The Support Vector Regression with L1 Norm: Application to Weather Radar Data in Adjusting Rainfall Errors
In hydrological research, accurate rainfall data is the primary subject for the minimization of potential loss of life and property that is mainly caused by floods. However, there is a difficulty in getting precise rainfall data for poorly gauged locations, especially in mountainous areas. Weather r...
Saved in:
Published in | Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi Vol. 27; no. 3; pp. 621 - 633 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Sakarya University
30.06.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2147-835X 2147-835X |
DOI | 10.16984/saufenbilder.1090178 |
Cover
Loading…
Abstract | In hydrological research, accurate rainfall data is the primary subject for the minimization of potential loss of life and property that is mainly caused by floods. However, there is a difficulty in getting precise rainfall data for poorly gauged locations, especially in mountainous areas. Weather radar instruments can be the remedy accompanied by some errors. And, these errors should be removed before the implementation of this product. This paper presents the results of the research on radar rainfall estimate errors with support vector regression (SVR) method using the observed rain gauge data. The paper depicts the methodological base of the algorithm that covers additive and multiplicative corrections and the results of practical implementations considering the locations of gauge measurements. The preliminary results show that the SVR has a location-oriented performance. The multiplicative and additive correction factors show decreasing and polynomial trends respectively, as the distance from the radar location increase. Another particular outcome is that the SVR shows better results for the stations located in the mid-range (mainly for 40-60 km) contrary to the nearest ones. Since the systematic error in the radar data is nonlinear, the SVR method would show a promising result with a combination of other optimization techniques. |
---|---|
AbstractList | In hydrological research, accurate rainfall data is the primary subject for the minimization of potential loss of life and property that is mainly caused by floods. However, there is a difficulty in getting precise rainfall data for poorly gauged locations, especially in mountainous areas. Weather radar instruments can be the remedy accompanied by some errors. And, these errors should be removed before the implementation of this product. This paper presents the results of the research on radar rainfall estimate errors with support vector regression (SVR) method using the observed rain gauge data. The paper depicts the methodological base of the algorithm that covers additive and multiplicative corrections and the results of practical implementations considering the locations of gauge measurements. The preliminary results show that the SVR has a location-oriented performance. The multiplicative and additive correction factors show decreasing and polynomial trends respectively, as the distance from the radar location increase. Another particular outcome is that the SVR shows better results for the stations located in the mid-range (mainly for 40-60 km) contrary to the nearest ones. Since the systematic error in the radar data is nonlinear, the SVR method would show a promising result with a combination of other optimization techniques. |
Author | YILMAZ, Asım Egemen OZKAYA, Arzu |
Author_xml | – sequence: 1 givenname: Arzu orcidid: 0000-0003-3983-8831 surname: OZKAYA fullname: OZKAYA, Arzu – sequence: 2 givenname: Asım Egemen orcidid: 0000-0002-4156-4238 surname: YILMAZ fullname: YILMAZ, Asım Egemen |
BookMark | eNpNkNtKAzEQhoMoqLWPIOQFqjnubrwrHgtFQevhbskmkzZl3SxJivj2rq1Ir2bmn5lvmP8UHXahA4TOKbmgharEZdIbB13jWwvxghJFaFkdoBNGRTmpuPw43MuP0TilNSGEcsFEqU7QerEC_LLp-xAzfgOTQ8TPsIyQkg8d_vJ5hecUP4b4eYWnfd96o_NvJwf8DjqvYJjXVkd8o7PGvsNTu96k7LvloPvO6bbFtzGGmM7Q0VAlGP_FEXq9u11cP0zmT_ez6-l8YqhU1UQpLbkFaRUxXGnFWUPLphSCFYoa1pimKBw0zIGQxhFSSAVAjOZ02JPDZyM023Ft0Ou6j_5Tx-86aF9vhRCXtY7ZmxZqWnHGnCqtbaSQlmkm3HC3MkIJ12xZcscyMaQUwf3zKKm3_tf7_td__vMfYbV-bw |
Cites_doi | 10.1016/S0022-1694(00)00350-4 10.1002/qj.2188 10.1002/wat2.1337 10.1016/j.atmosres.2011.06.018 10.1007/s13762-018-1674-2 10.1007/s11269-006-9026-2 10.5194/hess-15-65-2011 10.1007/978-1-4757-3264-1 10.1007/s10712-009-9079-x 10.1175/1520-0450(1976)015<1120:VAMATR>2.0.CO;2 10.1002/hyp.6323 10.1016/j.asoc.2018.09.018 10.1080/02626667.2014.945455 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.16984/saufenbilder.1090178 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2147-835X |
EndPage | 633 |
ExternalDocumentID | oai_doaj_org_article_18322f97ddb545d2a24fd908c494fb01 10_16984_saufenbilder_1090178 |
GroupedDBID | 5VS AAYXX ABDBF ACUHS AHQJS AKVCP ALMA_UNASSIGNED_HOLDINGS CITATION EAD EBA EBU EOJEC EPL ESX GIY GROUPED_DOAJ ITF ITG OBODZ TH9 |
ID | FETCH-LOGICAL-c1598-99a53de5d90c39a932b17b7442691c2bcb66feb2fe45cf00659ee0ca31a535013 |
IEDL.DBID | DOA |
ISSN | 2147-835X |
IngestDate | Wed Aug 27 01:26:03 EDT 2025 Tue Jul 01 01:06:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1598-99a53de5d90c39a932b17b7442691c2bcb66feb2fe45cf00659ee0ca31a535013 |
ORCID | 0000-0002-4156-4238 0000-0003-3983-8831 |
OpenAccessLink | https://doaj.org/article/18322f97ddb545d2a24fd908c494fb01 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_18322f97ddb545d2a24fd908c494fb01 crossref_primary_10_16984_saufenbilder_1090178 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-30 |
PublicationDateYYYYMMDD | 2023-06-30 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi |
PublicationYear | 2023 |
Publisher | Sakarya University |
Publisher_xml | – name: Sakarya University |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref1 – ident: ref2 doi: 10.1016/S0022-1694(00)00350-4 – ident: ref6 doi: 10.1002/qj.2188 – ident: ref3 doi: 10.1002/wat2.1337 – ident: ref5 doi: 10.1016/j.atmosres.2011.06.018 – ident: ref13 doi: 10.1007/s13762-018-1674-2 – ident: ref11 doi: 10.1007/s11269-006-9026-2 – ident: ref12 doi: 10.5194/hess-15-65-2011 – ident: ref9 doi: 10.1007/978-1-4757-3264-1 – ident: ref7 doi: 10.1007/s10712-009-9079-x – ident: ref4 doi: 10.1175/1520-0450(1976)015<1120:VAMATR>2.0.CO;2 – ident: ref10 doi: 10.1002/hyp.6323 – ident: ref14 doi: 10.1016/j.asoc.2018.09.018 – ident: ref8 – ident: ref15 doi: 10.1080/02626667.2014.945455 |
SSID | ssj0001342479 |
Score | 2.224123 |
Snippet | In hydrological research, accurate rainfall data is the primary subject for the minimization of potential loss of life and property that is mainly caused by... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 621 |
SubjectTerms | error minimization flood support vector regression weather radar data |
Title | The Support Vector Regression with L1 Norm: Application to Weather Radar Data in Adjusting Rainfall Errors |
URI | https://doaj.org/article/18322f97ddb545d2a24fd908c494fb01 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxZE-RDlSzcwwBCaDyeO2Qq0qhB0qCh0i-zYrlpVKUrT_885DlAmFtYoiaJ3du6d7XuPkKtQ-3mYaOklvlEeNUHkIavWHqcRS7VOE14Lab-MkuGEPk3j6ZbVlz0T5uSBHXDdesgZzpSSmOxVKEJqFPfTnHJqpOvcwpy3VUzVqysRDSnjTctOwlPaXYuN0YWcW_NrK6Jkfel_JaMtzf46uQz2yV7DCqHnvqZNdnRxQNrNvFvDdSMOfXNIFhhXsFacSJvhrV5yh7GeudOsBdhlVXgOYIRU9A56P7vTUK3g3dE9GAslSngUlYB5AT21sI5exQzsXo8RyyX0y3JVro_IZNB_fRh6jV-ClyMpwf8WF3GkdIzw5BEXyMxkwCSjtls1yEOZyyQxWEkbTePcWPLBNYZKRAE-FyNmx6RVrAp9QgDBUTFizDQLqEIWIww1kWA8ZVQZ43fI7Rdw2YeTxchsOWGRzraRzhqkO-Tewvt9s1W1ri9grLMm1tlfsT79j5eckV1rGe_O_J2TVlVu9AUSi0pe1mPoE8lOy-U |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Support+Vector+Regression+with+L1+Norm%3A+Application+to+Weather+Radar+Data+in+Adjusting+Rainfall+Errors&rft.jtitle=Sakarya+%C3%9Cniversitesi+Fen+Bilimleri+Enstit%C3%BCs%C3%BC+Dergisi&rft.au=OZKAYA%2C+Arzu&rft.au=YILMAZ%2C+As%C4%B1m+Egemen&rft.date=2023-06-30&rft.issn=2147-835X&rft.eissn=2147-835X&rft.volume=27&rft.issue=3&rft.spage=621&rft.epage=633&rft_id=info:doi/10.16984%2Fsaufenbilder.1090178&rft.externalDBID=n%2Fa&rft.externalDocID=10_16984_saufenbilder_1090178 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2147-835X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2147-835X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2147-835X&client=summon |