Magnetohydrodynamics flow and thermal behavior of nanofluid between two parallel walls with thermal radiation and joule heating applications
This investigation aims to present an unsteady magnetohydrodynamics (MHD) flow and thermal behavior of a hybrid nanofluid (HNF) confined between two parallel walls. The heat transfer is subject to thermal radiation and Joule heating applications. Three various types of nanoparticles are used because...
Saved in:
Published in | Multiscale and Multidisciplinary Modeling, Experiments and Design Vol. 8; no. 8 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2520-8160 2520-8179 |
DOI | 10.1007/s41939-025-00922-z |
Cover
Loading…
Abstract | This investigation aims to present an unsteady magnetohydrodynamics (MHD) flow and thermal behavior of a hybrid nanofluid (HNF) confined between two parallel walls. The heat transfer is subject to thermal radiation and Joule heating applications. Three various types of nanoparticles are used because of their unique thermal characteristics. The investigation is impacted with Joule heating and heat dissipation applications. Additionally, we carried out the effects of shapes of three different types of nanoparticles
(
A
l
2
O
3
,
C
u
,
C
u
O
)
and the developed mathematical model is based on the hybrid nanofluid’s thermal characteristics and related principles.The existence of Joule heating and thermal radiation has a major impact on heat transport, resulting in a 27.6% increase in fluid temperature with rising radiation parameter values. A dimensionless system has been developed for modeled problem with help of appropriate variables. The well-known shooting with RK technique is used to obtain the required solution. The flow parameters include the variations in the heat transportation and thermo-physical characteristics of used nanoparticles. The integration of time-dependent consequences, which have been completely disregarded in previous investigations, is a significant novelty of current model. The results show that raising the magnetic field intensity reduces fluid velocity while increases heat transfer via the Lorentz force. Furthermore, thermal radiation has been shown to have a major influence on temperature distribution, with Joule heating increasing thermal energy generation inside the fluid. This study sheds new light on transient thermal transport in hybrid nanofluids, with potential applications in industrial cooling, thermal energy storage, and biomedical engineering. According to obtained results, increase in the amount of copper oxide nanoparticles enhances the temperature profile. The applied magnetic field generates a Lorentz force
(
M
=
0.8
)
, resulting in a 14.2% drop in velocity profile. Furthermore, entropy production analysis shows a 22.3% increase in irreversibility with increasing magnetic field strength and Eckert number. |
---|---|
AbstractList | This investigation aims to present an unsteady magnetohydrodynamics (MHD) flow and thermal behavior of a hybrid nanofluid (HNF) confined between two parallel walls. The heat transfer is subject to thermal radiation and Joule heating applications. Three various types of nanoparticles are used because of their unique thermal characteristics. The investigation is impacted with Joule heating and heat dissipation applications. Additionally, we carried out the effects of shapes of three different types of nanoparticles
(
A
l
2
O
3
,
C
u
,
C
u
O
)
and the developed mathematical model is based on the hybrid nanofluid’s thermal characteristics and related principles.The existence of Joule heating and thermal radiation has a major impact on heat transport, resulting in a 27.6% increase in fluid temperature with rising radiation parameter values. A dimensionless system has been developed for modeled problem with help of appropriate variables. The well-known shooting with RK technique is used to obtain the required solution. The flow parameters include the variations in the heat transportation and thermo-physical characteristics of used nanoparticles. The integration of time-dependent consequences, which have been completely disregarded in previous investigations, is a significant novelty of current model. The results show that raising the magnetic field intensity reduces fluid velocity while increases heat transfer via the Lorentz force. Furthermore, thermal radiation has been shown to have a major influence on temperature distribution, with Joule heating increasing thermal energy generation inside the fluid. This study sheds new light on transient thermal transport in hybrid nanofluids, with potential applications in industrial cooling, thermal energy storage, and biomedical engineering. According to obtained results, increase in the amount of copper oxide nanoparticles enhances the temperature profile. The applied magnetic field generates a Lorentz force
(
M
=
0.8
)
, resulting in a 14.2% drop in velocity profile. Furthermore, entropy production analysis shows a 22.3% increase in irreversibility with increasing magnetic field strength and Eckert number. |
ArticleNumber | 340 |
Author | Abbas, Tasawar Mumtaz, Faisal Khan, Sami Ullah |
Author_xml | – sequence: 1 givenname: Tasawar surname: Abbas fullname: Abbas, Tasawar email: tasawar.abbas@uow.edu.pk organization: Department of Mathematics, University of Wah – sequence: 2 givenname: Faisal surname: Mumtaz fullname: Mumtaz, Faisal organization: Department of Mathematics, University of Wah – sequence: 3 givenname: Sami Ullah surname: Khan fullname: Khan, Sami Ullah organization: Department of Mathematics, Namal University |
BookMark | eNp9kE1OwzAQhS1UJErpBVj5AgHb-XG8RBV_UhEbWEeTeNKkcu3KTonaM3BoTIu6ZPVGb-aNZr5rMrHOIiG3nN1xxuR9yLhKVcJEnjCmhEgOF2QqcsGSkks1OdcFuyLzENaMMSHTTJZsSr7fYGVxcN1ee6f3FjZ9E2hr3EjBajp06DdgaI0dfPXOU9dSC9a1Ztfr6A4joqXD6OgWPBiDho5RAh37oTunPegeht7Z48612xmkHUbHrihst6Zvjt1wQy5bMAHnfzojn0-PH4uXZPn-_Lp4WCYNz9UhkaDSDBSHhkvkQpdSq1awssxybDXKrMBaRpNrkFhDAWWRFm3BUaumBpWnMyJOexvvQvDYVlvfb8DvK86qX6TVCWkVkVZHpNUhhtJTKMRhu0JfxUe8jXf-l_oBMhqA4Q |
Cites_doi | 10.1007/s41939-024-00670-6 10.1016/j.molliq.2020.112787 10.1007/s10973-020-09943-x 10.1016/j.powtec.2008.12.017 10.1016/j.cjph.2020.09.026 10.1016/j.aej.2024.03.062 10.1016/j.scitotenv.2018.05.326 10.1142/S0217984924503305 10.1142/S0217984924504402 10.1002/zamm.202400006 10.1016/j.ijheatmasstransfer.2013.09.061 10.1016/j.ijheatmasstransfer.2016.07.064 10.1115/1.4030307 10.1016/j.csite.2021.101119 10.1007/s42452-019-1463-7 10.3390/nano12142381 10.1016/j.ijheatmasstransfer.2016.06.049 10.1016/S0142-727X(99)00067-3 10.1016/j.expthermflusci.2011.11.007 10.1140/epjp/i2018-12322-5 10.1007/s13204-020-01349-3 10.1007/s41939-024-00712-z 10.1016/j.molliq.2020.112533 10.1007/s41939-024-00665-3 10.1140/epjp/s13360-020-00812-y 10.1140/epjp/i2017-11511-0 10.1016/j.ijmecsci.2021.106665 10.1021/acsami.7b03339 10.1038/s41598-021-89739-7 10.1038/s41598-023-34640-8 10.1016/j.aej.2024.04.007 10.1007/s41939-024-00704-z 10.1016/j.csite.2021.101425 10.1038/s41598-022-06213-8 10.1177/23977914241259338 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s41939-025-00922-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2520-8179 |
ExternalDocumentID | 10_1007_s41939_025_00922_z |
GroupedDBID | 0R~ 406 AACDK AAHNG AAIAL AAJBT AASML AATNV AATVU AAUYE ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABKCH ABMQK ABQBU ABRTQ ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF AEFQL AEJRE AEMSY AESKC AEZWR AFBBN AFDZB AFHIU AFOHR AFQWF AGDGC AGJBK AGMZJ AGQEE AGRTI AHPBZ AHWEU AIAKS AIGIU AILAN AITGF AIXLP AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ATHPR AXYYD AYFIA BGNMA CSCUP DPUIP EBLON EBS FIGPU FNLPD GGCAI IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SJYHP SNE SNPRN SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW ZMTXR AAAVM AAYXX CITATION EJD FINBP FSGXE H13 |
ID | FETCH-LOGICAL-c159z-7a934a91ac17e12d87d9f208845efde746eb787d1da7eba6a8636f61ed9cba953 |
ISSN | 2520-8160 |
IngestDate | Wed Aug 06 19:13:09 EDT 2025 Fri Aug 01 03:41:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Ohmic viscous dissipation Joule heating Entropy generation Hybrid nanofluid |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c159z-7a934a91ac17e12d87d9f208845efde746eb787d1da7eba6a8636f61ed9cba953 |
ParticipantIDs | crossref_primary_10_1007_s41939_025_00922_z springer_journals_10_1007_s41939_025_00922_z |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationTitle | Multiscale and Multidisciplinary Modeling, Experiments and Design |
PublicationTitleAbbrev | Multiscale and Multidiscip. Model. Exp. and Des |
PublicationYear | 2025 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | MZA Qureshi (922_CR32) 2021; 26 Y Xuan (922_CR42) 2000; 21 H Hosseinzadeh (922_CR21) 2018; 640 B Bakthavatchalam (922_CR11) 2020; 305 F Mabood (922_CR27) 2021; 146 M Turkyilmazoglu (922_CR41) 2020; 135 A Ghaffari (922_CR18) 2021; 28 S Suresh (922_CR38) 2012; 38 A Okedoye (922_CR31) 2019; 1 922_CR12 N Murshid (922_CR29) 2022; 12 A Rashid (922_CR34) 2023; 15 922_CR19 M Hamid (922_CR20) 2018; 133 S Asghar (922_CR10) 2014; 69 922_CR39 922_CR4 B Ali (922_CR8) 2020; 68 922_CR1 922_CR15 A Rashid (922_CR35) 2024; 38 922_CR37 Y-M Li (922_CR26) 2021; 11 A Abbasi (922_CR2) 2021; 28 922_CR5 EM Elsaid (922_CR16) 2024; 104 P Mondal (922_CR28) 2021; 208 A Asadikia (922_CR9) 2020; 11 VK Joshi (922_CR23) 2017; 132 R Nayak (922_CR30) 2016; 102 AS Dogonchi (922_CR14) 2021; 27 A Rashid (922_CR33) 2023; 15 S Ahmad (922_CR3) 2020; 10 M Turkyilmazoglu (922_CR40) 2015; 137 G Huminic (922_CR22) 2020; 302 J Raza (922_CR36) 2016; 103 B Ju (922_CR24) 2009; 192 TH Al-arabi (922_CR6) 2024; 96 H Yang (922_CR43) 2023; 13 S Bhanushali (922_CR13) 2017; 9 EA Algehyne (922_CR7) 2022; 12 H Ge-JiLe (922_CR17) 2021; 13 922_CR25 |
References_xml | – ident: 922_CR1 doi: 10.1007/s41939-024-00670-6 – volume: 305 year: 2020 ident: 922_CR11 publication-title: J Mol Liq doi: 10.1016/j.molliq.2020.112787 – volume: 146 start-page: 227 year: 2021 ident: 922_CR27 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-020-09943-x – volume: 192 start-page: 195 issue: 2 year: 2009 ident: 922_CR24 publication-title: Powder Technol doi: 10.1016/j.powtec.2008.12.017 – volume: 68 start-page: 368 year: 2020 ident: 922_CR8 publication-title: Chin J Phys doi: 10.1016/j.cjph.2020.09.026 – volume: 27 year: 2021 ident: 922_CR14 publication-title: Case Studies in Thermal Engineering – ident: 922_CR15 doi: 10.1016/j.aej.2024.03.062 – volume: 640 start-page: 303 year: 2018 ident: 922_CR21 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.05.326 – volume: 38 start-page: 2450330 issue: 36 year: 2024 ident: 922_CR35 publication-title: Mod Phys Lett B doi: 10.1142/S0217984924503305 – volume: 13 start-page: 168781402110065 issue: 3 year: 2021 ident: 922_CR17 publication-title: Adv Mech Eng – ident: 922_CR5 doi: 10.1142/S0217984924504402 – ident: 922_CR25 doi: 10.1002/zamm.202400006 – volume: 69 start-page: 140 year: 2014 ident: 922_CR10 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2013.09.061 – volume: 103 start-page: 336 year: 2016 ident: 922_CR36 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2016.07.064 – volume: 137 issue: 10 year: 2015 ident: 922_CR40 publication-title: J Heat Transfer doi: 10.1115/1.4030307 – ident: 922_CR12 doi: 10.1016/j.csite.2021.101119 – volume: 1 start-page: 1586 issue: 12 year: 2019 ident: 922_CR31 publication-title: SN Applied Sciences doi: 10.1007/s42452-019-1463-7 – volume: 15 start-page: 168781322311796 issue: 6 year: 2023 ident: 922_CR33 publication-title: Adv Mech Eng – volume: 12 start-page: 2381 issue: 14 year: 2022 ident: 922_CR29 publication-title: Nanomaterials doi: 10.3390/nano12142381 – volume: 102 start-page: 596 year: 2016 ident: 922_CR30 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2016.06.049 – volume: 21 start-page: 58 issue: 1 year: 2000 ident: 922_CR42 publication-title: Int J Heat Fluid Flow doi: 10.1016/S0142-727X(99)00067-3 – volume: 104 issue: 1 year: 2024 ident: 922_CR16 publication-title: ZAMM-Journal of Applied Mathematics and Mechanics/zeitschrift Für Angewandte Mathematik und Mechanik – volume: 38 start-page: 54 year: 2012 ident: 922_CR38 publication-title: Exp Thermal Fluid Sci doi: 10.1016/j.expthermflusci.2011.11.007 – volume: 133 start-page: 527 issue: 12 year: 2018 ident: 922_CR20 publication-title: The European Physical Journal plus doi: 10.1140/epjp/i2018-12322-5 – volume: 10 start-page: 5265 year: 2020 ident: 922_CR3 publication-title: Appl Nanosci doi: 10.1007/s13204-020-01349-3 – ident: 922_CR37 doi: 10.1007/s41939-024-00712-z – volume: 302 year: 2020 ident: 922_CR22 publication-title: J Mol Liq doi: 10.1016/j.molliq.2020.112533 – ident: 922_CR4 doi: 10.1007/s41939-024-00665-3 – volume: 28 year: 2021 ident: 922_CR18 publication-title: Case Studies in Thermal Engineering – volume: 26 year: 2021 ident: 922_CR32 publication-title: Surfaces and Interfaces – volume: 15 start-page: 168781322311796 issue: 6 year: 2023 ident: 922_CR34 publication-title: Adv Mech Eng – volume: 135 start-page: 781 issue: 10 year: 2020 ident: 922_CR41 publication-title: The European Physical Journal plus doi: 10.1140/epjp/s13360-020-00812-y – volume: 132 start-page: 254 issue: 6 year: 2017 ident: 922_CR23 publication-title: The European Physical Journal plus doi: 10.1140/epjp/i2017-11511-0 – volume: 208 year: 2021 ident: 922_CR28 publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2021.106665 – volume: 9 start-page: 18925 issue: 22 year: 2017 ident: 922_CR13 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b03339 – volume: 11 start-page: 10259 issue: 1 year: 2021 ident: 922_CR26 publication-title: Sci Rep doi: 10.1038/s41598-021-89739-7 – volume: 13 start-page: 8316 issue: 1 year: 2023 ident: 922_CR43 publication-title: Sci Rep doi: 10.1038/s41598-023-34640-8 – volume: 11 start-page: 277 issue: 3 year: 2020 ident: 922_CR9 publication-title: International Journal of Nano Dimension – volume: 96 start-page: 206 year: 2024 ident: 922_CR6 publication-title: Alex Eng J doi: 10.1016/j.aej.2024.04.007 – ident: 922_CR39 doi: 10.1007/s41939-024-00704-z – volume: 28 year: 2021 ident: 922_CR2 publication-title: Case Studies in Thermal Engineering doi: 10.1016/j.csite.2021.101425 – volume: 12 start-page: 2335 issue: 1 year: 2022 ident: 922_CR7 publication-title: Sci Rep doi: 10.1038/s41598-022-06213-8 – ident: 922_CR19 doi: 10.1177/23977914241259338 |
SSID | ssj0002734780 ssib042110740 |
Score | 2.298833 |
Snippet | This investigation aims to present an unsteady magnetohydrodynamics (MHD) flow and thermal behavior of a hybrid nanofluid (HNF) confined between two parallel... |
SourceID | crossref springer |
SourceType | Index Database Publisher |
SubjectTerms | Characterization and Evaluation of Materials Engineering Mathematical Applications in the Physical Sciences Mechanical Engineering Numerical and Computational Physics Original Paper Simulation Solid Mechanics |
Title | Magnetohydrodynamics flow and thermal behavior of nanofluid between two parallel walls with thermal radiation and joule heating applications |
URI | https://link.springer.com/article/10.1007/s41939-025-00922-z |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBay9LIdhj2x7gUddvNcRH7rmA4Nig3tKQF6M6RIWjp4dhE7CJrf0J-2HzVKlmVny4Z1FycWZEMxv1Ak_ZFE6EPCiUo4WG4CjAs_Ikr6fKISn6cc0JHGKpbaUby4TM4X0eer-Go0-jFgLW0afrLcHcwr-R-pwhjIVWfJ3kOy7qYwAN9BvnAECcPxn2R8wb6WsqlWtwLUYNtavvZUUW07XiRo3cJl4hvOBisrVWyuhSNoNdvK0_W_i0IW3hY-bL5bd_VaFy9oOtIyLKuQ2ro0bOnh2--hlWuyemuQvuVx6NO99F_dga2w3VTOXI-B2vKih5ySKedtytmc1WzL1j1AvjfMBL9n7LpmjifyZWUjuvAwvAVgfDWMawSxY9XtxzV_iYz2wbleUQYxuMAZafsSnMjhWNuoptP02QDQ2cH9o6WM1BGYtdQ3i5pQ8NZ3_W7pOIyu3rOZnMPk3EzOdw_QUQBOSzBGR9PZ6ellp98i42zb2jrfbGmh1DT3cz_B5nWZ7M7fVrFvO-2_uDf20PwJemwdGTxtUfkUjWT5DD0alLd8ju4O4RNrfGIQNLYIwx0-caWwwye2-MSAT9zhExt8Yo1Pd7XDp7mnwSe2-MRDfL5Ai9nZ_NO5b7t_-EswsXd-ymgYMUrYkqSSBCJLBVUBbIpRLJWQaZRIDruNIIKlkrOEZUmYqIRIQZec0Th8icZlVcpXCFMh41AGmSABiQhjmYhizWQQkzCccCqOkdc91_ymLfKS_1m8x-hj9-hzqwzqv0x_fb_pb9DD_t_wFo2b9Ua-A7u34e8tnH4CJ9C0fg |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetohydrodynamics+flow+and+thermal+behavior+of+nanofluid+between+two+parallel+walls+with+thermal+radiation+and+joule+heating+applications&rft.jtitle=Multiscale+and+Multidisciplinary+Modeling%2C+Experiments+and+Design&rft.au=Abbas%2C+Tasawar&rft.au=Mumtaz%2C+Faisal&rft.au=Khan%2C+Sami+Ullah&rft.date=2025-08-01&rft.pub=Springer+International+Publishing&rft.issn=2520-8160&rft.eissn=2520-8179&rft.volume=8&rft.issue=8&rft_id=info:doi/10.1007%2Fs41939-025-00922-z&rft.externalDocID=10_1007_s41939_025_00922_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8160&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8160&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8160&client=summon |