5V2SsF7W--E2_lA-Ws4t0bYV14r08KhNdq6hreVNbyGMyuePRxzUdVVG0izhE-VVCFnsa8MQwO_qnR7Bk50yFLnP9gDj-PRw_Ammt1NpsPBLBI4CQ9JGiuicSnzGEtRUkoQRWWSxjylkrIyoblIGMmkLGmuEWJaspjIslSCxhnL4h64PORunH3ZKt8Wa7t1oakvCEM5STDOWFD1DyrhrPdO6WLjqoa7XYFRsd-72JcvfvcOhvxgeKtqtftHXQzmk9Gf9xuDHorz
CitedBy_id crossref_primary_10_1002_anie_202207817
crossref_primary_10_1002_anie_202115551
crossref_primary_10_1002_ange_202115551
crossref_primary_10_1002_ange_202207817
crossref_primary_10_1002_chem_202300029
crossref_primary_10_1002_chem_202203797
crossref_primary_10_1002_ange_202207426
crossref_primary_10_1002_chem_202300049
crossref_primary_10_1002_anie_202207426
Cites_doi 10.1021/jp902962h
10.1002/adma.201205043
10.1002/anie.201811542
10.1021/acs.chemrev.7b00084
10.1023/A:1011625728803
10.1021/ja1044665
10.1039/C8SC00833G
10.1246/bcsj.29.465
10.1002/ange.201806861
10.1021/acs.accounts.6b00239
10.1021/jacs.6b11057
10.1039/D0SC01095B
10.1021/jacs.7b00587
10.1038/s41566-017-0087-y
10.1002/ange.201811542
10.1002/adfm.201807623
10.1002/adom.201901836
10.1021/ja00366a051
10.1021/acs.accounts.7b00087
10.1021/ja0269082
10.1002/ange.202005933
10.1002/adfm.201606384
10.1002/anie.201507031
10.1002/anie.202005584
10.1002/ange.201105459
10.1039/C9SC02580D
10.1021/ja0637550
10.1002/anie.201914900
10.1039/C9SC06567A
10.1002/adom.201901021
10.1021/ja0677362
10.1002/anie.202005933
10.1002/anie.201105459
10.1039/c2cs35016e
10.1002/adma.202003471
10.1002/ange.201507031
10.1039/C9SC06441A
10.1002/ange.202005584
10.1039/D0SC01873B
10.1021/ja951345y
10.1021/ja046215g
10.1021/ja010986s
10.1002/adma.201808242
10.1002/adom.201600608
10.1021/ja403667s
10.1021/acs.jpclett.5b01090
10.1002/adma.201606025
10.1002/ange.201914900
10.1002/adfm.201200116
10.1002/anie.201806861
10.1021/acs.chemrev.5b00263
10.1002/chem.201705780
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ange.202100301
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3757
EndPage 8595
ExternalDocumentID 10_1002_ange_202100301
ANGE202100301
Genre shortCommunication
GrantInformation_xml – fundername: Natural Science Foundation of Zhejiang Province
  funderid: LZ20E030001
– fundername: National Natural Science Foundation of China
  funderid: 52073089; 21875219
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCUC
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RGC
ROL
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~IA
~WT
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c1621-d43e2f1bd931dcb442040b673a74d45b649c6528ddb49f005fd532dbbec438583
IEDL.DBID DR2
ISSN 0044-8249
IngestDate Thu Oct 10 15:51:58 EDT 2024
Fri Aug 23 01:48:28 EDT 2024
Sat Aug 24 01:03:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1621-d43e2f1bd931dcb442040b673a74d45b649c6528ddb49f005fd532dbbec438583
Notes These authors contributed equally to this work.
ORCID 0000-0003-4638-0056
PQID 2509261185
PQPubID 866336
PageCount 5
ParticipantIDs proquest_journals_2509261185
crossref_primary_10_1002_ange_202100301
wiley_primary_10_1002_ange_202100301_ANGE202100301
PublicationCentury 2000
PublicationDate April 6, 2021
PublicationDateYYYYMMDD 2021-04-06
PublicationDate_xml – month: 04
  year: 2021
  text: April 6, 2021
  day: 06
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2001; 123
2015; 6
2007; 129
2013; 25
2004; 126
2019; 31
2019; 10
2017; 27
2020 2020; 59 132
2009; 113
1982; 104
2017; 29
2020; 11
2020; 32
2019 2019; 58 131
2017; 139
2017; 117
2018; 24
2016; 4
2020; 8
2017; 50
2018; 9
2016 2016; 55 128
1957; 61
2015; 115
2012 2012; 51 124
2002; 124
2018 2018; 57 130
2010; 132
2019; 29
2013; 135
1956; 29
2001; 37
2018; 12
2016; 49
2012; 22
2006; 128
1996; 118
2012; 41
e_1_2_2_2_3
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_49_1
e_1_2_2_6_1
e_1_2_2_22_2
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_60_3
e_1_2_2_41_2
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_45_1
e_1_2_2_26_2
e_1_2_2_60_2
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_59_2
e_1_2_2_38_2
e_1_2_2_11_1
Lippert V. E. Z. (e_1_2_2_35_2) 1957; 61
e_1_2_2_51_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_17_3
e_1_2_2_30_3
e_1_2_2_53_1
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_55_2
e_1_2_2_34_1
e_1_2_2_15_2
e_1_2_2_57_1
e_1_2_2_3_2
e_1_2_2_25_1
e_1_2_2_23_2
e_1_2_2_48_2
e_1_2_2_5_2
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_40_1
e_1_2_2_42_2
e_1_2_2_7_2
e_1_2_2_29_1
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_9_2
e_1_2_2_46_2
e_1_2_2_37_1
e_1_2_2_12_2
e_1_2_2_10_3
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_50_3
e_1_2_2_50_2
e_1_2_2_52_3
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_52_2
e_1_2_2_56_1
e_1_2_2_33_2
e_1_2_2_54_2
e_1_2_2_16_1
e_1_2_2_58_1
e_1_2_2_14_2
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 98
  year: 2018
  publication-title: Nat. Photonics
– volume: 129
  start-page: 1520
  year: 2007
  end-page: 1521
  publication-title: J. Am. Chem. Soc.
– volume: 126
  start-page: 10232
  year: 2004
  end-page: 10233
  publication-title: J. Am. Chem. Soc.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 59 132
  start-page: 17580 17733
  year: 2020 2020
  end-page: 17586 17739
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 49
  start-page: 1731
  year: 2016
  end-page: 1740
  publication-title: Acc. Chem. Res.
– volume: 115
  start-page: 11718
  year: 2015
  end-page: 11940
  publication-title: Chem. Rev.
– volume: 10
  start-page: 8367
  year: 2019
  end-page: 8373
  publication-title: Chem. Sci.
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 4
  start-page: 2109
  year: 2016
  end-page: 2118
  publication-title: Adv. Opt. Mater.
– volume: 41
  start-page: 3878
  year: 2012
  end-page: 3896
  publication-title: Chem. Soc. Rev.
– volume: 29
  start-page: 465
  year: 1956
  end-page: 470
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 124
  start-page: 14410
  year: 2002
  end-page: 14415
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 4007
  year: 2020
  end-page: 4015
  publication-title: Chem. Sci.
– volume: 59 132
  start-page: 13955 14059
  year: 2020 2020
  end-page: 13961 14065
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 123
  start-page: 9412
  year: 2001
  end-page: 9417
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 2621
  year: 2020
  end-page: 2626
  publication-title: Chem. Sci.
– volume: 24
  start-page: 3671
  year: 2018
  end-page: 3676
  publication-title: Chem. Eur. J.
– volume: 9
  start-page: 5270
  year: 2018
  end-page: 5277
  publication-title: Chem. Sci.
– volume: 25
  start-page: 2837
  year: 2013
  end-page: 2843
  publication-title: Adv. Mater.
– volume: 61
  start-page: 962
  year: 1957
  publication-title: Electrochemistry
– volume: 128
  start-page: 15934
  year: 2006
  end-page: 15935
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 10475
  year: 2013
  end-page: 10483
  publication-title: J. Am. Chem. Soc.
– volume: 132
  start-page: 13675
  year: 2010
  end-page: 13683
  publication-title: J. Am. Chem. Soc.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 6020
  year: 2020
  end-page: 6025
  publication-title: Chem. Sci.
– volume: 113
  start-page: 15845
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 59 132
  start-page: 9940 10026
  year: 2020 2020
  end-page: 9945 10031
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 51 124
  start-page: 3532 3590
  year: 2012 2012
  end-page: 3554 3614
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 37
  start-page: 871
  year: 2001
  end-page: 885
  publication-title: Inorg. Mater.
– volume: 57 130
  start-page: 12727 12909
  year: 2018 2018
  end-page: 12732 12914
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 3429
  year: 2015
  end-page: 3436
  publication-title: J. Phys. Chem. Lett.
– volume: 58 131
  start-page: 7922 8004
  year: 2019 2019
  end-page: 7932 8014
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50
  start-page: 1410
  year: 2017
  end-page: 1422
  publication-title: Acc. Chem. Res.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2494
  year: 2020
  end-page: 2503
  publication-title: Chem. Sci.
– volume: 139
  start-page: 436
  year: 2017
  end-page: 441
  publication-title: J. Am. Chem. Soc.
– volume: 118
  start-page: 1949
  year: 1996
  end-page: 1960
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 6514
  year: 2017
  end-page: 6517
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 2797
  year: 2012
  end-page: 2803
  publication-title: Adv. Funct. Mater.
– volume: 117
  start-page: 10291
  year: 2017
  end-page: 10318
  publication-title: Chem. Rev.
– volume: 55 128
  start-page: 155 163
  year: 2016 2016
  end-page: 159 167
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 104
  start-page: 630
  year: 1982
  end-page: 632
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_2_41_2
  doi: 10.1021/jp902962h
– ident: e_1_2_2_20_2
  doi: 10.1002/adma.201205043
– ident: e_1_2_2_40_1
– ident: e_1_2_2_10_2
  doi: 10.1002/anie.201811542
– ident: e_1_2_2_55_2
  doi: 10.1021/acs.chemrev.7b00084
– ident: e_1_2_2_56_1
  doi: 10.1023/A:1011625728803
– ident: e_1_2_2_57_1
  doi: 10.1021/ja1044665
– ident: e_1_2_2_18_2
  doi: 10.1039/C8SC00833G
– ident: e_1_2_2_37_1
– ident: e_1_2_2_36_2
  doi: 10.1246/bcsj.29.465
– ident: e_1_2_2_60_3
  doi: 10.1002/ange.201806861
– ident: e_1_2_2_12_2
  doi: 10.1021/acs.accounts.6b00239
– ident: e_1_2_2_45_1
– ident: e_1_2_2_29_1
– ident: e_1_2_2_3_2
  doi: 10.1021/jacs.6b11057
– ident: e_1_2_2_4_2
  doi: 10.1039/D0SC01095B
– ident: e_1_2_2_19_2
  doi: 10.1021/jacs.7b00587
– ident: e_1_2_2_15_2
  doi: 10.1038/s41566-017-0087-y
– ident: e_1_2_2_10_3
  doi: 10.1002/ange.201811542
– ident: e_1_2_2_11_1
– ident: e_1_2_2_24_2
  doi: 10.1002/adfm.201807623
– ident: e_1_2_2_25_1
– ident: e_1_2_2_33_2
  doi: 10.1002/adom.201901836
– ident: e_1_2_2_46_2
  doi: 10.1021/ja00366a051
– volume: 61
  start-page: 962
  year: 1957
  ident: e_1_2_2_35_2
  publication-title: Electrochemistry
  contributor:
    fullname: Lippert V. E. Z.
– ident: e_1_2_2_13_2
  doi: 10.1021/acs.accounts.7b00087
– ident: e_1_2_2_38_2
  doi: 10.1021/ja0269082
– ident: e_1_2_2_58_1
– ident: e_1_2_2_17_3
  doi: 10.1002/ange.202005933
– ident: e_1_2_2_42_2
  doi: 10.1002/adfm.201606384
– ident: e_1_2_2_6_1
– ident: e_1_2_2_30_2
  doi: 10.1002/anie.201507031
– ident: e_1_2_2_50_2
  doi: 10.1002/anie.202005584
– ident: e_1_2_2_2_3
  doi: 10.1002/ange.201105459
– ident: e_1_2_2_5_2
  doi: 10.1039/C9SC02580D
– ident: e_1_2_2_32_2
  doi: 10.1021/ja0637550
– ident: e_1_2_2_49_1
– ident: e_1_2_2_52_2
  doi: 10.1002/anie.201914900
– ident: e_1_2_2_43_2
  doi: 10.1039/C9SC06567A
– ident: e_1_2_2_1_1
– ident: e_1_2_2_51_2
  doi: 10.1002/adom.201901021
– ident: e_1_2_2_59_2
  doi: 10.1021/ja0677362
– ident: e_1_2_2_17_2
  doi: 10.1002/anie.202005933
– ident: e_1_2_2_2_2
  doi: 10.1002/anie.201105459
– ident: e_1_2_2_8_2
  doi: 10.1039/c2cs35016e
– ident: e_1_2_2_22_2
  doi: 10.1002/adma.202003471
– ident: e_1_2_2_30_3
  doi: 10.1002/ange.201507031
– ident: e_1_2_2_44_2
  doi: 10.1039/C9SC06441A
– ident: e_1_2_2_50_3
  doi: 10.1002/ange.202005584
– ident: e_1_2_2_34_1
– ident: e_1_2_2_31_2
  doi: 10.1039/D0SC01873B
– ident: e_1_2_2_47_2
  doi: 10.1021/ja951345y
– ident: e_1_2_2_39_2
  doi: 10.1021/ja046215g
– ident: e_1_2_2_53_1
– ident: e_1_2_2_48_2
  doi: 10.1021/ja010986s
– ident: e_1_2_2_23_2
  doi: 10.1002/adma.201808242
– ident: e_1_2_2_27_2
  doi: 10.1002/adom.201600608
– ident: e_1_2_2_54_2
  doi: 10.1021/ja403667s
– ident: e_1_2_2_9_2
  doi: 10.1021/acs.jpclett.5b01090
– ident: e_1_2_2_28_2
  doi: 10.1002/adma.201606025
– ident: e_1_2_2_52_3
  doi: 10.1002/ange.201914900
– ident: e_1_2_2_26_2
  doi: 10.1002/adfm.201200116
– ident: e_1_2_2_60_2
  doi: 10.1002/anie.201806861
– ident: e_1_2_2_7_2
  doi: 10.1021/acs.chemrev.5b00263
– ident: e_1_2_2_16_1
– ident: e_1_2_2_21_1
– ident: e_1_2_2_14_2
  doi: 10.1002/chem.201705780
SSID ssj0006279
Score 2.1953332
Snippet Piezochromic organic materials that present a large difference in fluorescence wavelength in the near‐infrared region have important potential applications;...
Abstract Piezochromic organic materials that present a large difference in fluorescence wavelength in the near‐infrared region have important potential...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 8591
SubjectTerms Chemistry
Conformation
Coplanarity
Fluorescence
Locking
Locks
mechanochromism
Near infrared radiation
near-infrared
noncovalent conformational locking
Organic materials
Polycrystals
Red shift
Rigidity
Wavelength
wide-range redshift
Title Red to Near‐Infrared Mechanochromism from Metal‐free Polycrystals: Noncovalent Conformational Locks Facilitating Wide‐Range Redshift
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202100301
https://www.proquest.com/docview/2509261185
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQCyy8EYWCPCAxBYjtuDUbAspDtEIVCLYofgGiJChJhzIxM_Eb-SWck6alLEiwRElkJ5fYd_7OvvuM0DblqslVw3jMWDgQRZxKGU9EIhDgbAti3NRAu8PPbtjFXXD3LYu_5IcYTbg5zSjstVPwSGZ7Y9JQF3sP_h24LA7VgxH2acPFdB13x_xRnJRke_uMeU1wNCrWxn2yN1l9clQaQ83vgLUYcVrzKKpkLQNNnnb7udxVrz9oHP_zMQtobghH8WHZfxbRlImX0MxRtQvcMnrvGo3zBHdAIz7fPs5jm7qQddw2LmU4UQ9pAkWfsUtTgZsA5aGUTY3BV0lvoNIBoM9edoA7SawS6NUwxmGXZVjlTMLLL8EkZ7gVqSFheHyPbx-1ged0ncAYJMgeHm2-gm5aJ9dHZ95w_wZP-Zz4nmbUEOtLLaivlWSMgMWQvEGjBtMskJwJxQPS1FoyYcEcWB1QoiV0K-bWK-kqmo6T2KwhzC0VRoogspIyHflSqaaRyrhVU1_LqIZ2qvYLX0qajrAkZCahEzUc_dsaqlfNGw7VNQsBBwpwJQG71BAp2umXp4SHndOT0dX6XyptoFl3XkQB8TqaztO-2QSAk8utohN_AWPh94Y
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VeqAX6FNdoNSHSj0FiOOYNTcELAvdjaoVqL1F8QtQIUHZcIBTzz3xG_klzCSb3dJLJbhESmQ7k3jG_sae-QzwJZKmK82WC4TzeOGGk0m5QGUqVuhsK-5oaWCYyP6JOPoZt9GElAvT8ENMF9zIMurxmgycFqQ3ZqyhFHyPDh76LATr5-Al2nxEhxjsjWYMUpI3dHubQgRddDVa3sZNvvG4_uN5aQY2_4as9ZzTWwLdStuEmvxav670urn9h8jxWZ_zGhYniJTtNCr0Bl64_C0s7LYHwb2DPyNnWVWwBI3i_vfdYe5LilpnQ0dZw4U5KwsseskoUwUfIprHUr50jn0vLm5MeYMA9GK8zZIiNwUqNk5zjBIN27RJfPkAR-Ux62Vmwhmen7If59ZhOyMSmKEE47NzX72Hk97-8W4_mBzhEJhQ8jCwInLch9qqKLRGC8Fx0NDYT9mWsCLWUigjY961VgvlcUTwNo641ahZgrYsow8wnxe5-whM-kg5reLM60jYLNTGdJ02jjZOQ6uzDnxtOzC9apg60oaTmackajr9tx1Ybfs3nVjsOEUoqNCbRPjSAV531H9aSXeSg_3p3fJTKn2Ghf7xcJAODpNvK_CKntdBQXIV5qvy2n1CvFPptVqjHwDM9vug
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RkGgvlKe6lIIPSJwCG9vxrntDwJZnhFYguEXxCxCQoGw4wKnnnvob-0s6Tja7wAWpvURKZDuTeMb-xp75DLDOhO4K3bEBtw4vVFNvUjaQqYwkOtuSWr80cBKL_XN-eBldvsjir_khRgtu3jKq8dob-INxW2PSUB97j_4duiwe1X-AKS5Y2wd17fbHBFKC1mx7bc6DLnoaDW1jm269rv96WhpjzZeItZpyep8hbYStI01uNx9Ltamf3_A4_s_XzMLMEI-S7VqB5mDCZvPwcac5Bm4BfvWtIWVOYjSJPz9_H2Su8DHr5MT6nOFcXxc5Fr0nPk8FHyKWx1KusJac5ndPunhC-Hk3-E7iPNM5qjVOcsSnGTZJk_jyYxyTB6SX6iFjeHZFLm6MxXb6XmCCEgyub1y5COe9vbOd_WB4gEOgQ0HDwHBmqQuVkSw0WnFOcchQosPSDjc8UoJLLSLaNUZx6XA8cCZi1CjUK-43LNkSTGZ5Zr8AEY5Jq2SUOsW4SUOlddcqbf22aWhU2oKNpv-Sh5qnI6kZmWniRU1G_7YFK033JkN7HSQIBCX6kgheWkCrfnqnlWQ7_rE3ulv-l0prMH2620uOD-Kjr_DJP64igsQKTJbFo_2GYKdUq5U-_wXn_vpP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Red+to+Near%E2%80%90Infrared+Mechanochromism+from+Metal%E2%80%90free+Polycrystals%3A+Noncovalent+Conformational+Locks+Facilitating+Wide%E2%80%90Range+Redshift&rft.jtitle=Angewandte+Chemie&rft.au=Zhu%2C+Chenfei&rft.au=Luo%2C+Qing&rft.au=Shen%2C+Yunxia&rft.au=Lv%2C+Chunyan&rft.date=2021-04-06&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=133&rft.issue=15&rft.spage=8591&rft.epage=8595&rft_id=info:doi/10.1002%2Fange.202100301&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ange_202100301
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon