Organic room temperature phosphorescence co‐crystal with reversible acid/base stimulus response

Stimulus‐responsive organic room temperature phosphorescent (RTP) materials have received significant attention in bioimaging, sensing, and data storage because of their controllable dynamic variability and rapid response. Organic co‐crystals, with tailor‐designed optical properties through manipula...

Full description

Saved in:
Bibliographic Details
Published inSmart molecules (Print)
Main Authors Zhang, Chenchen, Jiang, Xingjia, Wang, Can, Liu, Zhaoyang, Xu, Bin, Tian, Wenjing
Format Journal Article
LanguageEnglish
Published 04.01.2025
Online AccessGet full text

Cover

Loading…
Abstract Stimulus‐responsive organic room temperature phosphorescent (RTP) materials have received significant attention in bioimaging, sensing, and data storage because of their controllable dynamic variability and rapid response. Organic co‐crystals, with tailor‐designed optical properties through manipulation of their aggregate structures, have proven to be very effective in elucidating the structure‐property relationship of organic RTP materials at the molecular level. Therefore, enhancing RTP through rigid frameworks that promote intersystem crossing is a valid approach. Notably, the realization of organic RTP co‐crystal performance by altering the components or adjusting the crystal lattices is highly appealing; however, this has not been fully addressed. In this study, an organic RTP co‐crystal, 4,4′‐bipyridine (44BD), was employed as the host, and 1,4‐diiodotetrafluorobenzene (DITF) and 4‐bromo‐2,3,5,6‐tetrafluorobenzoic acid (TFBA) were employed as guests. The 44BD‐DITF co‐crystal exhibited an orange RTP, whereas 44BD‐TFBA displayed a bright yellow RTP. Crystal analysis and theoretical calculations revealed that dense molecular packing and abundant intermolecular interactions within these co‐crystals are crucial for the emergence of RTP. Notably, both co‐crystals show a reversible acid/base stimulus response, that is, exposure to hydrochloric acid (HCl) fumes results in quenching of their RTP, which can be subsequently restored by triethylamine (TEA) fumigation. This study presents an effective approach towards reversible RTP switching in organic co‐crystals, thus offering opportunities for the development of acid/base stimulus‐responsive materials for next‐generation applications.
AbstractList Stimulus‐responsive organic room temperature phosphorescent (RTP) materials have received significant attention in bioimaging, sensing, and data storage because of their controllable dynamic variability and rapid response. Organic co‐crystals, with tailor‐designed optical properties through manipulation of their aggregate structures, have proven to be very effective in elucidating the structure‐property relationship of organic RTP materials at the molecular level. Therefore, enhancing RTP through rigid frameworks that promote intersystem crossing is a valid approach. Notably, the realization of organic RTP co‐crystal performance by altering the components or adjusting the crystal lattices is highly appealing; however, this has not been fully addressed. In this study, an organic RTP co‐crystal, 4,4′‐bipyridine (44BD), was employed as the host, and 1,4‐diiodotetrafluorobenzene (DITF) and 4‐bromo‐2,3,5,6‐tetrafluorobenzoic acid (TFBA) were employed as guests. The 44BD‐DITF co‐crystal exhibited an orange RTP, whereas 44BD‐TFBA displayed a bright yellow RTP. Crystal analysis and theoretical calculations revealed that dense molecular packing and abundant intermolecular interactions within these co‐crystals are crucial for the emergence of RTP. Notably, both co‐crystals show a reversible acid/base stimulus response, that is, exposure to hydrochloric acid (HCl) fumes results in quenching of their RTP, which can be subsequently restored by triethylamine (TEA) fumigation. This study presents an effective approach towards reversible RTP switching in organic co‐crystals, thus offering opportunities for the development of acid/base stimulus‐responsive materials for next‐generation applications.
Author Xu, Bin
Zhang, Chenchen
Jiang, Xingjia
Tian, Wenjing
Liu, Zhaoyang
Wang, Can
Author_xml – sequence: 1
  givenname: Chenchen
  orcidid: 0009-0006-7888-301X
  surname: Zhang
  fullname: Zhang, Chenchen
  organization: State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun Jilin Province China
– sequence: 2
  givenname: Xingjia
  surname: Jiang
  fullname: Jiang, Xingjia
  organization: State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun Jilin Province China
– sequence: 3
  givenname: Can
  surname: Wang
  fullname: Wang, Can
  organization: State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun Jilin Province China
– sequence: 4
  givenname: Zhaoyang
  surname: Liu
  fullname: Liu, Zhaoyang
  organization: State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun Jilin Province China
– sequence: 5
  givenname: Bin
  surname: Xu
  fullname: Xu, Bin
  organization: State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun Jilin Province China
– sequence: 6
  givenname: Wenjing
  surname: Tian
  fullname: Tian, Wenjing
  organization: State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun Jilin Province China
BookMark eNo9kEtOwzAURS1UJErpjAV4AaR9tuN8hqjiJ1XqBMaR7TzToCSO_BJQZyyBNbISivgMru6VjnQH55zN-tAjY5cCVgJArqkLKwkyBdDpCZvLXIsk1aWe_e8iP2NLohcAUFJIIbI5M7v4bPrG8RhCx0fsBoxmnCLyYR_omIjksHfIXfh8_3DxQKNp-Vsz7nnEV4zU2Ba5cU29toaQ09h0UzvRkdIQesILdupNS7j87QV7ur153Nwn293dw-Z6mziRwZj43Kq0TL3U4Gxd59ZkhRKmLHXuwKIrQHkhUdVKFrUrc1Nm1jjnM4W69sqqBbv6-XUxEEX01RCbzsRDJaD6NlQdDVV_htQX61hfZw
Cites_doi 10.1002/anie.202002220
10.1016/j.scib.2024.02.029
10.1021/acs.accounts.1c00336
10.1021/jacs.8b11224
10.1039/D2QM00618A
10.1016/j.cej.2023.143931
10.1016/j.xcrp.2020.100052
10.1021/acsmaterialslett.1c00062
10.1038/s41467-022-31481-3
10.1039/D1TC03460J
10.1002/adma.202211160
10.1039/D3IM00004D
10.1002/anie.202319694
10.1038/s41563-021-01073-5
10.1038/s41578-020-0223-z
10.1039/C7SC04098A
10.1039/D3CC00923H
10.1039/C9TC02879J
10.1021/accountsmr.1c00084
10.1002/smm2.1006
10.1016/j.matt.2020.05.005
10.1007/s11426-018-9247-2
10.1021/acs.jpclett.9b03363
10.1021/jacs.3c10206
10.1002/anie.202107639
10.1038/s41467-022-35625-3
10.1016/j.solidstatesciences.2009.07.017
10.1038/s41467-020-18520-7
10.1002/chem.201705391
10.1002/anie.201601252
10.1002/smll.202104073
10.1021/acs.jpclett.4c00160
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1002/smo.20240054
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2751-4595
ExternalDocumentID 10_1002_smo_20240054
GroupedDBID 0R~
24P
AAYXX
ACCMX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ALUQN
BENPR
CCPQU
CITATION
GROUPED_DOAJ
PHGZM
PHGZT
PIMPY
ID FETCH-LOGICAL-c160t-f7b3494f250cbdd7ba6831a9957c0bec803f12e3d328dc97a96baccf63e5df3b3
ISSN 2751-4587
IngestDate Tue Jul 01 02:40:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c160t-f7b3494f250cbdd7ba6831a9957c0bec803f12e3d328dc97a96baccf63e5df3b3
ORCID 0009-0006-7888-301X
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdf/10.1002/smo.20240054
ParticipantIDs crossref_primary_10_1002_smo_20240054
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-04
PublicationDateYYYYMMDD 2025-01-04
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-04
  day: 04
PublicationDecade 2020
PublicationTitle Smart molecules (Print)
PublicationYear 2025
References Feng W. X. (e_1_2_8_19_1) 2024; 146
Pan Z. C. (e_1_2_8_8_1) 2024; 69
Singh M. (e_1_2_8_25_1) 2024; 63
Liu X. W. (e_1_2_8_16_1) 2022; 13
Ye W. (e_1_2_8_28_1) 2021; 20
Liu Y. J. (e_1_2_8_32_1) 2020; 59
Yan X. (e_1_2_8_13_1) 2021; 18
Yang J. (e_1_2_8_26_1) 2021; 2
Guo S. (e_1_2_8_14_1) 2021; 3
Wang Y. S. (e_1_2_8_37_1) 2020; 3
Zhou W. L. (e_1_2_8_6_1) 2020; 11
Zhang Y. H. (e_1_2_8_18_1) 2023; 59
Tian Y. (e_1_2_8_33_1) 2020; 1
Ma X. K. (e_1_2_8_9_1) 2021; 54
Dai W. (e_1_2_8_23_1) 2022; 61
Xiao L. (e_1_2_8_12_1) 2018; 24
Chai Z. F. (e_1_2_8_27_1) 2017; 8
Huang Z. (e_1_2_8_15_1) 2022; 13
Wang Y. (e_1_2_8_31_1) 2020; 1
Ma L. W. (e_1_2_8_5_1) 2022; 66
Wen Y. T. (e_1_2_8_24_1) 2024; 15
Abe A. (e_1_2_8_29_1) 2023; 36
Chen X. (e_1_2_8_30_1) 2016; 55
Gu L. (e_1_2_8_17_1) 2020; 11
Zhang T. (e_1_2_8_34_1) 2019; 7
Qin A. J. (e_1_2_8_2_1) 2018; 61
Abe A. (e_1_2_8_35_1) 2024; 36
Zhao W. (e_1_2_8_3_1) 2020; 5
Gao M. (e_1_2_8_11_1) 2021; 9
Liu Y. (e_1_2_8_36_1) 2020; 59
Kong L. Q. (e_1_2_8_10_1) 2023; 469
Sivasubramaniam V. (e_1_2_8_21_1) 2009; 11
Yang D. D. (e_1_2_8_7_1) 2022; 6
Ji M. (e_1_2_8_4_1) 2023; 1
Ma H. L. (e_1_2_8_20_1) 2018; 141
Tian Y. (e_1_2_8_22_1) 2021; 60
References_xml – volume: 59
  year: 2020
  ident: e_1_2_8_36_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202002220
– volume: 69
  start-page: 1237
  year: 2024
  ident: e_1_2_8_8_1
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2024.02.029
– volume: 54
  start-page: 3403
  year: 2021
  ident: e_1_2_8_9_1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.1c00336
– volume: 141
  start-page: 1010
  year: 2018
  ident: e_1_2_8_20_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11224
– volume: 6
  start-page: 2709
  year: 2022
  ident: e_1_2_8_7_1
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D2QM00618A
– volume: 469
  year: 2023
  ident: e_1_2_8_10_1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.143931
– volume: 1
  year: 2020
  ident: e_1_2_8_33_1
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2020.100052
– volume: 3
  start-page: 379
  year: 2021
  ident: e_1_2_8_14_1
  publication-title: ACS Mater. Lett
  doi: 10.1021/acsmaterialslett.1c00062
– volume: 61
  year: 2022
  ident: e_1_2_8_23_1
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 3887
  year: 2022
  ident: e_1_2_8_16_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31481-3
– volume: 9
  year: 2021
  ident: e_1_2_8_11_1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D1TC03460J
– volume: 36
  year: 2023
  ident: e_1_2_8_29_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202211160
– volume: 1
  start-page: 582
  year: 2023
  ident: e_1_2_8_4_1
  publication-title: Ind. Chem. Mater.
  doi: 10.1039/D3IM00004D
– volume: 63
  year: 2024
  ident: e_1_2_8_25_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202319694
– volume: 20
  start-page: 1539
  year: 2021
  ident: e_1_2_8_28_1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01073-5
– volume: 5
  start-page: 869
  year: 2020
  ident: e_1_2_8_3_1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-0223-z
– volume: 8
  start-page: 8336
  year: 2017
  ident: e_1_2_8_27_1
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC04098A
– volume: 59
  start-page: 5329
  year: 2023
  ident: e_1_2_8_18_1
  publication-title: Chem. Commun. (Cambridge U. K.)
  doi: 10.1039/D3CC00923H
– volume: 7
  start-page: 9095
  year: 2019
  ident: e_1_2_8_34_1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC02879J
– volume: 36
  year: 2024
  ident: e_1_2_8_35_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202211160
– volume: 2
  start-page: 644
  year: 2021
  ident: e_1_2_8_26_1
  publication-title: Acc. Mater. Res.
  doi: 10.1021/accountsmr.1c00084
– volume: 1
  year: 2020
  ident: e_1_2_8_31_1
  publication-title: SmartMat
  doi: 10.1002/smm2.1006
– volume: 3
  start-page: 449
  year: 2020
  ident: e_1_2_8_37_1
  publication-title: Matter
  doi: 10.1016/j.matt.2020.05.005
– volume: 61
  start-page: 635
  year: 2018
  ident: e_1_2_8_2_1
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-018-9247-2
– volume: 11
  start-page: 6191
  year: 2020
  ident: e_1_2_8_17_1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b03363
– volume: 146
  start-page: 2484
  year: 2024
  ident: e_1_2_8_19_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c10206
– volume: 60
  year: 2021
  ident: e_1_2_8_22_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202107639
– volume: 13
  start-page: 7841
  year: 2022
  ident: e_1_2_8_15_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35625-3
– volume: 11
  start-page: 1933
  year: 2009
  ident: e_1_2_8_21_1
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2009.07.017
– volume: 11
  start-page: 4655
  year: 2020
  ident: e_1_2_8_6_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18520-7
– volume: 24
  start-page: 1801
  year: 2018
  ident: e_1_2_8_12_1
  publication-title: Chem. Eur J.
  doi: 10.1002/chem.201705391
– volume: 55
  start-page: 9872
  year: 2016
  ident: e_1_2_8_30_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201601252
– volume: 66
  start-page: 304
  year: 2022
  ident: e_1_2_8_5_1
  publication-title: Sci. China: Chem.
– volume: 18
  year: 2021
  ident: e_1_2_8_13_1
  publication-title: Small
  doi: 10.1002/smll.202104073
– volume: 15
  start-page: 2690
  year: 2024
  ident: e_1_2_8_24_1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.4c00160
– volume: 59
  year: 2020
  ident: e_1_2_8_32_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202002220
SSID ssj0003212116
Score 2.3057392
Snippet Stimulus‐responsive organic room temperature phosphorescent (RTP) materials have received significant attention in bioimaging, sensing, and data storage...
SourceID crossref
SourceType Index Database
Title Organic room temperature phosphorescence co‐crystal with reversible acid/base stimulus response
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFLXa6YYuUKFUBQrygq6ilEk8jifLalSEkEBIBWl2I9uxNVMxMygzs4AVn8A38iXcazsPHgvoIlHkvKzc41z7-p5jQg4ykSjLEhnnqhBxTwoe5-CFY9YzSWE4Koog3_n0LDu-7J0M-bChEDh2yVL90rev8kr-x6pQBnZFluw7LFs_FArgGOwLe7Aw7N9kY0-k1BH2fiMUmQoKydH1eL6ArXRaTRoT0uukBl3eLJAA6QKwqN9UQqO4QlENV330ahE0--nqaoUzCi6D9km60N8p1CSa-mV1fdD2vJygfEEdU6ij0IMxvH7csM1OJuHEEDzmv0njEqrrWxlCk5WbOBnL-Y0M7jVEJ1LuohO95ieWCg5jVB6cqmmX-cU1X_zCvSTsYorMTExw9RrTT5Wyn3mwOq_QazCnI7h7VN39kXxKYQiRtiI56KVZiuJ2bu3BqoqBFwEPOGy_vtVjaXU9Lr6Q9TBmoL89ADbIBzPbJJ9bSpJfiQxQoAgF2oICfQYFqucPd_cBBBRBQBsQUATBIUKAVhCgFQS2yOXRn4vBcRxWz4h1knWXsRUKpYcs9HG1KgqhZNaHRpnnXOgutNx-l9kkNaxgab_QuZB5pqTWNmOGF5Yp9o10ZvOZ-U5oruFcl1stNU4UWyWlNFZbwbgtlJXb5Gf1hUbXXiRl9Jopdt543S5Za7D0g3SW5crsQd9vqfZdzGTfmfIRqshf9Q
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic+room+temperature+phosphorescence+co%E2%80%90crystal+with+reversible+acid%2Fbase+stimulus+response&rft.jtitle=Smart+molecules+%28Print%29&rft.au=Zhang%2C+Chenchen&rft.au=Jiang%2C+Xingjia&rft.au=Wang%2C+Can&rft.au=Liu%2C+Zhaoyang&rft.date=2025-01-04&rft.issn=2751-4587&rft.eissn=2751-4595&rft_id=info:doi/10.1002%2Fsmo.20240054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smo_20240054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-4587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-4587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-4587&client=summon