RETRACTED ARTICLE: Noninvasive method of epileptic detection using DWT and generalized regression neural network
Epilepsy is a continual disorder, the characteristic of which is recurrent, motiveless seizures. Many people with epilepsy have more than one type of seizure and may have other symptoms of neurological problems as well. In this paper, a noninvasive method using discrete wavelet transform (DWT) and n...
Saved in:
Published in | Soft computing (Berlin, Germany) Vol. 23; no. 8; pp. 2645 - 2653 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Epilepsy is a continual disorder, the characteristic of which is recurrent, motiveless seizures. Many people with epilepsy have more than one type of seizure and may have other symptoms of neurological problems as well. In this paper, a noninvasive method using discrete wavelet transform (DWT) and neural network is projected for automatic detection of epilepsy from EEG signals. DWT of the EEG signals is carried out using Haar Wavelets. Statistical features of approximate and detailed coefficients are extracted from the transformed signal. The entropy, as well as approximate entropy of the transformed signals, is determined. The features extracted from the transformed signal are used as the training set for the artificial neural network (ANN). Two types of ANNs viz. feedforward neural network (FFNN) and generalized regression neural network (GRNN) are trained. Three types of subjects viz. healthy, seizure-free period of an epileptic patient and epileptic patients are considered. The signals are classified accordingly as normal, seizure-free epileptic and abnormal. The results are compared on the basis of the confusion matrix, error histogram, and error plot. The quality measures used for comparison are sensitivity, specificity, precision, and accuracy. On all the evaluation parameters, GRNN is found to be best suited for anomaly detection in EEG signals. |
---|---|
AbstractList | Epilepsy is a continual disorder, the characteristic of which is recurrent, motiveless seizures. Many people with epilepsy have more than one type of seizure and may have other symptoms of neurological problems as well. In this paper, a noninvasive method using discrete wavelet transform (DWT) and neural network is projected for automatic detection of epilepsy from EEG signals. DWT of the EEG signals is carried out using Haar Wavelets. Statistical features of approximate and detailed coefficients are extracted from the transformed signal. The entropy, as well as approximate entropy of the transformed signals, is determined. The features extracted from the transformed signal are used as the training set for the artificial neural network (ANN). Two types of ANNs viz. feedforward neural network (FFNN) and generalized regression neural network (GRNN) are trained. Three types of subjects viz. healthy, seizure-free period of an epileptic patient and epileptic patients are considered. The signals are classified accordingly as normal, seizure-free epileptic and abnormal. The results are compared on the basis of the confusion matrix, error histogram, and error plot. The quality measures used for comparison are sensitivity, specificity, precision, and accuracy. On all the evaluation parameters, GRNN is found to be best suited for anomaly detection in EEG signals. |
Author | Vijay Anand, S. Shantha Selvakumari, R. |
Author_xml | – sequence: 1 givenname: S. surname: Vijay Anand fullname: Vijay Anand, S. email: vijayme04@gmail.com organization: Dhanalakshmi College of Engineering – sequence: 2 givenname: R. surname: Shantha Selvakumari fullname: Shantha Selvakumari, R. organization: Mepco Schlenk Engineering College |
BookMark | eNp9kN9LwzAQx4Mo-PMP8C3gc_WStE3r25hTB0NhVHwMWXudmTOpSafMv97MCYKgT3cc38_d8Tkku9ZZJOSUwTkDkBcBIANIgBWJyAUk6x1ywFIhEpnKcver54nMU7FPDkNYAHAmM3FAuumomg6G1eiKDqbVeDgZXdI7Z41908G8IX3B_sk11LUUO7PErjc1bbDHujfO0lUwdk6vHiuqbUPnaNHrpfnAhnqcewxhE7K4itNY-nfnn4_JXquXAU--6xF5uB5Vw9tkcn8zHg4mSc1ytk502eoZZ5AyLQpkOa8xa3XeZCXWdSvTWVmINJ9xyJDJGeS8wLwpsphoeVECiCNytt3befe6wtCrhVt5G08qXjJZsqiNxRTbpmrvQvDYqs6bF-3XioHaiFVbsSqKVRuxah0Z-YupTa83PnqvzfJfkm_JEK_YOfqfn_6GPgGQJY9L |
CitedBy_id | crossref_primary_10_1002_hbm_25683 crossref_primary_10_7717_peerj_11182 crossref_primary_10_1007_s00500_020_05141_x crossref_primary_10_1007_s00521_020_05441_1 crossref_primary_10_7717_peerj_cs_680 crossref_primary_10_1016_j_engappai_2020_103975 crossref_primary_10_1109_TCDS_2020_3009020 crossref_primary_10_1111_exsy_13374 crossref_primary_10_1016_j_bspc_2021_102554 crossref_primary_10_1007_s10462_024_10799_y crossref_primary_10_1016_j_bspc_2021_102957 crossref_primary_10_1007_s00500_022_07122_8 crossref_primary_10_2478_msr_2021_0016 crossref_primary_10_1109_JIOT_2022_3152739 |
Cites_doi | 10.1016/0013-4694(92)90086-W 10.1007/s11760-012-0362-9 10.1097/00004691-199903000-00005 10.1016/j.eplepsyres.2005.03.009 10.1155/2007/80510 10.1016/j.bspc.2011.07.007 10.4236/jbise.2010.312154 10.1109/TNSRE.2015.2458982 10.1049/iet-spr.2011.0338 10.1016/j.imu.2016.12.001 10.1109/TNSRE.2012.2206054 10.1016/j.physa.2011.09.010 10.1103/PhysRevE.64.061907 10.1109/tbme.2013.2254486 10.1007/978-3-319-46922-5_5 10.1109/INISTA.2012.6246997 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2018. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s00500-018-3630-y |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1433-7479 |
EndPage | 2653 |
ExternalDocumentID | 10_1007_s00500_018_3630_y |
Genre | Correction/Retraction |
GroupedDBID | -5B -5G -BR -EM -~C .86 .VR 06D 0R~ 0VY 1N0 203 29~ 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I ROL RPX RSV S16 S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c161y-a9fab21041a38e162ce5fa6d59eccf74b98346b205e17b0628e6d85a6df289003 |
IEDL.DBID | U2A |
ISSN | 1432-7643 |
IngestDate | Fri Jul 25 09:35:40 EDT 2025 Fri Jul 04 01:04:07 EDT 2025 Thu Apr 24 23:01:14 EDT 2025 Fri Feb 21 02:37:17 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | DWT Generalized regression neural network Artificial neural networks Approximate entropy EEG signal Feedforward neural network Anomaly detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c161y-a9fab21041a38e162ce5fa6d59eccf74b98346b205e17b0628e6d85a6df289003 |
Notes | ObjectType-Correction/Retraction-1 SourceType-Scholarly Journals-1 content type line 14 |
PQID | 2917911001 |
PQPubID | 2043697 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2917911001 crossref_primary_10_1007_s00500_018_3630_y crossref_citationtrail_10_1007_s00500_018_3630_y springer_journals_10_1007_s00500_018_3630_y |
PublicationCentury | 2000 |
PublicationDate | 20190401 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 4 year: 2019 text: 20190401 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
PublicationTitle | Soft computing (Berlin, Germany) |
PublicationTitleAbbrev | Soft Comput |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Zhou, Liu, Yuan, Li (CR24) 2013; 60 Wang, Zhang, Zou, Zhang (CR23) 2012; 391 Mihandoost, Amirani, Mazlaghani, Mihandoost (CR14) 2012; 6 Kumar, Dewal, Anand (CR11) 2014; 8 CR16 Vavadi, Ayatollahi, Mirzaei (CR22) 2010; 3 Liu, Zhou, Yuan, Chen (CR12) 2012; 20 Acharya, Molinari, Sree, Chattopadhyay, Ng, Suri (CR1) 2012; 7 Gotman (CR8) 1999; 16 Andrzejak, Lehnertz, Mormann, Rieke, David, Elger (CR2) 2001; 64 Chaovalitwongse, Iasemidis, Pardalos, Carney, Shiau, Sackellares (CR6) 2005; 64 Guo, Riveero, Pazaos (CR9) 2010; 193 CR20 Mu, Xiao, Hu (CR15) 2009; 3 Gabor, Seyal (CR7) 1992; 83 Janjarasjitt (CR10) 2010; 3 Micheli-Tzanakou (CR13) 2000 Sivasankari, Thanushkodi (CR19) 2009; 1 Bronzino (CR5) 2000 Tzallas, Tsipouras, Fotiadis (CR21) 2007; 2007 Bhattacharyya, Sharma, Pachori (CR3) 2016; 29 Parvez, Paul (CR17) 2016; 24 Satapathya (CR18) 2017; 6 A Bhattacharyya (3630_CR3) 2016; 29 S Mihandoost (3630_CR14) 2012; 6 Y Kumar (3630_CR11) 2014; 8 C Wang (3630_CR23) 2012; 391 L Guo (3630_CR9) 2010; 193 SK Satapathya (3630_CR18) 2017; 6 E Micheli-Tzanakou (3630_CR13) 2000 3630_CR20 Y Liu (3630_CR12) 2012; 20 UR Acharya (3630_CR1) 2012; 7 3630_CR16 Z Mu (3630_CR15) 2009; 3 AT Tzallas (3630_CR21) 2007; 2007 JD Bronzino (3630_CR5) 2000 H Vavadi (3630_CR22) 2010; 3 MZ Parvez (3630_CR17) 2016; 24 W Chaovalitwongse (3630_CR6) 2005; 64 J Gotman (3630_CR8) 1999; 16 S Janjarasjitt (3630_CR10) 2010; 3 N Sivasankari (3630_CR19) 2009; 1 W Zhou (3630_CR24) 2013; 60 RG Andrzejak (3630_CR2) 2001; 64 AJ Gabor (3630_CR7) 1992; 83 |
References_xml | – volume: 83 start-page: 271 year: 1992 end-page: 280 ident: CR7 article-title: Automated interictal EEG spike detection victimization artificial neural networks publication-title: Electroencephalogr Clin Neurosci doi: 10.1016/0013-4694(92)90086-W – volume: 3 start-page: 19 issue: 1 year: 2010 end-page: 25 ident: CR10 article-title: Classification of the epileptic EEGs using the wavelet-based scale variance feature publication-title: Int J Appl Biomed Eng – volume: 8 start-page: 1323 issue: 7 year: 2014 end-page: 1334 ident: CR11 article-title: Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network publication-title: Signal Image Video Process doi: 10.1007/s11760-012-0362-9 – volume: 16 start-page: 130 issue: 2 year: 1999 end-page: 140 ident: CR8 article-title: Automatic detection of seizures and spikes publication-title: J Clin Neurophysiol doi: 10.1097/00004691-199903000-00005 – volume: 193 start-page: 156 year: 2010 end-page: 163 ident: CR9 article-title: Convulsion detection victimization multiwavelet rework based mostly approximate entropy and artificial neural networks publication-title: J Neurosci Ways – volume: 64 start-page: 93 year: 2005 end-page: 113 ident: CR6 article-title: Performance of a seizure warning algorithm based on the dynamics of intracranial EEG publication-title: Epilepsy Res doi: 10.1016/j.eplepsyres.2005.03.009 – volume: 2007 start-page: 80510 year: 2007 ident: CR21 article-title: Automatic seizure detection based on time–frequency analysis and artificial neural networks publication-title: Comput Intell Neurosci doi: 10.1155/2007/80510 – volume: 7 start-page: 401 issue: 4 year: 2012 end-page: 408 ident: CR1 article-title: Automated diagnosis of epileptic EEG using entropies publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2011.07.007 – ident: CR16 – volume: 3 start-page: 1182 year: 2010 end-page: 1189 ident: CR22 article-title: A wavelet-approximate entropy method for epileptic activity detection from EEG and its sub-bands publication-title: J Biomed Sci Eng doi: 10.4236/jbise.2010.312154 – volume: 24 start-page: 158 issue: 1 year: 2016 end-page: 168 ident: CR17 article-title: Epileptic seizure prediction by exploiting spatiotemporal relationship of EEG signals using phase correlation publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2015.2458982 – volume: 6 start-page: 829 year: 2012 end-page: 838 ident: CR14 article-title: Automatic feature extraction using generalised autoregressive conditional heteroscedasticity model: an application to lectroencephalogram classification publication-title: IET Signal Process doi: 10.1049/iet-spr.2011.0338 – volume: 6 start-page: 1 year: 2017 end-page: 11 ident: CR18 article-title: EEG signal classification using PSO trained RBF neural network for epilepsy identification publication-title: Inform Med Unlocked doi: 10.1016/j.imu.2016.12.001 – volume: 20 start-page: 749 issue: 6 year: 2012 end-page: 755 ident: CR12 article-title: Automatic seizure detection using wavelet transform and SVM in long-term intracranial EEG publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2012.2206054 – volume: 1 start-page: 91 issue: 2 year: 2009 end-page: 104 ident: CR19 article-title: Automated convulsion detection in EEG signals victimization quick ICA and neural network publication-title: Int J Adv Soft Comput Appl – year: 2000 ident: CR5 publication-title: Biomedical engineering handbook – year: 2000 ident: CR13 publication-title: Supervised and unattended pattern recognition: feature extraction and procedure intelligence – volume: 3 start-page: 116 issue: 4 year: 2009 end-page: 119 ident: CR15 article-title: Classification of motor representational process EEG signals supported time–frequency analysis publication-title: Int J Digit Content Technol Appl – volume: 29 start-page: 1 year: 2016 end-page: 11 ident: CR3 article-title: A novel approach for automated detection of focal EEG signals using empirical wavelet transform publication-title: Neural Comput Appl – ident: CR20 – volume: 391 start-page: 1602 issue: 4 year: 2012 end-page: 1609 ident: CR23 article-title: Performance evaluation for epileptic electroencephalogram (EEG) detection by using Neyman-Pearson criteria and a support vector machine publication-title: Phys A doi: 10.1016/j.physa.2011.09.010 – volume: 64 start-page: 061907 issue: 6 year: 2001 ident: CR2 article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state publication-title: Phys Rev E doi: 10.1103/PhysRevE.64.061907 – volume: 60 start-page: 3375 issue: 12 year: 2013 end-page: 3381 ident: CR24 article-title: Epileptic seizure detection using lacunarity and Bayesian linear discriminant analysis in intracranial EEG publication-title: IEEE Trans Biomed Eng doi: 10.1109/tbme.2013.2254486 – volume: 7 start-page: 401 issue: 4 year: 2012 ident: 3630_CR1 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2011.07.007 – volume: 83 start-page: 271 year: 1992 ident: 3630_CR7 publication-title: Electroencephalogr Clin Neurosci doi: 10.1016/0013-4694(92)90086-W – volume: 20 start-page: 749 issue: 6 year: 2012 ident: 3630_CR12 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2012.2206054 – volume: 8 start-page: 1323 issue: 7 year: 2014 ident: 3630_CR11 publication-title: Signal Image Video Process doi: 10.1007/s11760-012-0362-9 – volume-title: Supervised and unattended pattern recognition: feature extraction and procedure intelligence year: 2000 ident: 3630_CR13 – volume: 6 start-page: 829 year: 2012 ident: 3630_CR14 publication-title: IET Signal Process doi: 10.1049/iet-spr.2011.0338 – volume: 60 start-page: 3375 issue: 12 year: 2013 ident: 3630_CR24 publication-title: IEEE Trans Biomed Eng doi: 10.1109/tbme.2013.2254486 – volume: 29 start-page: 1 year: 2016 ident: 3630_CR3 publication-title: Neural Comput Appl – volume: 3 start-page: 1182 year: 2010 ident: 3630_CR22 publication-title: J Biomed Sci Eng doi: 10.4236/jbise.2010.312154 – volume: 6 start-page: 1 year: 2017 ident: 3630_CR18 publication-title: Inform Med Unlocked doi: 10.1016/j.imu.2016.12.001 – volume-title: Biomedical engineering handbook year: 2000 ident: 3630_CR5 – volume: 3 start-page: 19 issue: 1 year: 2010 ident: 3630_CR10 publication-title: Int J Appl Biomed Eng – volume: 16 start-page: 130 issue: 2 year: 1999 ident: 3630_CR8 publication-title: J Clin Neurophysiol doi: 10.1097/00004691-199903000-00005 – volume: 64 start-page: 061907 issue: 6 year: 2001 ident: 3630_CR2 publication-title: Phys Rev E doi: 10.1103/PhysRevE.64.061907 – ident: 3630_CR20 doi: 10.1007/978-3-319-46922-5_5 – volume: 3 start-page: 116 issue: 4 year: 2009 ident: 3630_CR15 publication-title: Int J Digit Content Technol Appl – volume: 64 start-page: 93 year: 2005 ident: 3630_CR6 publication-title: Epilepsy Res doi: 10.1016/j.eplepsyres.2005.03.009 – ident: 3630_CR16 doi: 10.1109/INISTA.2012.6246997 – volume: 1 start-page: 91 issue: 2 year: 2009 ident: 3630_CR19 publication-title: Int J Adv Soft Comput Appl – volume: 391 start-page: 1602 issue: 4 year: 2012 ident: 3630_CR23 publication-title: Phys A doi: 10.1016/j.physa.2011.09.010 – volume: 24 start-page: 158 issue: 1 year: 2016 ident: 3630_CR17 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2015.2458982 – volume: 2007 start-page: 80510 year: 2007 ident: 3630_CR21 publication-title: Comput Intell Neurosci doi: 10.1155/2007/80510 – volume: 193 start-page: 156 year: 2010 ident: 3630_CR9 publication-title: J Neurosci Ways |
SSID | ssj0021753 |
Score | 2.1842418 |
Snippet | Epilepsy is a continual disorder, the characteristic of which is recurrent, motiveless seizures. Many people with epilepsy have more than one type of seizure... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2645 |
SubjectTerms | Artificial Intelligence Computational Intelligence Control Engineering Focus Mathematical Logic and Foundations Mechatronics Robotics |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90e_HFb3E6JQ8-KcG2abvUF5lzY4oOGRvurbRNMgTp6jaF-dd7adMNBffcNpS75O53H_kdwAVjLmMssqhwY0ldxxZ45jDm8Z2kwdHfK0_phP5zz-8O3ceRNzIJt5lpqyxtYm6oxSTROfJrJ9BEmpox6Db7oHpqlK6umhEam1BFE8x5Bap37d5LfxlyGR5KBAWII9H5lnVNK6cR9fStaptT5jOLLn57phXc_FMhzR1PZxe2DWIkzULFe7Ah033YKacxEHM4DyDrtwf9ZgstEUGQ-tB6at-Qnk62fkW6RZ0Us6LJRBGZoSlAU5EQIed5K1ZKdP_7mNy_DkiUCjIuyKjfvqUgUzkuemVToskv8VfSonX8EIad9qDVpWaeAk0Q1y1oFKgoxhDPtSPGpY3qkJ6KfOEFqEfVcOOAM9ePHcuTdiPWlyulL7iHbyhdjrTYEVTSSSqPgXClLIngRrg-x5BHcSaEHSvEAwy3hMNrYJWyDBNDNq5nXryHS5rkXPwhij_U4g8XNbhcfpIVTBvrXq6XCgrNoZuFqy1Sg6tSaavH_y52sn6xU9hClBQU7Tp1qMynn_IMkcg8Pjfb7QcsatlI priority: 102 providerName: ProQuest |
Title | RETRACTED ARTICLE: Noninvasive method of epileptic detection using DWT and generalized regression neural network |
URI | https://link.springer.com/article/10.1007/s00500-018-3630-y https://www.proquest.com/docview/2917911001 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8RuOjBD9SIIunBk2bJtm6j8wY4wC9iCEQ8LRttiYkZBNAE_3pf94UaNfHUw7pm2Wvf-72-X38FOKPUopQGusatUGiWaXBcc5jzOOa4zjDeS1uqDf37ntMdWjcje5Se415kbPesJBl76vywm5IqUSQqplGH6tqqACUbU3fF4xqajTzLSqUnEQcgdMR4m5UyfxriazBaI8xvRdE41rR3YTsFiaSRWHUPNkRUhp3sAgaSrscybH1SE9yHWd8b9BstdEUEUep16867JD212_oWKI46SS6LJlNJxAx9AfqKMeFiGXOxIqII8BNy9TggQcTJJFGjfn4XnMzFJCHLRkSpX-KHRQl3_ACGbW_Q6mrphQraGIHdSgtcGYSY41lGQJkw0B7CloHDbRcNKetW6DJqOaGp28Koh-p0pXA4s7GHVPVInR5CMZpG4ggIk1IXiG645TDMeSSjnBuhREBAcU6YrAJ69mf9cao2ri69ePFzneTYGD4aw1fG8FcVOM9fmSVSG391rmbm8tNVt_BNV4mtKlWpClxkJlw__nWw43_1PoFNRE1uQt-pQnE5fxWniEyWYQ0KrN2pQanRbjZ7qu083XrYNr3eQ78Wz9MPvNzfBg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HODCGzEYkANcQBVt03YpEkJobGwwdkBDcCttk0xIqBtsgMaP4jdi97EJJLhxbholjuN8jp3PAHucO5zz0DSkEynDsS2Jew59Hs-OKwLPe-1qutC_bnuNW-fy3r2fgs_iLQylVRY2MTXUshfTHfmR7RORJjEGnfafDaoaRdHVooRGphZXavSOLtvgpHmO67tv2_Vap9ow8qoCRozoZmSEvg4jdHQcK-RCWTgo5erQk66Ps9EVJ_IFd7zINl1lVSJ6Yqg8KVxsoSkoZ3LsdxpmcYo-OXuifjF28HLWS4QgiFrxqC-iqGZKWurSG25LGNzjpjH6fg5OwO2PeGx6zNWXYCHHp-wsU6hlmFLJCiwWtR9YbgpWoX9T69ycVdHuMYTEzWqrdszadLX7FlJCPMsqU7OeZqqPhgcNU8ykGqaJXwmjbPsuO7_rsDCRrJtRXz9-KMleVDfLzE0YUW3iUJIsUX0Nbv9Fzuswk_QStQFMaG0qhFLS8QQ6WFpwKa1II_rgqIC2KIFZyDKIc2pzqrDxFIxJmVPxByj-gMQfjEpwMP6ln_F6_NW4XCxQkG_xQTBRyBIcFos2-fxrZ5t_d7YLc43OdStoNdtXWzCP-MzPEoXKMDN8eVXbiIGG0U6qeAwe_lvTvwAaFxSf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFD5MBdEHL1NxXvOgL0qxbdIuFXwYu7B5GTI23Fttl2QI0g2dyvxT_kVPetlUVPDB56Yh7UnO-U7ynS8AB5QySmlgGoKF0mC2JXDNYc7j2r0ix3ivHKU39K-abr3DzrtONwdvWS1MzHbPjiSTmgat0hSNToZCnUwK37RsiSZUcYO61DTGKavyQo5fMGd7PGtU0MCHtl2rtst1I71WwOghvBkbgaeCEDMdZgWUSwtHJR0VuMLx8HNUkYUep8wNbdORVjHUNYbSFdzBFkqfypkU-52BOaaLj3EBdezSJMNLZS8RgyBsxVifHaN-N-TPgXCKbr8cyMZxrrYCSylAJaVkRq1CTkZ5WM4ufyCpL8jD4gclwzUYtqrtVqmMbpAgQm6UL6unpKl3ep8DzY8nyUXVZKCIHKIfQj_VI0KOYh5YRDT5vk8qN20SRIL0EyXsu1cpyIPsJ0TdiGjlTRxYlPDW16HzL399A2ajQSQ3gXClTInISjCXY76lOBXCChWCEYrz0eYFMLM_6_dSpXN94ca9P9Fojo3hozF8bQx_XICjySvDRObjt8Y7mbn8dMU_-ranhV61olUBjjMTTh__2NnWn1rvw_x1peZfNpoX27CA4M1LWEQ7MDt6eJK7CJBG4V48KQnc_vcqeAdXMBqF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RETRACTED+ARTICLE%3A+Noninvasive+method+of+epileptic+detection+using+DWT+and+generalized+regression+neural+network&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Vijay+Anand%2C+S.&rft.au=Shantha+Selvakumari%2C+R.&rft.date=2019-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=23&rft.issue=8&rft.spage=2645&rft.epage=2653&rft_id=info:doi/10.1007%2Fs00500-018-3630-y&rft.externalDocID=10_1007_s00500_018_3630_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |