Organic room temperature phosphorescence co‐crystal with reversible acid/base stimulus response
Stimulus‐responsive organic room temperature phosphorescent (RTP) materials have received significant attention in bioimaging, sensing, and data storage because of their controllable dynamic variability and rapid response. Organic co‐crystals, with tailor‐designed optical properties through manipula...
Saved in:
Published in | Smart molecules (Print) |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
04.01.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | Stimulus‐responsive organic room temperature phosphorescent (RTP) materials have received significant attention in bioimaging, sensing, and data storage because of their controllable dynamic variability and rapid response. Organic co‐crystals, with tailor‐designed optical properties through manipulation of their aggregate structures, have proven to be very effective in elucidating the structure‐property relationship of organic RTP materials at the molecular level. Therefore, enhancing RTP through rigid frameworks that promote intersystem crossing is a valid approach. Notably, the realization of organic RTP co‐crystal performance by altering the components or adjusting the crystal lattices is highly appealing; however, this has not been fully addressed. In this study, an organic RTP co‐crystal, 4,4′‐bipyridine (44BD), was employed as the host, and 1,4‐diiodotetrafluorobenzene (DITF) and 4‐bromo‐2,3,5,6‐tetrafluorobenzoic acid (TFBA) were employed as guests. The 44BD‐DITF co‐crystal exhibited an orange RTP, whereas 44BD‐TFBA displayed a bright yellow RTP. Crystal analysis and theoretical calculations revealed that dense molecular packing and abundant intermolecular interactions within these co‐crystals are crucial for the emergence of RTP. Notably, both co‐crystals show a reversible acid/base stimulus response, that is, exposure to hydrochloric acid (HCl) fumes results in quenching of their RTP, which can be subsequently restored by triethylamine (TEA) fumigation. This study presents an effective approach towards reversible RTP switching in organic co‐crystals, thus offering opportunities for the development of acid/base stimulus‐responsive materials for next‐generation applications. |
---|---|
AbstractList | Stimulus‐responsive organic room temperature phosphorescent (RTP) materials have received significant attention in bioimaging, sensing, and data storage because of their controllable dynamic variability and rapid response. Organic co‐crystals, with tailor‐designed optical properties through manipulation of their aggregate structures, have proven to be very effective in elucidating the structure‐property relationship of organic RTP materials at the molecular level. Therefore, enhancing RTP through rigid frameworks that promote intersystem crossing is a valid approach. Notably, the realization of organic RTP co‐crystal performance by altering the components or adjusting the crystal lattices is highly appealing; however, this has not been fully addressed. In this study, an organic RTP co‐crystal, 4,4′‐bipyridine (44BD), was employed as the host, and 1,4‐diiodotetrafluorobenzene (DITF) and 4‐bromo‐2,3,5,6‐tetrafluorobenzoic acid (TFBA) were employed as guests. The 44BD‐DITF co‐crystal exhibited an orange RTP, whereas 44BD‐TFBA displayed a bright yellow RTP. Crystal analysis and theoretical calculations revealed that dense molecular packing and abundant intermolecular interactions within these co‐crystals are crucial for the emergence of RTP. Notably, both co‐crystals show a reversible acid/base stimulus response, that is, exposure to hydrochloric acid (HCl) fumes results in quenching of their RTP, which can be subsequently restored by triethylamine (TEA) fumigation. This study presents an effective approach towards reversible RTP switching in organic co‐crystals, thus offering opportunities for the development of acid/base stimulus‐responsive materials for next‐generation applications. |
Author | Xu, Bin Zhang, Chenchen Jiang, Xingjia Tian, Wenjing Liu, Zhaoyang Wang, Can |
Author_xml | – sequence: 1 givenname: Chenchen orcidid: 0009-0006-7888-301X surname: Zhang fullname: Zhang, Chenchen organization: State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun Jilin Province China – sequence: 2 givenname: Xingjia surname: Jiang fullname: Jiang, Xingjia organization: State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun Jilin Province China – sequence: 3 givenname: Can surname: Wang fullname: Wang, Can organization: State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun Jilin Province China – sequence: 4 givenname: Zhaoyang surname: Liu fullname: Liu, Zhaoyang organization: State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun Jilin Province China – sequence: 5 givenname: Bin surname: Xu fullname: Xu, Bin organization: State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun Jilin Province China – sequence: 6 givenname: Wenjing surname: Tian fullname: Tian, Wenjing organization: State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun Jilin Province China |
BookMark | eNo9kEtOwzAURS1UJErpjAV4AaR9tuN8hqjiJ1XqBMaR7TzToCSO_BJQZyyBNbISivgMru6VjnQH55zN-tAjY5cCVgJArqkLKwkyBdDpCZvLXIsk1aWe_e8iP2NLohcAUFJIIbI5M7v4bPrG8RhCx0fsBoxmnCLyYR_omIjksHfIXfh8_3DxQKNp-Vsz7nnEV4zU2Ba5cU29toaQ09h0UzvRkdIQesILdupNS7j87QV7ur153Nwn293dw-Z6mziRwZj43Kq0TL3U4Gxd59ZkhRKmLHXuwKIrQHkhUdVKFrUrc1Nm1jjnM4W69sqqBbv6-XUxEEX01RCbzsRDJaD6NlQdDVV_htQX61hfZw |
Cites_doi | 10.1002/anie.202002220 10.1016/j.scib.2024.02.029 10.1021/acs.accounts.1c00336 10.1021/jacs.8b11224 10.1039/D2QM00618A 10.1016/j.cej.2023.143931 10.1016/j.xcrp.2020.100052 10.1021/acsmaterialslett.1c00062 10.1038/s41467-022-31481-3 10.1039/D1TC03460J 10.1002/adma.202211160 10.1039/D3IM00004D 10.1002/anie.202319694 10.1038/s41563-021-01073-5 10.1038/s41578-020-0223-z 10.1039/C7SC04098A 10.1039/D3CC00923H 10.1039/C9TC02879J 10.1021/accountsmr.1c00084 10.1002/smm2.1006 10.1016/j.matt.2020.05.005 10.1007/s11426-018-9247-2 10.1021/acs.jpclett.9b03363 10.1021/jacs.3c10206 10.1002/anie.202107639 10.1038/s41467-022-35625-3 10.1016/j.solidstatesciences.2009.07.017 10.1038/s41467-020-18520-7 10.1002/chem.201705391 10.1002/anie.201601252 10.1002/smll.202104073 10.1021/acs.jpclett.4c00160 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1002/smo.20240054 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2751-4595 |
ExternalDocumentID | 10_1002_smo_20240054 |
GroupedDBID | 0R~ 24P AAYXX ACCMX AFKRA ALMA_UNASSIGNED_HOLDINGS ALUQN BENPR CCPQU CITATION GROUPED_DOAJ PHGZM PHGZT PIMPY |
ID | FETCH-LOGICAL-c160t-f7b3494f250cbdd7ba6831a9957c0bec803f12e3d328dc97a96baccf63e5df3b3 |
ISSN | 2751-4587 |
IngestDate | Tue Jul 01 02:40:52 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c160t-f7b3494f250cbdd7ba6831a9957c0bec803f12e3d328dc97a96baccf63e5df3b3 |
ORCID | 0009-0006-7888-301X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdf/10.1002/smo.20240054 |
ParticipantIDs | crossref_primary_10_1002_smo_20240054 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-04 |
PublicationDateYYYYMMDD | 2025-01-04 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-04 day: 04 |
PublicationDecade | 2020 |
PublicationTitle | Smart molecules (Print) |
PublicationYear | 2025 |
References | Feng W. X. (e_1_2_8_19_1) 2024; 146 Pan Z. C. (e_1_2_8_8_1) 2024; 69 Singh M. (e_1_2_8_25_1) 2024; 63 Liu X. W. (e_1_2_8_16_1) 2022; 13 Ye W. (e_1_2_8_28_1) 2021; 20 Liu Y. J. (e_1_2_8_32_1) 2020; 59 Yan X. (e_1_2_8_13_1) 2021; 18 Yang J. (e_1_2_8_26_1) 2021; 2 Guo S. (e_1_2_8_14_1) 2021; 3 Wang Y. S. (e_1_2_8_37_1) 2020; 3 Zhou W. L. (e_1_2_8_6_1) 2020; 11 Zhang Y. H. (e_1_2_8_18_1) 2023; 59 Tian Y. (e_1_2_8_33_1) 2020; 1 Ma X. K. (e_1_2_8_9_1) 2021; 54 Dai W. (e_1_2_8_23_1) 2022; 61 Xiao L. (e_1_2_8_12_1) 2018; 24 Chai Z. F. (e_1_2_8_27_1) 2017; 8 Huang Z. (e_1_2_8_15_1) 2022; 13 Wang Y. (e_1_2_8_31_1) 2020; 1 Ma L. W. (e_1_2_8_5_1) 2022; 66 Wen Y. T. (e_1_2_8_24_1) 2024; 15 Abe A. (e_1_2_8_29_1) 2023; 36 Chen X. (e_1_2_8_30_1) 2016; 55 Gu L. (e_1_2_8_17_1) 2020; 11 Zhang T. (e_1_2_8_34_1) 2019; 7 Qin A. J. (e_1_2_8_2_1) 2018; 61 Abe A. (e_1_2_8_35_1) 2024; 36 Zhao W. (e_1_2_8_3_1) 2020; 5 Gao M. (e_1_2_8_11_1) 2021; 9 Liu Y. (e_1_2_8_36_1) 2020; 59 Kong L. Q. (e_1_2_8_10_1) 2023; 469 Sivasubramaniam V. (e_1_2_8_21_1) 2009; 11 Yang D. D. (e_1_2_8_7_1) 2022; 6 Ji M. (e_1_2_8_4_1) 2023; 1 Ma H. L. (e_1_2_8_20_1) 2018; 141 Tian Y. (e_1_2_8_22_1) 2021; 60 |
References_xml | – volume: 59 year: 2020 ident: e_1_2_8_36_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202002220 – volume: 69 start-page: 1237 year: 2024 ident: e_1_2_8_8_1 publication-title: Sci. Bull. doi: 10.1016/j.scib.2024.02.029 – volume: 54 start-page: 3403 year: 2021 ident: e_1_2_8_9_1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.1c00336 – volume: 141 start-page: 1010 year: 2018 ident: e_1_2_8_20_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11224 – volume: 6 start-page: 2709 year: 2022 ident: e_1_2_8_7_1 publication-title: Mater. Chem. Front. doi: 10.1039/D2QM00618A – volume: 469 year: 2023 ident: e_1_2_8_10_1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.143931 – volume: 1 year: 2020 ident: e_1_2_8_33_1 publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2020.100052 – volume: 3 start-page: 379 year: 2021 ident: e_1_2_8_14_1 publication-title: ACS Mater. Lett doi: 10.1021/acsmaterialslett.1c00062 – volume: 61 year: 2022 ident: e_1_2_8_23_1 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 3887 year: 2022 ident: e_1_2_8_16_1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31481-3 – volume: 9 year: 2021 ident: e_1_2_8_11_1 publication-title: J. Mater. Chem. C doi: 10.1039/D1TC03460J – volume: 36 year: 2023 ident: e_1_2_8_29_1 publication-title: Adv. Mater. doi: 10.1002/adma.202211160 – volume: 1 start-page: 582 year: 2023 ident: e_1_2_8_4_1 publication-title: Ind. Chem. Mater. doi: 10.1039/D3IM00004D – volume: 63 year: 2024 ident: e_1_2_8_25_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202319694 – volume: 20 start-page: 1539 year: 2021 ident: e_1_2_8_28_1 publication-title: Nat. Mater. doi: 10.1038/s41563-021-01073-5 – volume: 5 start-page: 869 year: 2020 ident: e_1_2_8_3_1 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-0223-z – volume: 8 start-page: 8336 year: 2017 ident: e_1_2_8_27_1 publication-title: Chem. Sci. doi: 10.1039/C7SC04098A – volume: 59 start-page: 5329 year: 2023 ident: e_1_2_8_18_1 publication-title: Chem. Commun. (Cambridge U. K.) doi: 10.1039/D3CC00923H – volume: 7 start-page: 9095 year: 2019 ident: e_1_2_8_34_1 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC02879J – volume: 36 year: 2024 ident: e_1_2_8_35_1 publication-title: Adv. Mater. doi: 10.1002/adma.202211160 – volume: 2 start-page: 644 year: 2021 ident: e_1_2_8_26_1 publication-title: Acc. Mater. Res. doi: 10.1021/accountsmr.1c00084 – volume: 1 year: 2020 ident: e_1_2_8_31_1 publication-title: SmartMat doi: 10.1002/smm2.1006 – volume: 3 start-page: 449 year: 2020 ident: e_1_2_8_37_1 publication-title: Matter doi: 10.1016/j.matt.2020.05.005 – volume: 61 start-page: 635 year: 2018 ident: e_1_2_8_2_1 publication-title: Sci. China: Chem. doi: 10.1007/s11426-018-9247-2 – volume: 11 start-page: 6191 year: 2020 ident: e_1_2_8_17_1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b03363 – volume: 146 start-page: 2484 year: 2024 ident: e_1_2_8_19_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c10206 – volume: 60 year: 2021 ident: e_1_2_8_22_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202107639 – volume: 13 start-page: 7841 year: 2022 ident: e_1_2_8_15_1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-35625-3 – volume: 11 start-page: 1933 year: 2009 ident: e_1_2_8_21_1 publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2009.07.017 – volume: 11 start-page: 4655 year: 2020 ident: e_1_2_8_6_1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18520-7 – volume: 24 start-page: 1801 year: 2018 ident: e_1_2_8_12_1 publication-title: Chem. Eur J. doi: 10.1002/chem.201705391 – volume: 55 start-page: 9872 year: 2016 ident: e_1_2_8_30_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201601252 – volume: 66 start-page: 304 year: 2022 ident: e_1_2_8_5_1 publication-title: Sci. China: Chem. – volume: 18 year: 2021 ident: e_1_2_8_13_1 publication-title: Small doi: 10.1002/smll.202104073 – volume: 15 start-page: 2690 year: 2024 ident: e_1_2_8_24_1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.4c00160 – volume: 59 year: 2020 ident: e_1_2_8_32_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202002220 |
SSID | ssj0003212116 |
Score | 2.3057392 |
Snippet | Stimulus‐responsive organic room temperature phosphorescent (RTP) materials have received significant attention in bioimaging, sensing, and data storage... |
SourceID | crossref |
SourceType | Index Database |
Title | Organic room temperature phosphorescence co‐crystal with reversible acid/base stimulus response |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFLXa6YYuUKFUBQrygq6ilEk8jifLalSEkEBIBWl2I9uxNVMxMygzs4AVn8A38iXcazsPHgvoIlHkvKzc41z7-p5jQg4ykSjLEhnnqhBxTwoe5-CFY9YzSWE4Koog3_n0LDu-7J0M-bChEDh2yVL90rev8kr-x6pQBnZFluw7LFs_FArgGOwLe7Aw7N9kY0-k1BH2fiMUmQoKydH1eL6ArXRaTRoT0uukBl3eLJAA6QKwqN9UQqO4QlENV330ahE0--nqaoUzCi6D9km60N8p1CSa-mV1fdD2vJygfEEdU6ij0IMxvH7csM1OJuHEEDzmv0njEqrrWxlCk5WbOBnL-Y0M7jVEJ1LuohO95ieWCg5jVB6cqmmX-cU1X_zCvSTsYorMTExw9RrTT5Wyn3mwOq_QazCnI7h7VN39kXxKYQiRtiI56KVZiuJ2bu3BqoqBFwEPOGy_vtVjaXU9Lr6Q9TBmoL89ADbIBzPbJJ9bSpJfiQxQoAgF2oICfQYFqucPd_cBBBRBQBsQUATBIUKAVhCgFQS2yOXRn4vBcRxWz4h1knWXsRUKpYcs9HG1KgqhZNaHRpnnXOgutNx-l9kkNaxgab_QuZB5pqTWNmOGF5Yp9o10ZvOZ-U5oruFcl1stNU4UWyWlNFZbwbgtlJXb5Gf1hUbXXiRl9Jopdt543S5Za7D0g3SW5crsQd9vqfZdzGTfmfIRqshf9Q |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic+room+temperature+phosphorescence+co%E2%80%90crystal+with+reversible+acid%2Fbase+stimulus+response&rft.jtitle=Smart+molecules+%28Print%29&rft.au=Zhang%2C+Chenchen&rft.au=Jiang%2C+Xingjia&rft.au=Wang%2C+Can&rft.au=Liu%2C+Zhaoyang&rft.date=2025-01-04&rft.issn=2751-4587&rft.eissn=2751-4595&rft_id=info:doi/10.1002%2Fsmo.20240054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smo_20240054 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-4587&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-4587&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-4587&client=summon |