RETRACTED ARTICLE: Noninvasive method of epileptic detection using DWT and generalized regression neural network

Epilepsy is a continual disorder, the characteristic of which is recurrent, motiveless seizures. Many people with epilepsy have more than one type of seizure and may have other symptoms of neurological problems as well. In this paper, a noninvasive method using discrete wavelet transform (DWT) and n...

Full description

Saved in:
Bibliographic Details
Published inSoft computing (Berlin, Germany) Vol. 23; no. 8; pp. 2645 - 2653
Main Authors Vijay Anand, S., Shantha Selvakumari, R.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Epilepsy is a continual disorder, the characteristic of which is recurrent, motiveless seizures. Many people with epilepsy have more than one type of seizure and may have other symptoms of neurological problems as well. In this paper, a noninvasive method using discrete wavelet transform (DWT) and neural network is projected for automatic detection of epilepsy from EEG signals. DWT of the EEG signals is carried out using Haar Wavelets. Statistical features of approximate and detailed coefficients are extracted from the transformed signal. The entropy, as well as approximate entropy of the transformed signals, is determined. The features extracted from the transformed signal are used as the training set for the artificial neural network (ANN). Two types of ANNs viz. feedforward neural network (FFNN) and generalized regression neural network (GRNN) are trained. Three types of subjects viz. healthy, seizure-free period of an epileptic patient and epileptic patients are considered. The signals are classified accordingly as normal, seizure-free epileptic and abnormal. The results are compared on the basis of the confusion matrix, error histogram, and error plot. The quality measures used for comparison are sensitivity, specificity, precision, and accuracy. On all the evaluation parameters, GRNN is found to be best suited for anomaly detection in EEG signals.
AbstractList Epilepsy is a continual disorder, the characteristic of which is recurrent, motiveless seizures. Many people with epilepsy have more than one type of seizure and may have other symptoms of neurological problems as well. In this paper, a noninvasive method using discrete wavelet transform (DWT) and neural network is projected for automatic detection of epilepsy from EEG signals. DWT of the EEG signals is carried out using Haar Wavelets. Statistical features of approximate and detailed coefficients are extracted from the transformed signal. The entropy, as well as approximate entropy of the transformed signals, is determined. The features extracted from the transformed signal are used as the training set for the artificial neural network (ANN). Two types of ANNs viz. feedforward neural network (FFNN) and generalized regression neural network (GRNN) are trained. Three types of subjects viz. healthy, seizure-free period of an epileptic patient and epileptic patients are considered. The signals are classified accordingly as normal, seizure-free epileptic and abnormal. The results are compared on the basis of the confusion matrix, error histogram, and error plot. The quality measures used for comparison are sensitivity, specificity, precision, and accuracy. On all the evaluation parameters, GRNN is found to be best suited for anomaly detection in EEG signals.
Author Vijay Anand, S.
Shantha Selvakumari, R.
Author_xml – sequence: 1
  givenname: S.
  surname: Vijay Anand
  fullname: Vijay Anand, S.
  email: vijayme04@gmail.com
  organization: Dhanalakshmi College of Engineering
– sequence: 2
  givenname: R.
  surname: Shantha Selvakumari
  fullname: Shantha Selvakumari, R.
  organization: Mepco Schlenk Engineering College
BookMark eNp9kN9LwzAQx4Mo-PMP8C3gc_WStE3r25hTB0NhVHwMWXudmTOpSafMv97MCYKgT3cc38_d8Tkku9ZZJOSUwTkDkBcBIANIgBWJyAUk6x1ywFIhEpnKcver54nMU7FPDkNYAHAmM3FAuumomg6G1eiKDqbVeDgZXdI7Z41908G8IX3B_sk11LUUO7PErjc1bbDHujfO0lUwdk6vHiuqbUPnaNHrpfnAhnqcewxhE7K4itNY-nfnn4_JXquXAU--6xF5uB5Vw9tkcn8zHg4mSc1ytk502eoZZ5AyLQpkOa8xa3XeZCXWdSvTWVmINJ9xyJDJGeS8wLwpsphoeVECiCNytt3befe6wtCrhVt5G08qXjJZsqiNxRTbpmrvQvDYqs6bF-3XioHaiFVbsSqKVRuxah0Z-YupTa83PnqvzfJfkm_JEK_YOfqfn_6GPgGQJY9L
CitedBy_id crossref_primary_10_1002_hbm_25683
crossref_primary_10_7717_peerj_11182
crossref_primary_10_1007_s00500_020_05141_x
crossref_primary_10_1007_s00521_020_05441_1
crossref_primary_10_7717_peerj_cs_680
crossref_primary_10_1016_j_engappai_2020_103975
crossref_primary_10_1109_TCDS_2020_3009020
crossref_primary_10_1111_exsy_13374
crossref_primary_10_1016_j_bspc_2021_102554
crossref_primary_10_1007_s10462_024_10799_y
crossref_primary_10_1016_j_bspc_2021_102957
crossref_primary_10_1007_s00500_022_07122_8
crossref_primary_10_2478_msr_2021_0016
crossref_primary_10_1109_JIOT_2022_3152739
Cites_doi 10.1016/0013-4694(92)90086-W
10.1007/s11760-012-0362-9
10.1097/00004691-199903000-00005
10.1016/j.eplepsyres.2005.03.009
10.1155/2007/80510
10.1016/j.bspc.2011.07.007
10.4236/jbise.2010.312154
10.1109/TNSRE.2015.2458982
10.1049/iet-spr.2011.0338
10.1016/j.imu.2016.12.001
10.1109/TNSRE.2012.2206054
10.1016/j.physa.2011.09.010
10.1103/PhysRevE.64.061907
10.1109/tbme.2013.2254486
10.1007/978-3-319-46922-5_5
10.1109/INISTA.2012.6246997
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2018. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00500-018-3630-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 2653
ExternalDocumentID 10_1007_s00500_018_3630_y
Genre Correction/Retraction
GroupedDBID -5B
-5G
-BR
-EM
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29~
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c161y-a9fab21041a38e162ce5fa6d59eccf74b98346b205e17b0628e6d85a6df289003
IEDL.DBID U2A
ISSN 1432-7643
IngestDate Fri Jul 25 09:35:40 EDT 2025
Fri Jul 04 01:04:07 EDT 2025
Thu Apr 24 23:01:14 EDT 2025
Fri Feb 21 02:37:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords DWT
Generalized regression neural network
Artificial neural networks
Approximate entropy
EEG signal
Feedforward neural network
Anomaly detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c161y-a9fab21041a38e162ce5fa6d59eccf74b98346b205e17b0628e6d85a6df289003
Notes ObjectType-Correction/Retraction-1
SourceType-Scholarly Journals-1
content type line 14
PQID 2917911001
PQPubID 2043697
PageCount 9
ParticipantIDs proquest_journals_2917911001
crossref_primary_10_1007_s00500_018_3630_y
crossref_citationtrail_10_1007_s00500_018_3630_y
springer_journals_10_1007_s00500_018_3630_y
PublicationCentury 2000
PublicationDate 20190401
2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 4
  year: 2019
  text: 20190401
  day: 1
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Zhou, Liu, Yuan, Li (CR24) 2013; 60
Wang, Zhang, Zou, Zhang (CR23) 2012; 391
Mihandoost, Amirani, Mazlaghani, Mihandoost (CR14) 2012; 6
Kumar, Dewal, Anand (CR11) 2014; 8
CR16
Vavadi, Ayatollahi, Mirzaei (CR22) 2010; 3
Liu, Zhou, Yuan, Chen (CR12) 2012; 20
Acharya, Molinari, Sree, Chattopadhyay, Ng, Suri (CR1) 2012; 7
Gotman (CR8) 1999; 16
Andrzejak, Lehnertz, Mormann, Rieke, David, Elger (CR2) 2001; 64
Chaovalitwongse, Iasemidis, Pardalos, Carney, Shiau, Sackellares (CR6) 2005; 64
Guo, Riveero, Pazaos (CR9) 2010; 193
CR20
Mu, Xiao, Hu (CR15) 2009; 3
Gabor, Seyal (CR7) 1992; 83
Janjarasjitt (CR10) 2010; 3
Micheli-Tzanakou (CR13) 2000
Sivasankari, Thanushkodi (CR19) 2009; 1
Bronzino (CR5) 2000
Tzallas, Tsipouras, Fotiadis (CR21) 2007; 2007
Bhattacharyya, Sharma, Pachori (CR3) 2016; 29
Parvez, Paul (CR17) 2016; 24
Satapathya (CR18) 2017; 6
A Bhattacharyya (3630_CR3) 2016; 29
S Mihandoost (3630_CR14) 2012; 6
Y Kumar (3630_CR11) 2014; 8
C Wang (3630_CR23) 2012; 391
L Guo (3630_CR9) 2010; 193
SK Satapathya (3630_CR18) 2017; 6
E Micheli-Tzanakou (3630_CR13) 2000
3630_CR20
Y Liu (3630_CR12) 2012; 20
UR Acharya (3630_CR1) 2012; 7
3630_CR16
Z Mu (3630_CR15) 2009; 3
AT Tzallas (3630_CR21) 2007; 2007
JD Bronzino (3630_CR5) 2000
H Vavadi (3630_CR22) 2010; 3
MZ Parvez (3630_CR17) 2016; 24
W Chaovalitwongse (3630_CR6) 2005; 64
J Gotman (3630_CR8) 1999; 16
S Janjarasjitt (3630_CR10) 2010; 3
N Sivasankari (3630_CR19) 2009; 1
W Zhou (3630_CR24) 2013; 60
RG Andrzejak (3630_CR2) 2001; 64
AJ Gabor (3630_CR7) 1992; 83
References_xml – volume: 83
  start-page: 271
  year: 1992
  end-page: 280
  ident: CR7
  article-title: Automated interictal EEG spike detection victimization artificial neural networks
  publication-title: Electroencephalogr Clin Neurosci
  doi: 10.1016/0013-4694(92)90086-W
– volume: 3
  start-page: 19
  issue: 1
  year: 2010
  end-page: 25
  ident: CR10
  article-title: Classification of the epileptic EEGs using the wavelet-based scale variance feature
  publication-title: Int J Appl Biomed Eng
– volume: 8
  start-page: 1323
  issue: 7
  year: 2014
  end-page: 1334
  ident: CR11
  article-title: Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network
  publication-title: Signal Image Video Process
  doi: 10.1007/s11760-012-0362-9
– volume: 16
  start-page: 130
  issue: 2
  year: 1999
  end-page: 140
  ident: CR8
  article-title: Automatic detection of seizures and spikes
  publication-title: J Clin Neurophysiol
  doi: 10.1097/00004691-199903000-00005
– volume: 193
  start-page: 156
  year: 2010
  end-page: 163
  ident: CR9
  article-title: Convulsion detection victimization multiwavelet rework based mostly approximate entropy and artificial neural networks
  publication-title: J Neurosci Ways
– volume: 64
  start-page: 93
  year: 2005
  end-page: 113
  ident: CR6
  article-title: Performance of a seizure warning algorithm based on the dynamics of intracranial EEG
  publication-title: Epilepsy Res
  doi: 10.1016/j.eplepsyres.2005.03.009
– volume: 2007
  start-page: 80510
  year: 2007
  ident: CR21
  article-title: Automatic seizure detection based on time–frequency analysis and artificial neural networks
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2007/80510
– volume: 7
  start-page: 401
  issue: 4
  year: 2012
  end-page: 408
  ident: CR1
  article-title: Automated diagnosis of epileptic EEG using entropies
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2011.07.007
– ident: CR16
– volume: 3
  start-page: 1182
  year: 2010
  end-page: 1189
  ident: CR22
  article-title: A wavelet-approximate entropy method for epileptic activity detection from EEG and its sub-bands
  publication-title: J Biomed Sci Eng
  doi: 10.4236/jbise.2010.312154
– volume: 24
  start-page: 158
  issue: 1
  year: 2016
  end-page: 168
  ident: CR17
  article-title: Epileptic seizure prediction by exploiting spatiotemporal relationship of EEG signals using phase correlation
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2015.2458982
– volume: 6
  start-page: 829
  year: 2012
  end-page: 838
  ident: CR14
  article-title: Automatic feature extraction using generalised autoregressive conditional heteroscedasticity model: an application to lectroencephalogram classification
  publication-title: IET Signal Process
  doi: 10.1049/iet-spr.2011.0338
– volume: 6
  start-page: 1
  year: 2017
  end-page: 11
  ident: CR18
  article-title: EEG signal classification using PSO trained RBF neural network for epilepsy identification
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2016.12.001
– volume: 20
  start-page: 749
  issue: 6
  year: 2012
  end-page: 755
  ident: CR12
  article-title: Automatic seizure detection using wavelet transform and SVM in long-term intracranial EEG
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2012.2206054
– volume: 1
  start-page: 91
  issue: 2
  year: 2009
  end-page: 104
  ident: CR19
  article-title: Automated convulsion detection in EEG signals victimization quick ICA and neural network
  publication-title: Int J Adv Soft Comput Appl
– year: 2000
  ident: CR5
  publication-title: Biomedical engineering handbook
– year: 2000
  ident: CR13
  publication-title: Supervised and unattended pattern recognition: feature extraction and procedure intelligence
– volume: 3
  start-page: 116
  issue: 4
  year: 2009
  end-page: 119
  ident: CR15
  article-title: Classification of motor representational process EEG signals supported time–frequency analysis
  publication-title: Int J Digit Content Technol Appl
– volume: 29
  start-page: 1
  year: 2016
  end-page: 11
  ident: CR3
  article-title: A novel approach for automated detection of focal EEG signals using empirical wavelet transform
  publication-title: Neural Comput Appl
– ident: CR20
– volume: 391
  start-page: 1602
  issue: 4
  year: 2012
  end-page: 1609
  ident: CR23
  article-title: Performance evaluation for epileptic electroencephalogram (EEG) detection by using Neyman-Pearson criteria and a support vector machine
  publication-title: Phys A
  doi: 10.1016/j.physa.2011.09.010
– volume: 64
  start-page: 061907
  issue: 6
  year: 2001
  ident: CR2
  article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.64.061907
– volume: 60
  start-page: 3375
  issue: 12
  year: 2013
  end-page: 3381
  ident: CR24
  article-title: Epileptic seizure detection using lacunarity and Bayesian linear discriminant analysis in intracranial EEG
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/tbme.2013.2254486
– volume: 7
  start-page: 401
  issue: 4
  year: 2012
  ident: 3630_CR1
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2011.07.007
– volume: 83
  start-page: 271
  year: 1992
  ident: 3630_CR7
  publication-title: Electroencephalogr Clin Neurosci
  doi: 10.1016/0013-4694(92)90086-W
– volume: 20
  start-page: 749
  issue: 6
  year: 2012
  ident: 3630_CR12
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2012.2206054
– volume: 8
  start-page: 1323
  issue: 7
  year: 2014
  ident: 3630_CR11
  publication-title: Signal Image Video Process
  doi: 10.1007/s11760-012-0362-9
– volume-title: Supervised and unattended pattern recognition: feature extraction and procedure intelligence
  year: 2000
  ident: 3630_CR13
– volume: 6
  start-page: 829
  year: 2012
  ident: 3630_CR14
  publication-title: IET Signal Process
  doi: 10.1049/iet-spr.2011.0338
– volume: 60
  start-page: 3375
  issue: 12
  year: 2013
  ident: 3630_CR24
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/tbme.2013.2254486
– volume: 29
  start-page: 1
  year: 2016
  ident: 3630_CR3
  publication-title: Neural Comput Appl
– volume: 3
  start-page: 1182
  year: 2010
  ident: 3630_CR22
  publication-title: J Biomed Sci Eng
  doi: 10.4236/jbise.2010.312154
– volume: 6
  start-page: 1
  year: 2017
  ident: 3630_CR18
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2016.12.001
– volume-title: Biomedical engineering handbook
  year: 2000
  ident: 3630_CR5
– volume: 3
  start-page: 19
  issue: 1
  year: 2010
  ident: 3630_CR10
  publication-title: Int J Appl Biomed Eng
– volume: 16
  start-page: 130
  issue: 2
  year: 1999
  ident: 3630_CR8
  publication-title: J Clin Neurophysiol
  doi: 10.1097/00004691-199903000-00005
– volume: 64
  start-page: 061907
  issue: 6
  year: 2001
  ident: 3630_CR2
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.64.061907
– ident: 3630_CR20
  doi: 10.1007/978-3-319-46922-5_5
– volume: 3
  start-page: 116
  issue: 4
  year: 2009
  ident: 3630_CR15
  publication-title: Int J Digit Content Technol Appl
– volume: 64
  start-page: 93
  year: 2005
  ident: 3630_CR6
  publication-title: Epilepsy Res
  doi: 10.1016/j.eplepsyres.2005.03.009
– ident: 3630_CR16
  doi: 10.1109/INISTA.2012.6246997
– volume: 1
  start-page: 91
  issue: 2
  year: 2009
  ident: 3630_CR19
  publication-title: Int J Adv Soft Comput Appl
– volume: 391
  start-page: 1602
  issue: 4
  year: 2012
  ident: 3630_CR23
  publication-title: Phys A
  doi: 10.1016/j.physa.2011.09.010
– volume: 24
  start-page: 158
  issue: 1
  year: 2016
  ident: 3630_CR17
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2015.2458982
– volume: 2007
  start-page: 80510
  year: 2007
  ident: 3630_CR21
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2007/80510
– volume: 193
  start-page: 156
  year: 2010
  ident: 3630_CR9
  publication-title: J Neurosci Ways
SSID ssj0021753
Score 2.1842418
Snippet Epilepsy is a continual disorder, the characteristic of which is recurrent, motiveless seizures. Many people with epilepsy have more than one type of seizure...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2645
SubjectTerms Artificial Intelligence
Computational Intelligence
Control
Engineering
Focus
Mathematical Logic and Foundations
Mechatronics
Robotics
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90e_HFb3E6JQ8-KcG2abvUF5lzY4oOGRvurbRNMgTp6jaF-dd7adMNBffcNpS75O53H_kdwAVjLmMssqhwY0ldxxZ45jDm8Z2kwdHfK0_phP5zz-8O3ceRNzIJt5lpqyxtYm6oxSTROfJrJ9BEmpox6Db7oHpqlK6umhEam1BFE8x5Bap37d5LfxlyGR5KBAWII9H5lnVNK6cR9fStaptT5jOLLn57phXc_FMhzR1PZxe2DWIkzULFe7Ah033YKacxEHM4DyDrtwf9ZgstEUGQ-tB6at-Qnk62fkW6RZ0Us6LJRBGZoSlAU5EQIed5K1ZKdP_7mNy_DkiUCjIuyKjfvqUgUzkuemVToskv8VfSonX8EIad9qDVpWaeAk0Q1y1oFKgoxhDPtSPGpY3qkJ6KfOEFqEfVcOOAM9ePHcuTdiPWlyulL7iHbyhdjrTYEVTSSSqPgXClLIngRrg-x5BHcSaEHSvEAwy3hMNrYJWyDBNDNq5nXryHS5rkXPwhij_U4g8XNbhcfpIVTBvrXq6XCgrNoZuFqy1Sg6tSaavH_y52sn6xU9hClBQU7Tp1qMynn_IMkcg8Pjfb7QcsatlI
  priority: 102
  providerName: ProQuest
Title RETRACTED ARTICLE: Noninvasive method of epileptic detection using DWT and generalized regression neural network
URI https://link.springer.com/article/10.1007/s00500-018-3630-y
https://www.proquest.com/docview/2917911001
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8RuOjBD9SIIunBk2bJtm6j8wY4wC9iCEQ8LRttiYkZBNAE_3pf94UaNfHUw7pm2Wvf-72-X38FOKPUopQGusatUGiWaXBcc5jzOOa4zjDeS1uqDf37ntMdWjcje5Se415kbPesJBl76vywm5IqUSQqplGH6tqqACUbU3fF4xqajTzLSqUnEQcgdMR4m5UyfxriazBaI8xvRdE41rR3YTsFiaSRWHUPNkRUhp3sAgaSrscybH1SE9yHWd8b9BstdEUEUep16867JD212_oWKI46SS6LJlNJxAx9AfqKMeFiGXOxIqII8BNy9TggQcTJJFGjfn4XnMzFJCHLRkSpX-KHRQl3_ACGbW_Q6mrphQraGIHdSgtcGYSY41lGQJkw0B7CloHDbRcNKetW6DJqOaGp28Koh-p0pXA4s7GHVPVInR5CMZpG4ggIk1IXiG645TDMeSSjnBuhREBAcU6YrAJ69mf9cao2ri69ePFzneTYGD4aw1fG8FcVOM9fmSVSG391rmbm8tNVt_BNV4mtKlWpClxkJlw__nWw43_1PoFNRE1uQt-pQnE5fxWniEyWYQ0KrN2pQanRbjZ7qu083XrYNr3eQ78Wz9MPvNzfBg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HODCGzEYkANcQBVt03YpEkJobGwwdkBDcCttk0xIqBtsgMaP4jdi97EJJLhxbholjuN8jp3PAHucO5zz0DSkEynDsS2Jew59Hs-OKwLPe-1qutC_bnuNW-fy3r2fgs_iLQylVRY2MTXUshfTHfmR7RORJjEGnfafDaoaRdHVooRGphZXavSOLtvgpHmO67tv2_Vap9ow8qoCRozoZmSEvg4jdHQcK-RCWTgo5erQk66Ps9EVJ_IFd7zINl1lVSJ6Yqg8KVxsoSkoZ3LsdxpmcYo-OXuifjF28HLWS4QgiFrxqC-iqGZKWurSG25LGNzjpjH6fg5OwO2PeGx6zNWXYCHHp-wsU6hlmFLJCiwWtR9YbgpWoX9T69ycVdHuMYTEzWqrdszadLX7FlJCPMsqU7OeZqqPhgcNU8ykGqaJXwmjbPsuO7_rsDCRrJtRXz9-KMleVDfLzE0YUW3iUJIsUX0Nbv9Fzuswk_QStQFMaG0qhFLS8QQ6WFpwKa1II_rgqIC2KIFZyDKIc2pzqrDxFIxJmVPxByj-gMQfjEpwMP6ln_F6_NW4XCxQkG_xQTBRyBIcFos2-fxrZ5t_d7YLc43OdStoNdtXWzCP-MzPEoXKMDN8eVXbiIGG0U6qeAwe_lvTvwAaFxSf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFD5MBdEHL1NxXvOgL0qxbdIuFXwYu7B5GTI23Fttl2QI0g2dyvxT_kVPetlUVPDB56Yh7UnO-U7ynS8AB5QySmlgGoKF0mC2JXDNYc7j2r0ix3ivHKU39K-abr3DzrtONwdvWS1MzHbPjiSTmgat0hSNToZCnUwK37RsiSZUcYO61DTGKavyQo5fMGd7PGtU0MCHtl2rtst1I71WwOghvBkbgaeCEDMdZgWUSwtHJR0VuMLx8HNUkYUep8wNbdORVjHUNYbSFdzBFkqfypkU-52BOaaLj3EBdezSJMNLZS8RgyBsxVifHaN-N-TPgXCKbr8cyMZxrrYCSylAJaVkRq1CTkZ5WM4ufyCpL8jD4gclwzUYtqrtVqmMbpAgQm6UL6unpKl3ep8DzY8nyUXVZKCIHKIfQj_VI0KOYh5YRDT5vk8qN20SRIL0EyXsu1cpyIPsJ0TdiGjlTRxYlPDW16HzL399A2ajQSQ3gXClTInISjCXY76lOBXCChWCEYrz0eYFMLM_6_dSpXN94ca9P9Fojo3hozF8bQx_XICjySvDRObjt8Y7mbn8dMU_-ranhV61olUBjjMTTh__2NnWn1rvw_x1peZfNpoX27CA4M1LWEQ7MDt6eJK7CJBG4V48KQnc_vcqeAdXMBqF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RETRACTED+ARTICLE%3A+Noninvasive+method+of+epileptic+detection+using+DWT+and+generalized+regression+neural+network&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Vijay+Anand%2C+S.&rft.au=Shantha+Selvakumari%2C+R.&rft.date=2019-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=23&rft.issue=8&rft.spage=2645&rft.epage=2653&rft_id=info:doi/10.1007%2Fs00500-018-3630-y&rft.externalDocID=10_1007_s00500_018_3630_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon