Cotton Leaf Disease Detection Using Texture and Gradient Features

The detection of cotton leaf disease is a very important factor to prevent serious outbreak. Most cotton diseases are caused by fungi, bacteria, and insects. A new method is proposed for careful detection of diseases and timely handling to prevent the crops from heavy losses. A disease due to bacter...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of engineering and advanced technology Vol. 9; no. 1; pp. 700 - 703
Main Authors Afroze, A.Sabah, Beham, M. Parisa, Tamilselvi, R. S.M. Seeni Mohamed Aliar Maraikkayar, Rajakumar, K.
Format Journal Article
LanguageEnglish
Published 30.10.2019
Online AccessGet full text

Cover

Loading…
Abstract The detection of cotton leaf disease is a very important factor to prevent serious outbreak. Most cotton diseases are caused by fungi, bacteria, and insects. A new method is proposed for careful detection of diseases and timely handling to prevent the crops from heavy losses. A disease due to bacteria, insects and fungus occurs in the cotton leaves in the range of about 80-95%. In the proposed work, first the group of infected leaves and normal leaves are collected and the image preprocessing is done using Adaptive histogram equalization for enhancing the contrast. In feature extraction phase, texture and gradient feature are extracted using Local Binary Pattern (LBP), Histogram of Oriented Gradient (HOG) and Differential of Gaussian (DOG). K- Nearest neighbor classifier is applied to classify the leaf image as a unaffected or an affected leaf. A cotton leaf database is internally created to evaluate the efficacy of our algorithm. The validate results show that the proposed method achieved higher classification accuracy in lower computational time.
AbstractList The detection of cotton leaf disease is a very important factor to prevent serious outbreak. Most cotton diseases are caused by fungi, bacteria, and insects. A new method is proposed for careful detection of diseases and timely handling to prevent the crops from heavy losses. A disease due to bacteria, insects and fungus occurs in the cotton leaves in the range of about 80-95%. In the proposed work, first the group of infected leaves and normal leaves are collected and the image preprocessing is done using Adaptive histogram equalization for enhancing the contrast. In feature extraction phase, texture and gradient feature are extracted using Local Binary Pattern (LBP), Histogram of Oriented Gradient (HOG) and Differential of Gaussian (DOG). K- Nearest neighbor classifier is applied to classify the leaf image as a unaffected or an affected leaf. A cotton leaf database is internally created to evaluate the efficacy of our algorithm. The validate results show that the proposed method achieved higher classification accuracy in lower computational time.
Author Afroze, A.Sabah
Rajakumar, K.
Tamilselvi, R. S.M. Seeni Mohamed Aliar Maraikkayar
Beham, M. Parisa
Author_xml – sequence: 1
  givenname: A.Sabah
  surname: Afroze
  fullname: Afroze, A.Sabah
– sequence: 2
  givenname: M. Parisa
  surname: Beham
  fullname: Beham, M. Parisa
– sequence: 3
  givenname: R. S.M. Seeni Mohamed Aliar Maraikkayar
  surname: Tamilselvi
  fullname: Tamilselvi, R. S.M. Seeni Mohamed Aliar Maraikkayar
– sequence: 4
  givenname: K.
  surname: Rajakumar
  fullname: Rajakumar, K.
BookMark eNpNkM9Kw0AYxBepYK19Ai_7Aqm7-fbvsaSmFQJe2nPYbr6VFE1kdwV9e0PqwbnMMIcZ-N2TxTAOSMgjZxuQVrCn_oIub2rLDGw4s5zbG7IsS2ELY6VZ_Mt3ZJ3ShU3SsgTGl2RbjTmPA23QBbrrE7qEdIcZfe6n-pT64Y0e8Tt_RaRu6Og-uq7HIdN6Op3K9EBug3tPuP7zFTnVz8fqUDSv-5dq2xSeS2uLLnAhQQqnFCoLJXpAQC_Aa4PalEF30p298MCYCajc2TAJpRTKaKUthxWB666PY0oRQ_sZ-w8Xf1rO2hlEO4NoZxDtFQT8AifhUxQ
ContentType Journal Article
CorporateAuthor Department of CSE, Sethu Institute of Technology, Kariapatti-630615, Virudhunagar, Tamilnadu
Department of ECE, Sethu Institute of Technology, Kariapatti-630615, Virudhunagar, Tamilnadu
CorporateAuthor_xml – name: Department of ECE, Sethu Institute of Technology, Kariapatti-630615, Virudhunagar, Tamilnadu
– name: Department of CSE, Sethu Institute of Technology, Kariapatti-630615, Virudhunagar, Tamilnadu
DBID AAYXX
CITATION
DOI 10.35940/ijeat.F9083.109119
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2249-8958
EndPage 703
ExternalDocumentID 10_35940_ijeat_F9083_109119
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
OK1
ID FETCH-LOGICAL-c1599-df145354a66e6932ec3e3ec43c78e782f7d5abc4c3008fe6ab805325468767913
ISSN 2249-8958
IngestDate Fri Aug 23 00:44:14 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1599-df145354a66e6932ec3e3ec43c78e782f7d5abc4c3008fe6ab805325468767913
OpenAccessLink https://doi.org/10.35940/ijeat.f9083.109119
PageCount 4
ParticipantIDs crossref_primary_10_35940_ijeat_F9083_109119
PublicationCentury 2000
PublicationDate 2019-10-30
PublicationDateYYYYMMDD 2019-10-30
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-30
  day: 30
PublicationDecade 2010
PublicationTitle International journal of engineering and advanced technology
PublicationYear 2019
SSID ssj0000752301
Score 2.1376715
Snippet The detection of cotton leaf disease is a very important factor to prevent serious outbreak. Most cotton diseases are caused by fungi, bacteria, and insects. A...
SourceID crossref
SourceType Aggregation Database
StartPage 700
Title Cotton Leaf Disease Detection Using Texture and Gradient Features
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTttAFB0FuukG2kLFo61m0R3YtePxY5YRahr1wYIEiZ01nowlk5BUqUGCBR_XL-uZGb9oUFXYWNbIvk7mHt175vr6DCEfc2RhGYq-I5DcHaak52QxV44_lZxlXCEjmgbZ02h0zr5ehBe93u9O19J1mbny7tHvSp7jVYzBr_or2Sd4tjGKAZzDvzjCwzj-l49PlqVWxfiuRK5lNPWbFgSQUtntv203wATRt35J8GVlGrzKI038MPirS00f1gY7ihKqlSy00q5120C5VpYf5KvlnS2RumORtbVmLcNoi68uSKsW9m1LBlcF0vP8xrQVnLlHYxfXjLG8LhBwcBceNJgXWm5IrEQxm4lb0TQUn4lLMaubxL-53RKGz03s99pIBxrBnYRbDXdXPTJWhWq-hkgbdmPP62Tw2KgmrCWHIORMt1MWl5hjd8hBPrWYll-F7AdS3H-lyKZxEUsmYyY1RlJjJLVGNsiLPoKdjrI_7ts6HygZVnl63d_8Iyt-Zex8Wv8xHYLUYTqTV2SrWqLQgcXba9JTizdku97-g1bZYIcMLPyohh-t4Ecb-FEDP1rBjwI4tIYfreG3S86HnycnI6fakcORoL3cmeY-C4OQiShSEZi_koEKlGSBjBMFrpnH01BkkskA1DJXkcgSvfNIyCIk3Zj7wVuyuVgu1B6hsi9imeEejnkIkHajPOYeTyRjSX-ah_vkuJ6G9KcVXkn_MfsHT7v8kLxsgfiObJara_Ue7LLMPhj3_QHNu3jh
link.rule.ids 315,783,787,27936,27937
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cotton+Leaf+Disease+Detection+Using+Texture+and+Gradient+Features&rft.jtitle=International+journal+of+engineering+and+advanced+technology&rft.au=Afroze%2C+A.Sabah&rft.au=Beham%2C+M.+Parisa&rft.au=Tamilselvi%2C+R.+S.M.+Seeni+Mohamed+Aliar+Maraikkayar&rft.au=Rajakumar%2C+K.&rft.date=2019-10-30&rft.issn=2249-8958&rft.eissn=2249-8958&rft.volume=9&rft.issue=1&rft.spage=700&rft.epage=703&rft_id=info:doi/10.35940%2Fijeat.F9083.109119&rft.externalDBID=n%2Fa&rft.externalDocID=10_35940_ijeat_F9083_109119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2249-8958&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2249-8958&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2249-8958&client=summon