Electrocatalytic Activity of a 2D Phosphorene‐Based Heteroelectrocatalyst for Photoelectrochemical Cells
Research into efficient synthesis, fundamental properties, and potential applications of phosphorene is currently the subject of intense investigation. Herein, solution‐processed phosphorene or few‐layer black phosphorus (FL‐BP) sheets are prepared using a microwave exfoliation method and used in ph...
Saved in:
Published in | Angewandte Chemie Vol. 130; no. 10; pp. 2674 - 2677 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Research into efficient synthesis, fundamental properties, and potential applications of phosphorene is currently the subject of intense investigation. Herein, solution‐processed phosphorene or few‐layer black phosphorus (FL‐BP) sheets are prepared using a microwave exfoliation method and used in photoelectrochemical cells. Based on experimental and theoretical (DFT) studies, the FL‐BP sheets are found to act as catalytically active sites and show excellent electrocatalytic activity for triiodide reduction in dye‐sensitized solar cells. Importantly, the device fabricated based on the newly designed cobalt sulfide (CoSx) decorated nitrogen and sulfur co‐doped carbon nanotube heteroelectrocatalyst coated with FL‐BP (FL‐BP@N,S‐doped CNTs‐CoSx) displayed an impressive photovoltaic efficiency of 8.31 %, outperforming expensive platinum based cells. This work paves the way for using phosphorene‐based electrocatalysts for next‐generation energy‐storage systems.
Phosphoren‐Blätter wurden durch mikrowellenunterstütztes Abblättern in flüssiger Phase hergestellt, und die elektrokatalytischen Eigenschaften der Produkte wurden experimentell und theoretisch untersucht. Solarzellen mit einem Phosphoren‐Heteroelektrokatalysator lieferten bessere Resultate als teure Einheiten auf Platinbasis. |
---|---|
AbstractList | Research into efficient synthesis, fundamental properties, and potential applications of phosphorene is currently the subject of intense investigation. Herein, solution‐processed phosphorene or few‐layer black phosphorus (FL‐BP) sheets are prepared using a microwave exfoliation method and used in photoelectrochemical cells. Based on experimental and theoretical (DFT) studies, the FL‐BP sheets are found to act as catalytically active sites and show excellent electrocatalytic activity for triiodide reduction in dye‐sensitized solar cells. Importantly, the device fabricated based on the newly designed cobalt sulfide (CoSx) decorated nitrogen and sulfur co‐doped carbon nanotube heteroelectrocatalyst coated with FL‐BP (FL‐BP@N,S‐doped CNTs‐CoSx) displayed an impressive photovoltaic efficiency of 8.31 %, outperforming expensive platinum based cells. This work paves the way for using phosphorene‐based electrocatalysts for next‐generation energy‐storage systems.
Phosphoren‐Blätter wurden durch mikrowellenunterstütztes Abblättern in flüssiger Phase hergestellt, und die elektrokatalytischen Eigenschaften der Produkte wurden experimentell und theoretisch untersucht. Solarzellen mit einem Phosphoren‐Heteroelektrokatalysator lieferten bessere Resultate als teure Einheiten auf Platinbasis. Research into efficient synthesis, fundamental properties, and potential applications of phosphorene is currently the subject of intense investigation. Herein, solution‐processed phosphorene or few‐layer black phosphorus (FL‐BP) sheets are prepared using a microwave exfoliation method and used in photoelectrochemical cells. Based on experimental and theoretical (DFT) studies, the FL‐BP sheets are found to act as catalytically active sites and show excellent electrocatalytic activity for triiodide reduction in dye‐sensitized solar cells. Importantly, the device fabricated based on the newly designed cobalt sulfide (CoSx) decorated nitrogen and sulfur co‐doped carbon nanotube heteroelectrocatalyst coated with FL‐BP (FL‐BP@N,S‐doped CNTs‐CoSx) displayed an impressive photovoltaic efficiency of 8.31 %, outperforming expensive platinum based cells. This work paves the way for using phosphorene‐based electrocatalysts for next‐generation energy‐storage systems. Research into efficient synthesis, fundamental properties, and potential applications of phosphorene is currently the subject of intense investigation. Herein, solution‐processed phosphorene or few‐layer black phosphorus (FL‐BP) sheets are prepared using a microwave exfoliation method and used in photoelectrochemical cells. Based on experimental and theoretical (DFT) studies, the FL‐BP sheets are found to act as catalytically active sites and show excellent electrocatalytic activity for triiodide reduction in dye‐sensitized solar cells. Importantly, the device fabricated based on the newly designed cobalt sulfide (CoS x ) decorated nitrogen and sulfur co‐doped carbon nanotube heteroelectrocatalyst coated with FL‐BP (FL‐BP@N,S‐doped CNTs‐CoS x ) displayed an impressive photovoltaic efficiency of 8.31 %, outperforming expensive platinum based cells. This work paves the way for using phosphorene‐based electrocatalysts for next‐generation energy‐storage systems. |
Author | Shrestha, Aabhash Slattery, Ashley D. Shapter, Joseph G. Dai, Sheng Batmunkh, Munkhbayar Nine, Md Julker Tawfik, Sherif Abdulkader Shearer, Cameron J. Bat‐Erdene, Munkhjargal Qiao, Shizhang Ford, Michael J. Gibson, Christopher T. |
Author_xml | – sequence: 1 givenname: Munkhbayar orcidid: 0000-0002-7493-4186 surname: Batmunkh fullname: Batmunkh, Munkhbayar organization: Flinders University – sequence: 2 givenname: Aabhash surname: Shrestha fullname: Shrestha, Aabhash organization: Australian National University – sequence: 3 givenname: Munkhjargal orcidid: 0000-0001-7214-3316 surname: Bat‐Erdene fullname: Bat‐Erdene, Munkhjargal organization: Flinders University – sequence: 4 givenname: Md Julker orcidid: 0000-0002-5740-8627 surname: Nine fullname: Nine, Md Julker organization: The University of Adelaide – sequence: 5 givenname: Cameron J. orcidid: 0000-0002-8192-3696 surname: Shearer fullname: Shearer, Cameron J. organization: Flinders University – sequence: 6 givenname: Christopher T. orcidid: 0000-0003-3334-5059 surname: Gibson fullname: Gibson, Christopher T. organization: Flinders University – sequence: 7 givenname: Ashley D. orcidid: 0000-0003-4023-3506 surname: Slattery fullname: Slattery, Ashley D. organization: The University of Adelaide – sequence: 8 givenname: Sherif Abdulkader orcidid: 0000-0003-3592-1419 surname: Tawfik fullname: Tawfik, Sherif Abdulkader organization: University of Technology Sydney – sequence: 9 givenname: Michael J. orcidid: 0000-0002-8595-5900 surname: Ford fullname: Ford, Michael J. organization: University of Technology Sydney – sequence: 10 givenname: Sheng orcidid: 0000-0002-9152-0786 surname: Dai fullname: Dai, Sheng organization: Newcastle University – sequence: 11 givenname: Shizhang orcidid: 0000-0002-4568-8422 surname: Qiao fullname: Qiao, Shizhang organization: The University of Adelaide – sequence: 12 givenname: Joseph G. orcidid: 0000-0002-4000-2751 surname: Shapter fullname: Shapter, Joseph G. email: joe.shapter@flinders.edu.au organization: Flinders University |
BookMark | eNqFkLFOwzAQQC0EEm1hZY7EnHJ2nCYZSyktUgUMMEeOc6au3LjYLigbn8A38iW0KioICTHdcO_dSa9LDhvbICFnFPoUgF2I5gn7DGhGGcvhgHRoymicZGl2SDoAnMc548Ux6Xq_AIABy4oOWYwNyuCsFEGYNmgZDWXQLzq0kVWRiNhVdD-3fjW3Dhv8eHu_FB7raIoBncWfrg-Rsm5Lh_1ijksthYlGaIw_IUdKGI-nX7NHHq_HD6NpPLub3IyGs1jSAYOYSlVzlFKwmmcqr1KesHyQcQFFVRdFkigFKiugSmRVUFnVohrwvMK8UlSmTCU9cr67u3L2eY0-lAu7ds3mZckA8iSjSZpuKL6jpLPeO1Sl1EEEbZvghDYlhXJbtdxWLfdVN1r_l7Zyeilc-7dQ7IRXbbD9hy6Ht5Pxt_sJ8vqQIg |
CitedBy_id | crossref_primary_10_3390_nano8100758 crossref_primary_10_1002_ange_201804530 crossref_primary_10_1002_asia_202000249 crossref_primary_10_1002_anie_201804530 crossref_primary_10_1002_anie_201900240 crossref_primary_10_1002_celc_202000072 crossref_primary_10_1002_ange_201900240 crossref_primary_10_1002_ente_202100581 |
Cites_doi | 10.1002/ange.201602097 10.1002/smll.201600032 10.1002/anie.201505015 10.1002/aenm.201602276 10.1038/nmat4299 10.1002/anie.201610512 10.1021/nn503893j 10.1021/nn501226z 10.1002/adfm.201403836 10.1002/aenm.201700396 10.1002/smtd.201700260 10.1002/ange.201708105 10.1002/aenm.201701832 10.1038/ncomms2547 10.1021/acsnano.7b03288 10.1002/adma.201602382 10.1039/C4EE01339E 10.1002/anie.201607393 10.1002/adma.201602254 10.1002/adfm.201704488 10.1002/adma.201605776 10.1002/ange.201608584 10.1038/nnano.2014.35 10.1021/acs.nanolett.7b01334 10.1002/aenm.201601285 10.1002/anie.201602097 10.1002/advs.201600305 10.1002/aenm.201602068 10.1002/aenm.201600453 10.1002/ange.201505015 10.1002/adfm.201503273 10.1002/ange.201610512 10.1002/anie.201708105 10.1002/smll.201403155 10.1002/ange.201607393 10.1126/sciadv.1501459 10.1002/solr.201700011 10.1038/srep06983 10.1002/anie.201608584 |
ContentType | Journal Article |
Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/ange.201712280 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3757 |
EndPage | 2677 |
ExternalDocumentID | 10_1002_ange_201712280 ANGE201712280 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: Australian Research Council funderid: DP150101354; DP160101301 – fundername: Australian Microscopy & Microanalysis Research Facility – fundername: Australian National Fabrication Facility |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACCUC ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 UPT V2E W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~IA ~WT .Y3 31~ 53G AAHHS AANHP AAYXX ABDPE ABEFU ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AFFNX AFZJQ AGQPQ AI. AIWBW AJBDE ASPBG AVWKF AZFZN BDRZF BZBRT CITATION FEDTE HF~ HVGLF MVM PALCI RIWAO RJQFR SAMSI VH1 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c1620-1cfd4ecca2d47f8b54328674a09bd9933ff0f790b3cb91cbdab648be8bf1c52f3 |
IEDL.DBID | DR2 |
ISSN | 0044-8249 |
IngestDate | Fri Jul 25 10:44:47 EDT 2025 Tue Jul 01 01:47:34 EDT 2025 Thu Apr 24 23:08:37 EDT 2025 Wed Aug 20 07:26:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1620-1cfd4ecca2d47f8b54328674a09bd9933ff0f790b3cb91cbdab648be8bf1c52f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4000-2751 0000-0002-4568-8422 0000-0002-8192-3696 0000-0002-5740-8627 0000-0002-9152-0786 0000-0002-8595-5900 0000-0002-7493-4186 0000-0003-3334-5059 0000-0003-3592-1419 0000-0001-7214-3316 0000-0003-4023-3506 |
PQID | 2008371355 |
PQPubID | 866336 |
PageCount | 4 |
ParticipantIDs | proquest_journals_2008371355 crossref_citationtrail_10_1002_ange_201712280 crossref_primary_10_1002_ange_201712280 wiley_primary_10_1002_ange_201712280_ANGE201712280 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 1, 2018 2018-03-00 20180301 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: March 1, 2018 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2016; 6 2017; 7 2018; 8 2015; 25 2015; 14 2017; 1 2016 2016; 55 128 2014; 4 2013; 4 2016; 2 2017; 4 2017; 17 2017; 27 2017; 11 2015; 11 2015 2015; 54 127 2017; 29 2017 2017; 56 129 2014; 9 2014; 8 2016; 28 2014; 7 2016; 26 2016; 12 e_1_2_2_3_2 e_1_2_2_4_1 e_1_2_2_24_2 e_1_2_2_25_1 e_1_2_2_5_1 e_1_2_2_23_2 e_1_2_2_6_1 e_1_2_2_7_1 e_1_2_2_21_2 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_1_1 e_1_2_2_2_2 e_1_2_2_40_2 e_1_2_2_41_2 e_1_2_2_42_1 e_1_2_2_29_2 e_1_2_2_41_3 e_1_2_2_7_2 e_1_2_2_27_3 e_1_2_2_28_2 e_1_2_2_8_1 e_1_2_2_27_2 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_26_1 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_37_2 e_1_2_2_38_1 e_1_2_2_11_2 e_1_2_2_12_1 e_1_2_2_39_1 e_1_2_2_10_2 e_1_2_2_30_1 e_1_2_2_18_3 e_1_2_2_19_2 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_16_3 e_1_2_2_32_2 e_1_2_2_33_1 e_1_2_2_16_2 e_1_2_2_17_1 e_1_2_2_34_1 e_1_2_2_15_2 e_1_2_2_35_1 e_1_2_2_14_2 |
References_xml | – volume: 54 127 start-page: 14317 14525 year: 2015 2015 end-page: 14320 14528 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2 start-page: 1501459 year: 2016 publication-title: Sci. Adv. – volume: 1 start-page: 1700260 year: 2017 publication-title: Small Methods – volume: 7 start-page: 1700396 year: 2017 publication-title: Adv. Energy Mater. – volume: 6 start-page: 1600453 year: 2016 publication-title: Adv. Energy Mater. – volume: 7 start-page: 2637 year: 2014 end-page: 2641 publication-title: Energy Environ. Sci. – volume: 56 129 start-page: 8052 8164 year: 2017 2017 end-page: 8072 8185 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 28 start-page: 8937 year: 2016 end-page: 8944 publication-title: Adv. Mater. – volume: 14 start-page: 826 year: 2015 end-page: 832 publication-title: Nat. Mater. – volume: 55 128 start-page: 13849 14053 year: 2016 2016 end-page: 13853 14057 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 1700011 year: 2017 publication-title: Solar RRL – volume: 11 start-page: 7284 year: 2017 end-page: 7292 publication-title: ACS Nano – volume: 29 start-page: 1605776 year: 2017 publication-title: Adv. Mater. – volume: 12 start-page: 3480 year: 2016 end-page: 3502 publication-title: Small – volume: 26 start-page: 864 year: 2016 end-page: 871 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 9590 year: 2014 end-page: 9596 publication-title: ACS Nano – volume: 4 start-page: 1600305 year: 2017 publication-title: Adv. Sci. – volume: 56 129 start-page: 14107 14295 year: 2017 2017 end-page: 14112 14300 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 1602068 year: 2017 publication-title: Adv. Energy Mater. – volume: 25 start-page: 1170 year: 2015 end-page: 1179 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 6983 year: 2014 publication-title: Sci. Rep. – volume: 11 start-page: 2963 year: 2015 end-page: 2989 publication-title: Small – volume: 55 128 start-page: 14412 14624 year: 2016 2016 end-page: 14416 14628 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 28 start-page: 8586 year: 2016 end-page: 8617 publication-title: Adv. Mater. – volume: 7 start-page: 1602276 year: 2017 publication-title: Adv. Energy Mater. – volume: 17 start-page: 4311 year: 2017 end-page: 4316 publication-title: Nano Lett. – volume: 4 start-page: 1583 year: 2013 publication-title: Nat. Commun. – volume: 55 128 start-page: 6708 6820 year: 2016 2016 end-page: 6712 6824 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 27 start-page: 1704488 year: 2017 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 372 year: 2014 end-page: 377 publication-title: Nat. Nanotechnol. – volume: 8 start-page: 4033 year: 2014 end-page: 4041 publication-title: ACS Nano – volume: 8 start-page: 1701832 year: 2018 publication-title: Adv. Energy Mater. – volume: 7 start-page: 1601285 year: 2017 publication-title: Adv. Energy Mater. – ident: e_1_2_2_27_3 doi: 10.1002/ange.201602097 – ident: e_1_2_2_15_2 doi: 10.1002/smll.201600032 – ident: e_1_2_2_1_1 – ident: e_1_2_2_7_1 doi: 10.1002/anie.201505015 – ident: e_1_2_2_36_2 doi: 10.1002/aenm.201602276 – ident: e_1_2_2_34_1 doi: 10.1038/nmat4299 – ident: e_1_2_2_12_1 – ident: e_1_2_2_16_2 doi: 10.1002/anie.201610512 – ident: e_1_2_2_33_1 doi: 10.1021/nn503893j – ident: e_1_2_2_3_2 doi: 10.1021/nn501226z – ident: e_1_2_2_35_1 – ident: e_1_2_2_28_2 doi: 10.1002/adfm.201403836 – ident: e_1_2_2_19_2 doi: 10.1002/aenm.201700396 – ident: e_1_2_2_31_2 doi: 10.1002/smtd.201700260 – ident: e_1_2_2_41_3 doi: 10.1002/ange.201708105 – ident: e_1_2_2_9_2 doi: 10.1002/aenm.201701832 – ident: e_1_2_2_42_1 doi: 10.1038/ncomms2547 – ident: e_1_2_2_4_1 doi: 10.1021/acsnano.7b03288 – ident: e_1_2_2_11_2 doi: 10.1002/adma.201602382 – ident: e_1_2_2_40_2 doi: 10.1039/C4EE01339E – ident: e_1_2_2_18_2 doi: 10.1002/anie.201607393 – ident: e_1_2_2_14_2 doi: 10.1002/adma.201602254 – ident: e_1_2_2_32_2 doi: 10.1002/adfm.201704488 – ident: e_1_2_2_6_1 doi: 10.1002/adma.201605776 – ident: e_1_2_2_25_2 doi: 10.1002/ange.201608584 – ident: e_1_2_2_26_1 – ident: e_1_2_2_2_2 doi: 10.1038/nnano.2014.35 – ident: e_1_2_2_21_2 doi: 10.1021/acs.nanolett.7b01334 – ident: e_1_2_2_20_2 doi: 10.1002/aenm.201601285 – ident: e_1_2_2_27_2 doi: 10.1002/anie.201602097 – ident: e_1_2_2_13_2 doi: 10.1002/advs.201600305 – ident: e_1_2_2_37_2 doi: 10.1002/aenm.201602068 – ident: e_1_2_2_5_1 doi: 10.1002/aenm.201600453 – ident: e_1_2_2_7_2 doi: 10.1002/ange.201505015 – ident: e_1_2_2_17_1 – ident: e_1_2_2_10_2 doi: 10.1002/adfm.201503273 – ident: e_1_2_2_16_3 doi: 10.1002/ange.201610512 – ident: e_1_2_2_8_1 – ident: e_1_2_2_22_1 – ident: e_1_2_2_30_1 – ident: e_1_2_2_41_2 doi: 10.1002/anie.201708105 – ident: e_1_2_2_23_2 doi: 10.1002/smll.201403155 – ident: e_1_2_2_18_3 doi: 10.1002/ange.201607393 – ident: e_1_2_2_29_2 doi: 10.1126/sciadv.1501459 – ident: e_1_2_2_39_1 – ident: e_1_2_2_24_2 doi: 10.1002/solr.201700011 – ident: e_1_2_2_38_1 doi: 10.1038/srep06983 – ident: e_1_2_2_25_1 doi: 10.1002/anie.201608584 |
SSID | ssj0006279 |
Score | 2.0208945 |
Snippet | Research into efficient synthesis, fundamental properties, and potential applications of phosphorene is currently the subject of intense investigation. Herein,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2674 |
SubjectTerms | Carbon nanotubes Chemistry Cobalt Dye-sensitized solar cells Electrocatalysts Elektrokatalyse Energy storage Nanotubes Nitrogen Phosphorene Phosphorus Photochemie Photoelectrochemical devices Photovoltaic cells Photovoltaics Platinum Schwarzer Phosphor Sheets Solar cells Solarzellen Storage systems Sulfides Sulfur Zweidimensionale Materialien |
Title | Electrocatalytic Activity of a 2D Phosphorene‐Based Heteroelectrocatalyst for Photoelectrochemical Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.201712280 https://www.proquest.com/docview/2008371355 |
Volume | 130 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA6yi178FqdTchA8dWvTtE2Pc24OwSHiYLeST4aOVWw96Mmf4G_0l5g0bbcJIuiltPR9S5q8SZ6EN88DwBmVQYAU1aMfCYSDRYicmEl9MeERM8bCQqbzZhQOx_h6EkyWTvFbfoh6w830jGK8Nh2csqyzIA01ufcmNSvyDKOLHoRNwpZBRXcL_qgQWbI9F2OH6IVGxdroos6q--qstICay4C1mHEGW4BWZbWJJo_tl5y1-ds3Gsf__Mw22CzhKOza-NkBa3K-C9Z7lQrcHnjoW52cYpvnVVvBLreCEzBVkEJ0CW-nafY0TQ035uf7x4WeFgUcmiybVC77ZjnUANlY5_WLkq0A9uRslu2D8aB_3xs6pT6Dw71Qrzo9rgQ2IYAEjhRhAfYRCSNM3ZgJjXt8pVwVxS7zOYs9zgRlISZMEqY8riPEPwCNeTqXhwCqwFexUMiTPsdcRrF245T6oTmXSyRpAqdqn4SX5OVGQ2OWWNpllJgaTOoabILz2v7J0nb8aNmqmjspu29WaHP6RrwwaAJUtNsvX0m6o6t-_XT0F6djsKHvic1va4FG_vwiTzTgydlpEdRfjnn6VQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT9swFH8a3QEuGwzQygr4gLRTIHGcxDl2pV35V00TSNyi2LGFWNWgNT3AiY_AZ-STzC9O0hYJTYJLpCTvRY79bL_39Pz7ARykKgioTs3qx4PMYVlInVgoc0HziIUQYUnTeTEKh1fs9DqoqwnxLIzFh2gSbjgzyvUaJzgmpI_mqKFYfI-1WZGHkC4r8BFpvcuo6vccQSqkFm7PZczhJtSocRtderSsv7wvzZ3NRZe13HMGn0HUrbWlJn8OZ4U4lA8vgBzf9Tvr8KnySEnXmtAGfFCTL7Daq4ngNuG2b6lyykzPvZEiXWk5J0iuSUroMfl1k0_vbnKEx3x-fPphdsaMDLHQJleLutOCGB8ZpYvmRQVYQHpqPJ5uwdWgf9kbOhVFgyO90ASentQZQyugGYs0FwHzKQ8jlrqxyIzr42vt6ih2hS9F7EmRpSJkXCgutCeNkfjb0JrkE_UViA58HWeaesqXTKooNmoyTf0Qj-Zyxdvg1AOUyAq_HGk0xolFXqYJ9mDS9GAbvjfydxa541XJTj3eSTWDpyU9p4_8hUEbaDlw__lK0h397Dd3O29R2ofV4eXFeXJ-Mjr7BmvmObflbh1oFX9natf4P4XYKy38Hy_9_nA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKgEXWl5iKW19QOIUSBzHcY7bfXQpsEKoSNyi-KVVu9qs2HCAEz-B38gvqR0n2QWpQoJLpCQzkeOZscfW-PsADjIVRVhnZvRjkfSIpNhLuDIX6x4J55yWNJ3nQzq4Ir-uo-uFU_wOH6LZcLORUY7XNsCnUh_PQUNt7b0tzYoDi-iyBB8J9Zn16-7lHECKYoe25xPiMbPSqGEbfXz8XP_5tDTPNRcz1nLK6X-CrG6sqzT5e3Rb8CNx_wLH8T1_8xnWq3wUtZ0DbcAHNdmE1U5NA7cFf3qOKKfc57kzUqgtHOMEyjXKEO6ii1E-m45yC4759PD4w8yLEg1smU2uFnVnBTIZspUumhcVXAHqqPF4tg1X_d7vzsCrCBo8EVCz7AyElsT6AJYk1oxHJMSMxiTzEy5N4hNq7es48XkoeBIILjNOCeOKcR0I4yLhDixP8onaBaSjUCdS40CFgggVJ0ZNZFlI7cFcplgLvNo-qajQyy2Jxjh1uMs4tT2YNj3YgsNGfupwO_4ruV-bO63id1aSc4aWvTBqAS7t9spX0vbwZ6-523uL0ndYuej207OT4ekXWDOPmat124fl4uZWfTXJT8G_lf79D1KH_Sg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocatalytic+Activity+of+a+2D+Phosphorene%E2%80%90Based+Heteroelectrocatalyst+for+Photoelectrochemical+Cells&rft.jtitle=Angewandte+Chemie&rft.au=Batmunkh%2C+Munkhbayar&rft.au=Shrestha%2C+Aabhash&rft.au=Bat%E2%80%90Erdene%2C+Munkhjargal&rft.au=Nine%2C+Md+Julker&rft.date=2018-03-01&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=130&rft.issue=10&rft.spage=2674&rft.epage=2677&rft_id=info:doi/10.1002%2Fange.201712280&rft.externalDBID=10.1002%252Fange.201712280&rft.externalDocID=ANGE201712280 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon |