Magnetohydrodynamics flow and thermal behavior of nanofluid between two parallel walls with thermal radiation and joule heating applications

This investigation aims to present an unsteady magnetohydrodynamics (MHD) flow and thermal behavior of a hybrid nanofluid (HNF) confined between two parallel walls. The heat transfer is subject to thermal radiation and Joule heating applications. Three various types of nanoparticles are used because...

Full description

Saved in:
Bibliographic Details
Published inMultiscale and Multidisciplinary Modeling, Experiments and Design Vol. 8; no. 8
Main Authors Abbas, Tasawar, Mumtaz, Faisal, Khan, Sami Ullah
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.08.2025
Subjects
Online AccessGet full text
ISSN2520-8160
2520-8179
DOI10.1007/s41939-025-00922-z

Cover

Loading…
Abstract This investigation aims to present an unsteady magnetohydrodynamics (MHD) flow and thermal behavior of a hybrid nanofluid (HNF) confined between two parallel walls. The heat transfer is subject to thermal radiation and Joule heating applications. Three various types of nanoparticles are used because of their unique thermal characteristics. The investigation is impacted with Joule heating and heat dissipation applications. Additionally, we carried out the effects of shapes of three different types of nanoparticles ( A l 2 O 3 , C u , C u O ) and the developed mathematical model is based on the hybrid nanofluid’s thermal characteristics and related principles.The existence of Joule heating and thermal radiation has a major impact on heat transport, resulting in a 27.6% increase in fluid temperature with rising radiation parameter values. A dimensionless system has been developed for modeled problem with help of appropriate variables. The well-known shooting with RK technique is used to obtain the required solution. The flow parameters include the variations in the heat transportation and thermo-physical characteristics of used nanoparticles. The integration of time-dependent consequences, which have been completely disregarded in previous investigations, is a significant novelty of current model. The results show that raising the magnetic field intensity reduces fluid velocity while increases heat transfer via the Lorentz force. Furthermore, thermal radiation has been shown to have a major influence on temperature distribution, with Joule heating increasing thermal energy generation inside the fluid. This study sheds new light on transient thermal transport in hybrid nanofluids, with potential applications in industrial cooling, thermal energy storage, and biomedical engineering. According to obtained results, increase in the amount of copper oxide nanoparticles enhances the temperature profile. The applied magnetic field generates a Lorentz force ( M = 0.8 ) , resulting in a 14.2% drop in velocity profile. Furthermore, entropy production analysis shows a 22.3% increase in irreversibility with increasing magnetic field strength and Eckert number.
AbstractList This investigation aims to present an unsteady magnetohydrodynamics (MHD) flow and thermal behavior of a hybrid nanofluid (HNF) confined between two parallel walls. The heat transfer is subject to thermal radiation and Joule heating applications. Three various types of nanoparticles are used because of their unique thermal characteristics. The investigation is impacted with Joule heating and heat dissipation applications. Additionally, we carried out the effects of shapes of three different types of nanoparticles ( A l 2 O 3 , C u , C u O ) and the developed mathematical model is based on the hybrid nanofluid’s thermal characteristics and related principles.The existence of Joule heating and thermal radiation has a major impact on heat transport, resulting in a 27.6% increase in fluid temperature with rising radiation parameter values. A dimensionless system has been developed for modeled problem with help of appropriate variables. The well-known shooting with RK technique is used to obtain the required solution. The flow parameters include the variations in the heat transportation and thermo-physical characteristics of used nanoparticles. The integration of time-dependent consequences, which have been completely disregarded in previous investigations, is a significant novelty of current model. The results show that raising the magnetic field intensity reduces fluid velocity while increases heat transfer via the Lorentz force. Furthermore, thermal radiation has been shown to have a major influence on temperature distribution, with Joule heating increasing thermal energy generation inside the fluid. This study sheds new light on transient thermal transport in hybrid nanofluids, with potential applications in industrial cooling, thermal energy storage, and biomedical engineering. According to obtained results, increase in the amount of copper oxide nanoparticles enhances the temperature profile. The applied magnetic field generates a Lorentz force ( M = 0.8 ) , resulting in a 14.2% drop in velocity profile. Furthermore, entropy production analysis shows a 22.3% increase in irreversibility with increasing magnetic field strength and Eckert number.
ArticleNumber 340
Author Abbas, Tasawar
Mumtaz, Faisal
Khan, Sami Ullah
Author_xml – sequence: 1
  givenname: Tasawar
  surname: Abbas
  fullname: Abbas, Tasawar
  email: tasawar.abbas@uow.edu.pk
  organization: Department of Mathematics, University of Wah
– sequence: 2
  givenname: Faisal
  surname: Mumtaz
  fullname: Mumtaz, Faisal
  organization: Department of Mathematics, University of Wah
– sequence: 3
  givenname: Sami Ullah
  surname: Khan
  fullname: Khan, Sami Ullah
  organization: Department of Mathematics, Namal University
BookMark eNp9kE1OwzAQhS1UJErpBVj5AgHb-XG8RBV_UhEbWEeTeNKkcu3KTonaM3BoTIu6ZPVGb-aNZr5rMrHOIiG3nN1xxuR9yLhKVcJEnjCmhEgOF2QqcsGSkks1OdcFuyLzENaMMSHTTJZsSr7fYGVxcN1ee6f3FjZ9E2hr3EjBajp06DdgaI0dfPXOU9dSC9a1Ztfr6A4joqXD6OgWPBiDho5RAh37oTunPegeht7Z48612xmkHUbHrihst6Zvjt1wQy5bMAHnfzojn0-PH4uXZPn-_Lp4WCYNz9UhkaDSDBSHhkvkQpdSq1awssxybDXKrMBaRpNrkFhDAWWRFm3BUaumBpWnMyJOexvvQvDYVlvfb8DvK86qX6TVCWkVkVZHpNUhhtJTKMRhu0JfxUe8jXf-l_oBMhqA4Q
Cites_doi 10.1007/s41939-024-00670-6
10.1016/j.molliq.2020.112787
10.1007/s10973-020-09943-x
10.1016/j.powtec.2008.12.017
10.1016/j.cjph.2020.09.026
10.1016/j.aej.2024.03.062
10.1016/j.scitotenv.2018.05.326
10.1142/S0217984924503305
10.1142/S0217984924504402
10.1002/zamm.202400006
10.1016/j.ijheatmasstransfer.2013.09.061
10.1016/j.ijheatmasstransfer.2016.07.064
10.1115/1.4030307
10.1016/j.csite.2021.101119
10.1007/s42452-019-1463-7
10.3390/nano12142381
10.1016/j.ijheatmasstransfer.2016.06.049
10.1016/S0142-727X(99)00067-3
10.1016/j.expthermflusci.2011.11.007
10.1140/epjp/i2018-12322-5
10.1007/s13204-020-01349-3
10.1007/s41939-024-00712-z
10.1016/j.molliq.2020.112533
10.1007/s41939-024-00665-3
10.1140/epjp/s13360-020-00812-y
10.1140/epjp/i2017-11511-0
10.1016/j.ijmecsci.2021.106665
10.1021/acsami.7b03339
10.1038/s41598-021-89739-7
10.1038/s41598-023-34640-8
10.1016/j.aej.2024.04.007
10.1007/s41939-024-00704-z
10.1016/j.csite.2021.101425
10.1038/s41598-022-06213-8
10.1177/23977914241259338
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s41939-025-00922-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2520-8179
ExternalDocumentID 10_1007_s41939_025_00922_z
GroupedDBID 0R~
406
AACDK
AAHNG
AAIAL
AAJBT
AASML
AATNV
AATVU
AAUYE
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABKCH
ABMQK
ABQBU
ABRTQ
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AHPBZ
AHWEU
AIAKS
AIGIU
AILAN
AITGF
AIXLP
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ATHPR
AXYYD
AYFIA
BGNMA
CSCUP
DPUIP
EBLON
EBS
FIGPU
FNLPD
GGCAI
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAAVM
AAYXX
CITATION
EJD
FINBP
FSGXE
H13
ID FETCH-LOGICAL-c159z-7a934a91ac17e12d87d9f208845efde746eb787d1da7eba6a8636f61ed9cba953
ISSN 2520-8160
IngestDate Wed Aug 06 19:13:09 EDT 2025
Fri Aug 01 03:41:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Ohmic viscous dissipation
Joule heating
Entropy generation
Hybrid nanofluid
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c159z-7a934a91ac17e12d87d9f208845efde746eb787d1da7eba6a8636f61ed9cba953
ParticipantIDs crossref_primary_10_1007_s41939_025_00922_z
springer_journals_10_1007_s41939_025_00922_z
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Multiscale and Multidisciplinary Modeling, Experiments and Design
PublicationTitleAbbrev Multiscale and Multidiscip. Model. Exp. and Des
PublicationYear 2025
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References MZA Qureshi (922_CR32) 2021; 26
Y Xuan (922_CR42) 2000; 21
H Hosseinzadeh (922_CR21) 2018; 640
B Bakthavatchalam (922_CR11) 2020; 305
F Mabood (922_CR27) 2021; 146
M Turkyilmazoglu (922_CR41) 2020; 135
A Ghaffari (922_CR18) 2021; 28
S Suresh (922_CR38) 2012; 38
A Okedoye (922_CR31) 2019; 1
922_CR12
N Murshid (922_CR29) 2022; 12
A Rashid (922_CR34) 2023; 15
922_CR19
M Hamid (922_CR20) 2018; 133
S Asghar (922_CR10) 2014; 69
922_CR39
922_CR4
B Ali (922_CR8) 2020; 68
922_CR1
922_CR15
A Rashid (922_CR35) 2024; 38
922_CR37
Y-M Li (922_CR26) 2021; 11
A Abbasi (922_CR2) 2021; 28
922_CR5
EM Elsaid (922_CR16) 2024; 104
P Mondal (922_CR28) 2021; 208
A Asadikia (922_CR9) 2020; 11
VK Joshi (922_CR23) 2017; 132
R Nayak (922_CR30) 2016; 102
AS Dogonchi (922_CR14) 2021; 27
A Rashid (922_CR33) 2023; 15
S Ahmad (922_CR3) 2020; 10
M Turkyilmazoglu (922_CR40) 2015; 137
G Huminic (922_CR22) 2020; 302
J Raza (922_CR36) 2016; 103
B Ju (922_CR24) 2009; 192
TH Al-arabi (922_CR6) 2024; 96
H Yang (922_CR43) 2023; 13
S Bhanushali (922_CR13) 2017; 9
EA Algehyne (922_CR7) 2022; 12
H Ge-JiLe (922_CR17) 2021; 13
922_CR25
References_xml – ident: 922_CR1
  doi: 10.1007/s41939-024-00670-6
– volume: 305
  year: 2020
  ident: 922_CR11
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2020.112787
– volume: 146
  start-page: 227
  year: 2021
  ident: 922_CR27
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-020-09943-x
– volume: 192
  start-page: 195
  issue: 2
  year: 2009
  ident: 922_CR24
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2008.12.017
– volume: 68
  start-page: 368
  year: 2020
  ident: 922_CR8
  publication-title: Chin J Phys
  doi: 10.1016/j.cjph.2020.09.026
– volume: 27
  year: 2021
  ident: 922_CR14
  publication-title: Case Studies in Thermal Engineering
– ident: 922_CR15
  doi: 10.1016/j.aej.2024.03.062
– volume: 640
  start-page: 303
  year: 2018
  ident: 922_CR21
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.05.326
– volume: 38
  start-page: 2450330
  issue: 36
  year: 2024
  ident: 922_CR35
  publication-title: Mod Phys Lett B
  doi: 10.1142/S0217984924503305
– volume: 13
  start-page: 168781402110065
  issue: 3
  year: 2021
  ident: 922_CR17
  publication-title: Adv Mech Eng
– ident: 922_CR5
  doi: 10.1142/S0217984924504402
– ident: 922_CR25
  doi: 10.1002/zamm.202400006
– volume: 69
  start-page: 140
  year: 2014
  ident: 922_CR10
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2013.09.061
– volume: 103
  start-page: 336
  year: 2016
  ident: 922_CR36
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2016.07.064
– volume: 137
  issue: 10
  year: 2015
  ident: 922_CR40
  publication-title: J Heat Transfer
  doi: 10.1115/1.4030307
– ident: 922_CR12
  doi: 10.1016/j.csite.2021.101119
– volume: 1
  start-page: 1586
  issue: 12
  year: 2019
  ident: 922_CR31
  publication-title: SN Applied Sciences
  doi: 10.1007/s42452-019-1463-7
– volume: 15
  start-page: 168781322311796
  issue: 6
  year: 2023
  ident: 922_CR33
  publication-title: Adv Mech Eng
– volume: 12
  start-page: 2381
  issue: 14
  year: 2022
  ident: 922_CR29
  publication-title: Nanomaterials
  doi: 10.3390/nano12142381
– volume: 102
  start-page: 596
  year: 2016
  ident: 922_CR30
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2016.06.049
– volume: 21
  start-page: 58
  issue: 1
  year: 2000
  ident: 922_CR42
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/S0142-727X(99)00067-3
– volume: 104
  issue: 1
  year: 2024
  ident: 922_CR16
  publication-title: ZAMM-Journal of Applied Mathematics and Mechanics/zeitschrift Für Angewandte Mathematik und Mechanik
– volume: 38
  start-page: 54
  year: 2012
  ident: 922_CR38
  publication-title: Exp Thermal Fluid Sci
  doi: 10.1016/j.expthermflusci.2011.11.007
– volume: 133
  start-page: 527
  issue: 12
  year: 2018
  ident: 922_CR20
  publication-title: The European Physical Journal plus
  doi: 10.1140/epjp/i2018-12322-5
– volume: 10
  start-page: 5265
  year: 2020
  ident: 922_CR3
  publication-title: Appl Nanosci
  doi: 10.1007/s13204-020-01349-3
– ident: 922_CR37
  doi: 10.1007/s41939-024-00712-z
– volume: 302
  year: 2020
  ident: 922_CR22
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2020.112533
– ident: 922_CR4
  doi: 10.1007/s41939-024-00665-3
– volume: 28
  year: 2021
  ident: 922_CR18
  publication-title: Case Studies in Thermal Engineering
– volume: 26
  year: 2021
  ident: 922_CR32
  publication-title: Surfaces and Interfaces
– volume: 15
  start-page: 168781322311796
  issue: 6
  year: 2023
  ident: 922_CR34
  publication-title: Adv Mech Eng
– volume: 135
  start-page: 781
  issue: 10
  year: 2020
  ident: 922_CR41
  publication-title: The European Physical Journal plus
  doi: 10.1140/epjp/s13360-020-00812-y
– volume: 132
  start-page: 254
  issue: 6
  year: 2017
  ident: 922_CR23
  publication-title: The European Physical Journal plus
  doi: 10.1140/epjp/i2017-11511-0
– volume: 208
  year: 2021
  ident: 922_CR28
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2021.106665
– volume: 9
  start-page: 18925
  issue: 22
  year: 2017
  ident: 922_CR13
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b03339
– volume: 11
  start-page: 10259
  issue: 1
  year: 2021
  ident: 922_CR26
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-89739-7
– volume: 13
  start-page: 8316
  issue: 1
  year: 2023
  ident: 922_CR43
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-34640-8
– volume: 11
  start-page: 277
  issue: 3
  year: 2020
  ident: 922_CR9
  publication-title: International Journal of Nano Dimension
– volume: 96
  start-page: 206
  year: 2024
  ident: 922_CR6
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2024.04.007
– ident: 922_CR39
  doi: 10.1007/s41939-024-00704-z
– volume: 28
  year: 2021
  ident: 922_CR2
  publication-title: Case Studies in Thermal Engineering
  doi: 10.1016/j.csite.2021.101425
– volume: 12
  start-page: 2335
  issue: 1
  year: 2022
  ident: 922_CR7
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-06213-8
– ident: 922_CR19
  doi: 10.1177/23977914241259338
SSID ssj0002734780
ssib042110740
Score 2.298833
Snippet This investigation aims to present an unsteady magnetohydrodynamics (MHD) flow and thermal behavior of a hybrid nanofluid (HNF) confined between two parallel...
SourceID crossref
springer
SourceType Index Database
Publisher
SubjectTerms Characterization and Evaluation of Materials
Engineering
Mathematical Applications in the Physical Sciences
Mechanical Engineering
Numerical and Computational Physics
Original Paper
Simulation
Solid Mechanics
Title Magnetohydrodynamics flow and thermal behavior of nanofluid between two parallel walls with thermal radiation and joule heating applications
URI https://link.springer.com/article/10.1007/s41939-025-00922-z
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBay9LIdhj2x7gUddvNcRH7rmA4Nig3tKQF6M6RIWjp4dhE7CJrf0J-2HzVKlmVny4Z1FycWZEMxv1Ak_ZFE6EPCiUo4WG4CjAs_Ikr6fKISn6cc0JHGKpbaUby4TM4X0eer-Go0-jFgLW0afrLcHcwr-R-pwhjIVWfJ3kOy7qYwAN9BvnAECcPxn2R8wb6WsqlWtwLUYNtavvZUUW07XiRo3cJl4hvOBisrVWyuhSNoNdvK0_W_i0IW3hY-bL5bd_VaFy9oOtIyLKuQ2ro0bOnh2--hlWuyemuQvuVx6NO99F_dga2w3VTOXI-B2vKih5ySKedtytmc1WzL1j1AvjfMBL9n7LpmjifyZWUjuvAwvAVgfDWMawSxY9XtxzV_iYz2wbleUQYxuMAZafsSnMjhWNuoptP02QDQ2cH9o6WM1BGYtdQ3i5pQ8NZ3_W7pOIyu3rOZnMPk3EzOdw_QUQBOSzBGR9PZ6ellp98i42zb2jrfbGmh1DT3cz_B5nWZ7M7fVrFvO-2_uDf20PwJemwdGTxtUfkUjWT5DD0alLd8ju4O4RNrfGIQNLYIwx0-caWwwye2-MSAT9zhExt8Yo1Pd7XDp7mnwSe2-MRDfL5Ai9nZ_NO5b7t_-EswsXd-ymgYMUrYkqSSBCJLBVUBbIpRLJWQaZRIDruNIIKlkrOEZUmYqIRIQZec0Th8icZlVcpXCFMh41AGmSABiQhjmYhizWQQkzCccCqOkdc91_ymLfKS_1m8x-hj9-hzqwzqv0x_fb_pb9DD_t_wFo2b9Ua-A7u34e8tnH4CJ9C0fg
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetohydrodynamics+flow+and+thermal+behavior+of+nanofluid+between+two+parallel+walls+with+thermal+radiation+and+joule+heating+applications&rft.jtitle=Multiscale+and+Multidisciplinary+Modeling%2C+Experiments+and+Design&rft.au=Abbas%2C+Tasawar&rft.au=Mumtaz%2C+Faisal&rft.au=Khan%2C+Sami+Ullah&rft.date=2025-08-01&rft.pub=Springer+International+Publishing&rft.issn=2520-8160&rft.eissn=2520-8179&rft.volume=8&rft.issue=8&rft_id=info:doi/10.1007%2Fs41939-025-00922-z&rft.externalDocID=10_1007_s41939_025_00922_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8160&client=summon