The Support Vector Regression with L1 Norm: Application to Weather Radar Data in Adjusting Rainfall Errors

In hydrological research, accurate rainfall data is the primary subject for the minimization of potential loss of life and property that is mainly caused by floods. However, there is a difficulty in getting precise rainfall data for poorly gauged locations, especially in mountainous areas. Weather r...

Full description

Saved in:
Bibliographic Details
Published inSakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi Vol. 27; no. 3; pp. 621 - 633
Main Authors OZKAYA, Arzu, YILMAZ, Asım Egemen
Format Journal Article
LanguageEnglish
Published Sakarya University 30.06.2023
Subjects
Online AccessGet full text
ISSN2147-835X
2147-835X
DOI10.16984/saufenbilder.1090178

Cover

Loading…
Abstract In hydrological research, accurate rainfall data is the primary subject for the minimization of potential loss of life and property that is mainly caused by floods. However, there is a difficulty in getting precise rainfall data for poorly gauged locations, especially in mountainous areas. Weather radar instruments can be the remedy accompanied by some errors. And, these errors should be removed before the implementation of this product. This paper presents the results of the research on radar rainfall estimate errors with support vector regression (SVR) method using the observed rain gauge data. The paper depicts the methodological base of the algorithm that covers additive and multiplicative corrections and the results of practical implementations considering the locations of gauge measurements. The preliminary results show that the SVR has a location-oriented performance. The multiplicative and additive correction factors show decreasing and polynomial trends respectively, as the distance from the radar location increase. Another particular outcome is that the SVR shows better results for the stations located in the mid-range (mainly for 40-60 km) contrary to the nearest ones. Since the systematic error in the radar data is nonlinear, the SVR method would show a promising result with a combination of other optimization techniques.
AbstractList In hydrological research, accurate rainfall data is the primary subject for the minimization of potential loss of life and property that is mainly caused by floods. However, there is a difficulty in getting precise rainfall data for poorly gauged locations, especially in mountainous areas. Weather radar instruments can be the remedy accompanied by some errors. And, these errors should be removed before the implementation of this product. This paper presents the results of the research on radar rainfall estimate errors with support vector regression (SVR) method using the observed rain gauge data. The paper depicts the methodological base of the algorithm that covers additive and multiplicative corrections and the results of practical implementations considering the locations of gauge measurements. The preliminary results show that the SVR has a location-oriented performance. The multiplicative and additive correction factors show decreasing and polynomial trends respectively, as the distance from the radar location increase. Another particular outcome is that the SVR shows better results for the stations located in the mid-range (mainly for 40-60 km) contrary to the nearest ones. Since the systematic error in the radar data is nonlinear, the SVR method would show a promising result with a combination of other optimization techniques.
Author YILMAZ, Asım Egemen
OZKAYA, Arzu
Author_xml – sequence: 1
  givenname: Arzu
  orcidid: 0000-0003-3983-8831
  surname: OZKAYA
  fullname: OZKAYA, Arzu
– sequence: 2
  givenname: Asım Egemen
  orcidid: 0000-0002-4156-4238
  surname: YILMAZ
  fullname: YILMAZ, Asım Egemen
BookMark eNpNkNtKAzEQhoMoqLWPIOQFqjnubrwrHgtFQevhbskmkzZl3SxJivj2rq1Ir2bmn5lvmP8UHXahA4TOKbmgharEZdIbB13jWwvxghJFaFkdoBNGRTmpuPw43MuP0TilNSGEcsFEqU7QerEC_LLp-xAzfgOTQ8TPsIyQkg8d_vJ5hecUP4b4eYWnfd96o_NvJwf8DjqvYJjXVkd8o7PGvsNTu96k7LvloPvO6bbFtzGGmM7Q0VAlGP_FEXq9u11cP0zmT_ez6-l8YqhU1UQpLbkFaRUxXGnFWUPLphSCFYoa1pimKBw0zIGQxhFSSAVAjOZ02JPDZyM023Ft0Ou6j_5Tx-86aF9vhRCXtY7ZmxZqWnHGnCqtbaSQlmkm3HC3MkIJ12xZcscyMaQUwf3zKKm3_tf7_td__vMfYbV-bw
Cites_doi 10.1016/S0022-1694(00)00350-4
10.1002/qj.2188
10.1002/wat2.1337
10.1016/j.atmosres.2011.06.018
10.1007/s13762-018-1674-2
10.1007/s11269-006-9026-2
10.5194/hess-15-65-2011
10.1007/978-1-4757-3264-1
10.1007/s10712-009-9079-x
10.1175/1520-0450(1976)015<1120:VAMATR>2.0.CO;2
10.1002/hyp.6323
10.1016/j.asoc.2018.09.018
10.1080/02626667.2014.945455
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.16984/saufenbilder.1090178
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2147-835X
EndPage 633
ExternalDocumentID oai_doaj_org_article_18322f97ddb545d2a24fd908c494fb01
10_16984_saufenbilder_1090178
GroupedDBID 5VS
AAYXX
ABDBF
ACUHS
AHQJS
AKVCP
ALMA_UNASSIGNED_HOLDINGS
CITATION
EAD
EBA
EBU
EOJEC
EPL
ESX
GIY
GROUPED_DOAJ
ITF
ITG
OBODZ
TH9
ID FETCH-LOGICAL-c1598-99a53de5d90c39a932b17b7442691c2bcb66feb2fe45cf00659ee0ca31a535013
IEDL.DBID DOA
ISSN 2147-835X
IngestDate Wed Aug 27 01:26:03 EDT 2025
Tue Jul 01 01:06:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1598-99a53de5d90c39a932b17b7442691c2bcb66feb2fe45cf00659ee0ca31a535013
ORCID 0000-0002-4156-4238
0000-0003-3983-8831
OpenAccessLink https://doaj.org/article/18322f97ddb545d2a24fd908c494fb01
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_18322f97ddb545d2a24fd908c494fb01
crossref_primary_10_16984_saufenbilder_1090178
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-30
PublicationDateYYYYMMDD 2023-06-30
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-30
  day: 30
PublicationDecade 2020
PublicationTitle Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi
PublicationYear 2023
Publisher Sakarya University
Publisher_xml – name: Sakarya University
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref1
– ident: ref2
  doi: 10.1016/S0022-1694(00)00350-4
– ident: ref6
  doi: 10.1002/qj.2188
– ident: ref3
  doi: 10.1002/wat2.1337
– ident: ref5
  doi: 10.1016/j.atmosres.2011.06.018
– ident: ref13
  doi: 10.1007/s13762-018-1674-2
– ident: ref11
  doi: 10.1007/s11269-006-9026-2
– ident: ref12
  doi: 10.5194/hess-15-65-2011
– ident: ref9
  doi: 10.1007/978-1-4757-3264-1
– ident: ref7
  doi: 10.1007/s10712-009-9079-x
– ident: ref4
  doi: 10.1175/1520-0450(1976)015<1120:VAMATR>2.0.CO;2
– ident: ref10
  doi: 10.1002/hyp.6323
– ident: ref14
  doi: 10.1016/j.asoc.2018.09.018
– ident: ref8
– ident: ref15
  doi: 10.1080/02626667.2014.945455
SSID ssj0001342479
Score 2.224123
Snippet In hydrological research, accurate rainfall data is the primary subject for the minimization of potential loss of life and property that is mainly caused by...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 621
SubjectTerms error minimization
flood
support vector regression
weather radar data
Title The Support Vector Regression with L1 Norm: Application to Weather Radar Data in Adjusting Rainfall Errors
URI https://doaj.org/article/18322f97ddb545d2a24fd908c494fb01
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxZE-RDlSzcwwBCaDyeO2Qq0qhB0qCh0i-zYrlpVKUrT_885DlAmFtYoiaJ3du6d7XuPkKtQ-3mYaOklvlEeNUHkIavWHqcRS7VOE14Lab-MkuGEPk3j6ZbVlz0T5uSBHXDdesgZzpSSmOxVKEJqFPfTnHJqpOvcwpy3VUzVqysRDSnjTctOwlPaXYuN0YWcW_NrK6Jkfel_JaMtzf46uQz2yV7DCqHnvqZNdnRxQNrNvFvDdSMOfXNIFhhXsFacSJvhrV5yh7GeudOsBdhlVXgOYIRU9A56P7vTUK3g3dE9GAslSngUlYB5AT21sI5exQzsXo8RyyX0y3JVro_IZNB_fRh6jV-ClyMpwf8WF3GkdIzw5BEXyMxkwCSjtls1yEOZyyQxWEkbTePcWPLBNYZKRAE-FyNmx6RVrAp9QgDBUTFizDQLqEIWIww1kWA8ZVQZ43fI7Rdw2YeTxchsOWGRzraRzhqkO-Tewvt9s1W1ri9grLMm1tlfsT79j5eckV1rGe_O_J2TVlVu9AUSi0pe1mPoE8lOy-U
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Support+Vector+Regression+with+L1+Norm%3A+Application+to+Weather+Radar+Data+in+Adjusting+Rainfall+Errors&rft.jtitle=Sakarya+%C3%9Cniversitesi+Fen+Bilimleri+Enstit%C3%BCs%C3%BC+Dergisi&rft.au=OZKAYA%2C+Arzu&rft.au=YILMAZ%2C+As%C4%B1m+Egemen&rft.date=2023-06-30&rft.issn=2147-835X&rft.eissn=2147-835X&rft.volume=27&rft.issue=3&rft.spage=621&rft.epage=633&rft_id=info:doi/10.16984%2Fsaufenbilder.1090178&rft.externalDBID=n%2Fa&rft.externalDocID=10_16984_saufenbilder_1090178
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2147-835X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2147-835X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2147-835X&client=summon