As ternas pitagóricas e sua relação com os números congruentes: possibilidades de uso da História da Matemática em sala de aula

Neste artigo, por meio de uma revisão histórica, estabelecemos uma discussão sobre dois problemas clássicos e paralelos: as ternas pitagóricas e os números congruentes. Em diferentes momentos históricos, foi possível encontrarmos referências às ternas pitagóricas e aos números congruentes. O primeir...

Full description

Saved in:
Bibliographic Details
Published inBoletim Cearense de Educação e História da Matemática (Online) Vol. 10; no. 30; pp. 1 - 23
Main Authors Balieiro Filho, Inocêncio Fernandes, Rodriguez, Jaime Edmundo Apaza, Carvalho, Edson Donizete de
Format Journal Article
LanguageEnglish
Published Universidade Estadual do Ceará 08.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Neste artigo, por meio de uma revisão histórica, estabelecemos uma discussão sobre dois problemas clássicos e paralelos: as ternas pitagóricas e os números congruentes. Em diferentes momentos históricos, foi possível encontrarmos referências às ternas pitagóricas e aos números congruentes. O primeiro registro histórico de algumas ternas aparece na tabuleta babilônica Plimpton 322. Em seguida, nos textos do Sulvasutras, vemos que Baudhayana, Manava, Apastamba e Katyayana já conheciam o teorema de Pitágoras e obtiveram algumas ternas mediante o teorema da diagonal. Por meio dos relatos de Proclus, conhecemos os procedimentos de Pitágoras e Platão que possibilitaram gerar algumas ternas e a solução para gerar todas as ternas aparece em Os elementos de Euclides. Na Aritmética de Diofanto encontramos o primeiro exemplo de ternas em números racionais. Os primeiros estudos sobre as ternas pitagóricas e triângulos racionais aparecem nos estudos de Brahmagupta, cujos resultados são reconsiderados por Mahavira, Bhaskara II e Karavinda Swami. Nas investigações de al-Khazin sobre ternas primitivas encontramos uma parametrização para gerá-las. Fermat estabeleceu que a área de um triângulo retângulo cujos lados são inteiros não é um quadrado racional e, em 1983, Tunnell determinou uma solução parcial para o problema dos números congruentes. Os resultados obtidos por meio da revisão histórica sobre o tema nos permitiu construir um material que pode ser utilizado como um subsídio para o uso da História da Matemática em sala de aula, em diferentes níveis de ensino.
ISSN:2357-8661
2447-8504
DOI:10.30938/bocehm.v10i30.9910