EEG-DGRN: dynamic graph representation network for subject-independent ERP detection
Objectives The inter-subject variability remains a formidable challenge in electroencephalogram (EEG) signal processing. Existing event-related potential (ERP) detection methods inadequately consider the dynamic connectivity of EEG signals and event response differences between subjects, limiting th...
Saved in:
Published in | Brain-apparatus communication Vol. 4; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis Group
31.12.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2770-6710 2770-6710 |
DOI | 10.1080/27706710.2024.2447576 |
Cover
Loading…
Abstract | Objectives The inter-subject variability remains a formidable challenge in electroencephalogram (EEG) signal processing. Existing event-related potential (ERP) detection methods inadequately consider the dynamic connectivity of EEG signals and event response differences between subjects, limiting the discriminability of task-related features.Methods In this article, we propose EEG-DGRN, a dynamic graph representation network designed for subject-independent ERP detection. Specifically, the dynamic graph mechanism is used to capture the task-relevant connectivity relationship between EEG channels over time. Then, considering the local and global topology structure, a dual-branch graph pooling module is employed to prune features from different granularity. After that, the temporal dynamic attention module enables the model to pay more attention to subject-invariant representations.Results Our EEG-DGRN model is evaluated on a publicly available rapid serial visual presentation dataset. It achieves a remarkable mean balanced classification accuracy of 87.05%, outperforming all other methods compared in this study.Conclusion Such performance demonstrates its ability to extract subject-invariant EEG features and generalize effectively to unseen subjects. Lastly, ablation studies confirm the effectiveness of each module in EEG-DGRN, highlighting their contributions to the overall performance. |
---|---|
AbstractList | Objectives The inter-subject variability remains a formidable challenge in electroencephalogram (EEG) signal processing. Existing event-related potential (ERP) detection methods inadequately consider the dynamic connectivity of EEG signals and event response differences between subjects, limiting the discriminability of task-related features.Methods In this article, we propose EEG-DGRN, a dynamic graph representation network designed for subject-independent ERP detection. Specifically, the dynamic graph mechanism is used to capture the task-relevant connectivity relationship between EEG channels over time. Then, considering the local and global topology structure, a dual-branch graph pooling module is employed to prune features from different granularity. After that, the temporal dynamic attention module enables the model to pay more attention to subject-invariant representations.Results Our EEG-DGRN model is evaluated on a publicly available rapid serial visual presentation dataset. It achieves a remarkable mean balanced classification accuracy of 87.05%, outperforming all other methods compared in this study.Conclusion Such performance demonstrates its ability to extract subject-invariant EEG features and generalize effectively to unseen subjects. Lastly, ablation studies confirm the effectiveness of each module in EEG-DGRN, highlighting their contributions to the overall performance. |
Author | Ming, Yuhang Kong, Wanzeng Zhu, Jiabin Jin, Xuanyu |
Author_xml | – sequence: 1 givenname: Jiabin surname: Zhu fullname: Zhu, Jiabin organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou, China, Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou, China – sequence: 2 givenname: Xuanyu surname: Jin fullname: Jin, Xuanyu organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou, China, Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou, China – sequence: 3 givenname: Yuhang surname: Ming fullname: Ming, Yuhang organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou, China, Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou, China – sequence: 4 givenname: Wanzeng surname: Kong fullname: Kong, Wanzeng organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou, China, Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou, China |
BookMark | eNpNkF1LwzAUhoNMcM79BCF_oDOfTeudzDqFoTLmdUiT09m5JSWtyP69rZvizfl4z-G5eC7RyAcPCF1TMqMkIzdMKZKqfmOEiRkTQkmVnqHxkCfDYfRvvkDTtt0SQlim-j0bo3VRLJL7xer5FruDN_va4k00zTuO0ERowXemq4PHHrqvED9wFSJuP8st2C6pvYMG-uI7XKxesYOuj_vvK3RemV0L01OfoLeHYj1_TJYvi6f53TKxVOZpokpgChRIKxkjVBLpAKrcSMZz46zipeMVsIymIpc2E6WplEklMRW3AMzyCXo6cl0wW93Eem_iQQdT658gxI02savtDrRQClgPBuO4KFOXcSuAMyIpddxlZc-SR5aNoW0jVH88SvRgWv-a1oNpfTLNvwH6_HJq |
Cites_doi | 10.1109/BIBM.2018.8621147 10.1109/TCDS.2022.3175538 10.1109/TAFFC.2018.2817622 10.3389/fnins.2020.579469 10.1109/LSP.2021.3095761 10.1109/JBHI.2020.2967128 10.1088/1741-2552/abb7a7 10.1109/TNSRE.2020.3048106 10.1109/ICCV.2017.74 10.1109/EMBC.2018.8512696 10.1088/1741-2552/abce70 10.1088/1741-2552/ac1610 10.1002/hbm.23730 10.1145/3289600.3290967 10.1109/ACCESS.2022.3161489 10.1088/1741-2552/aace8c 10.1109/TNSRE.2020.2985996 10.1109/EMBC46164.2021.9630194 10.1016/j.ins.2024.120914 10.1007/s11571-022-09890-3 10.1016/j.tics.2021.04.003 10.1016/j.jneumeth.2021.109346 10.1109/EMBC48229.2022.9871984 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1080/27706710.2024.2447576 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2770-6710 |
ExternalDocumentID | oai_doaj_org_article_477e2523ead34b6d83c4e320511d3d8b 10_1080_27706710_2024_2447576 |
GroupedDBID | 0YH AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION EBS GROUPED_DOAJ M~E TDBHL |
ID | FETCH-LOGICAL-c1596-7be27e7e5c52201505deef9a5239adc73bd3fe2816495c84baf7a650af3cee2c3 |
IEDL.DBID | DOA |
ISSN | 2770-6710 |
IngestDate | Wed Aug 27 01:24:10 EDT 2025 Tue Jul 01 01:48:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1596-7be27e7e5c52201505deef9a5239adc73bd3fe2816495c84baf7a650af3cee2c3 |
OpenAccessLink | https://doaj.org/article/477e2523ead34b6d83c4e320511d3d8b |
ParticipantIDs | doaj_primary_oai_doaj_org_article_477e2523ead34b6d83c4e320511d3d8b crossref_primary_10_1080_27706710_2024_2447576 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-12-31 |
PublicationDateYYYYMMDD | 2025-12-31 |
PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | Brain-apparatus communication |
PublicationYear | 2025 |
Publisher | Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis Group |
References | e_1_3_2_27_1 e_1_3_2_20_1 e_1_3_2_21_1 e_1_3_2_22_1 e_1_3_2_23_1 e_1_3_2_24_1 e_1_3_2_25_1 e_1_3_2_26_1 Du J (e_1_3_2_17_1) 2021 e_1_3_2_16_1 e_1_3_2_9_1 e_1_3_2_8_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_10_1 e_1_3_2_11_1 e_1_3_2_6_1 e_1_3_2_12_1 e_1_3_2_5_1 e_1_3_2_13_1 e_1_3_2_4_1 e_1_3_2_3_1 e_1_3_2_15_1 Li Z (e_1_3_2_14_1) 2022; 69 |
References_xml | – ident: e_1_3_2_8_1 doi: 10.1109/BIBM.2018.8621147 – volume: 69 start-page: 5199 issue: 12 year: 2022 ident: e_1_3_2_14_1 article-title: MCGRAM: linking multi-scale CNN with a graph-based recurrent attention model for subject-independent ERP detection publication-title: IEEE Trans Circuits Syst II Express Briefs – ident: e_1_3_2_9_1 doi: 10.1109/TCDS.2022.3175538 – ident: e_1_3_2_11_1 doi: 10.1109/TAFFC.2018.2817622 – ident: e_1_3_2_20_1 doi: 10.3389/fnins.2020.579469 – ident: e_1_3_2_7_1 doi: 10.1109/LSP.2021.3095761 – start-page: 1442 year: 2021 ident: e_1_3_2_17_1 article-title: Multi-channel pooling graph neural networks publication-title: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI) – ident: e_1_3_2_25_1 doi: 10.1109/JBHI.2020.2967128 – ident: e_1_3_2_23_1 doi: 10.1088/1741-2552/abb7a7 – ident: e_1_3_2_24_1 doi: 10.1109/TNSRE.2020.3048106 – ident: e_1_3_2_27_1 doi: 10.1109/ICCV.2017.74 – ident: e_1_3_2_5_1 doi: 10.1109/EMBC.2018.8512696 – ident: e_1_3_2_12_1 doi: 10.1088/1741-2552/abce70 – ident: e_1_3_2_3_1 doi: 10.1088/1741-2552/ac1610 – ident: e_1_3_2_22_1 doi: 10.1002/hbm.23730 – ident: e_1_3_2_18_1 – ident: e_1_3_2_19_1 doi: 10.1145/3289600.3290967 – ident: e_1_3_2_26_1 doi: 10.1109/ACCESS.2022.3161489 – ident: e_1_3_2_21_1 doi: 10.1088/1741-2552/aace8c – ident: e_1_3_2_4_1 doi: 10.1109/TNSRE.2020.2985996 – ident: e_1_3_2_15_1 doi: 10.1109/EMBC46164.2021.9630194 – ident: e_1_3_2_13_1 doi: 10.1016/j.ins.2024.120914 – ident: e_1_3_2_10_1 doi: 10.1007/s11571-022-09890-3 – ident: e_1_3_2_2_1 doi: 10.1016/j.tics.2021.04.003 – ident: e_1_3_2_6_1 doi: 10.1016/j.jneumeth.2021.109346 – ident: e_1_3_2_16_1 doi: 10.1109/EMBC48229.2022.9871984 |
SSID | ssj0002876718 |
Score | 2.3134716 |
Snippet | Objectives The inter-subject variability remains a formidable challenge in electroencephalogram (EEG) signal processing. Existing event-related potential (ERP)... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
SubjectTerms | Brain–computer interface dynamic graph neural network electroencephalogram event-related potential subject-invariant representation |
Title | EEG-DGRN: dynamic graph representation network for subject-independent ERP detection |
URI | https://doaj.org/article/477e2523ead34b6d83c4e320511d3d8b |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7iyYuoU5y_yEG8ZWuTtGm8Te02BIeMDXYr-VVQsIp2By_-7b6k3ejNi5ceSint90Le9z1evofQNecahIZyhGluQKBYRiS1kigtIplJ4ym-77aYpdMlf1wlq86oL98T1tgDN8ANuRCOglqCP2ZcpzZjhjtGYS3FltlM-90Xcl5HTL2GkpFIYdfdHNnJoiEVAjZm3_kMWWlAvc-d9xnpJKOOZ39ILuMDtN-yQjxqvuYQ7bjqCPVGFSjit298g0OfZiiA99AizyfkYTKf3WLbjJPHwXUaB3_KzVmiCldNgzcGVoq_1trXW8jLduhtjfP5M7auDq1Y1TFajvPF_ZS0sxGIAQKSEqEdFU64xACB8lWLxDpXSgVISWWNYNqy0tEM1JBMTMa1KoUCNqZKBmmRGnaCdqv3yp0izGicGimSWGSWK5loECncKxXNJY1c1EeDDUjFR2OBUcSts-gG1cKjWrSo9tGdh3L7sHewDjcgrkUb1-KvuJ79x0vO0R7183qDMeMF2q0_1-4SSEStr8J6gevTT_4LmnjBUQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-DGRN%3A+dynamic+graph+representation+network+for+subject-independent+ERP+detection&rft.jtitle=Brain-apparatus+communication&rft.au=Jiabin+Zhu&rft.au=Xuanyu+Jin&rft.au=Yuhang+Ming&rft.au=Wanzeng+Kong&rft.date=2025-12-31&rft.pub=Taylor+%26+Francis+Group&rft.eissn=2770-6710&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1080%2F27706710.2024.2447576&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_477e2523ead34b6d83c4e320511d3d8b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2770-6710&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2770-6710&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2770-6710&client=summon |