EEG-DGRN: dynamic graph representation network for subject-independent ERP detection

Objectives The inter-subject variability remains a formidable challenge in electroencephalogram (EEG) signal processing. Existing event-related potential (ERP) detection methods inadequately consider the dynamic connectivity of EEG signals and event response differences between subjects, limiting th...

Full description

Saved in:
Bibliographic Details
Published inBrain-apparatus communication Vol. 4; no. 1
Main Authors Zhu, Jiabin, Jin, Xuanyu, Ming, Yuhang, Kong, Wanzeng
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 31.12.2025
Subjects
Online AccessGet full text
ISSN2770-6710
2770-6710
DOI10.1080/27706710.2024.2447576

Cover

Loading…
Abstract Objectives The inter-subject variability remains a formidable challenge in electroencephalogram (EEG) signal processing. Existing event-related potential (ERP) detection methods inadequately consider the dynamic connectivity of EEG signals and event response differences between subjects, limiting the discriminability of task-related features.Methods In this article, we propose EEG-DGRN, a dynamic graph representation network designed for subject-independent ERP detection. Specifically, the dynamic graph mechanism is used to capture the task-relevant connectivity relationship between EEG channels over time. Then, considering the local and global topology structure, a dual-branch graph pooling module is employed to prune features from different granularity. After that, the temporal dynamic attention module enables the model to pay more attention to subject-invariant representations.Results Our EEG-DGRN model is evaluated on a publicly available rapid serial visual presentation dataset. It achieves a remarkable mean balanced classification accuracy of 87.05%, outperforming all other methods compared in this study.Conclusion Such performance demonstrates its ability to extract subject-invariant EEG features and generalize effectively to unseen subjects. Lastly, ablation studies confirm the effectiveness of each module in EEG-DGRN, highlighting their contributions to the overall performance.
AbstractList Objectives The inter-subject variability remains a formidable challenge in electroencephalogram (EEG) signal processing. Existing event-related potential (ERP) detection methods inadequately consider the dynamic connectivity of EEG signals and event response differences between subjects, limiting the discriminability of task-related features.Methods In this article, we propose EEG-DGRN, a dynamic graph representation network designed for subject-independent ERP detection. Specifically, the dynamic graph mechanism is used to capture the task-relevant connectivity relationship between EEG channels over time. Then, considering the local and global topology structure, a dual-branch graph pooling module is employed to prune features from different granularity. After that, the temporal dynamic attention module enables the model to pay more attention to subject-invariant representations.Results Our EEG-DGRN model is evaluated on a publicly available rapid serial visual presentation dataset. It achieves a remarkable mean balanced classification accuracy of 87.05%, outperforming all other methods compared in this study.Conclusion Such performance demonstrates its ability to extract subject-invariant EEG features and generalize effectively to unseen subjects. Lastly, ablation studies confirm the effectiveness of each module in EEG-DGRN, highlighting their contributions to the overall performance.
Author Ming, Yuhang
Kong, Wanzeng
Zhu, Jiabin
Jin, Xuanyu
Author_xml – sequence: 1
  givenname: Jiabin
  surname: Zhu
  fullname: Zhu, Jiabin
  organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou, China, Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou, China
– sequence: 2
  givenname: Xuanyu
  surname: Jin
  fullname: Jin, Xuanyu
  organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou, China, Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou, China
– sequence: 3
  givenname: Yuhang
  surname: Ming
  fullname: Ming, Yuhang
  organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou, China, Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou, China
– sequence: 4
  givenname: Wanzeng
  surname: Kong
  fullname: Kong, Wanzeng
  organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou, China, Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou, China
BookMark eNpNkF1LwzAUhoNMcM79BCF_oDOfTeudzDqFoTLmdUiT09m5JSWtyP69rZvizfl4z-G5eC7RyAcPCF1TMqMkIzdMKZKqfmOEiRkTQkmVnqHxkCfDYfRvvkDTtt0SQlim-j0bo3VRLJL7xer5FruDN_va4k00zTuO0ERowXemq4PHHrqvED9wFSJuP8st2C6pvYMG-uI7XKxesYOuj_vvK3RemV0L01OfoLeHYj1_TJYvi6f53TKxVOZpokpgChRIKxkjVBLpAKrcSMZz46zipeMVsIymIpc2E6WplEklMRW3AMzyCXo6cl0wW93Eem_iQQdT658gxI02savtDrRQClgPBuO4KFOXcSuAMyIpddxlZc-SR5aNoW0jVH88SvRgWv-a1oNpfTLNvwH6_HJq
Cites_doi 10.1109/BIBM.2018.8621147
10.1109/TCDS.2022.3175538
10.1109/TAFFC.2018.2817622
10.3389/fnins.2020.579469
10.1109/LSP.2021.3095761
10.1109/JBHI.2020.2967128
10.1088/1741-2552/abb7a7
10.1109/TNSRE.2020.3048106
10.1109/ICCV.2017.74
10.1109/EMBC.2018.8512696
10.1088/1741-2552/abce70
10.1088/1741-2552/ac1610
10.1002/hbm.23730
10.1145/3289600.3290967
10.1109/ACCESS.2022.3161489
10.1088/1741-2552/aace8c
10.1109/TNSRE.2020.2985996
10.1109/EMBC46164.2021.9630194
10.1016/j.ins.2024.120914
10.1007/s11571-022-09890-3
10.1016/j.tics.2021.04.003
10.1016/j.jneumeth.2021.109346
10.1109/EMBC48229.2022.9871984
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1080/27706710.2024.2447576
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2770-6710
ExternalDocumentID oai_doaj_org_article_477e2523ead34b6d83c4e320511d3d8b
10_1080_27706710_2024_2447576
GroupedDBID 0YH
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
GROUPED_DOAJ
M~E
TDBHL
ID FETCH-LOGICAL-c1596-7be27e7e5c52201505deef9a5239adc73bd3fe2816495c84baf7a650af3cee2c3
IEDL.DBID DOA
ISSN 2770-6710
IngestDate Wed Aug 27 01:24:10 EDT 2025
Tue Jul 01 01:48:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1596-7be27e7e5c52201505deef9a5239adc73bd3fe2816495c84baf7a650af3cee2c3
OpenAccessLink https://doaj.org/article/477e2523ead34b6d83c4e320511d3d8b
ParticipantIDs doaj_primary_oai_doaj_org_article_477e2523ead34b6d83c4e320511d3d8b
crossref_primary_10_1080_27706710_2024_2447576
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-12-31
PublicationDateYYYYMMDD 2025-12-31
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-31
  day: 31
PublicationDecade 2020
PublicationTitle Brain-apparatus communication
PublicationYear 2025
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References e_1_3_2_27_1
e_1_3_2_20_1
e_1_3_2_21_1
e_1_3_2_22_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_25_1
e_1_3_2_26_1
Du J (e_1_3_2_17_1) 2021
e_1_3_2_16_1
e_1_3_2_9_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_10_1
e_1_3_2_11_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_4_1
e_1_3_2_3_1
e_1_3_2_15_1
Li Z (e_1_3_2_14_1) 2022; 69
References_xml – ident: e_1_3_2_8_1
  doi: 10.1109/BIBM.2018.8621147
– volume: 69
  start-page: 5199
  issue: 12
  year: 2022
  ident: e_1_3_2_14_1
  article-title: MCGRAM: linking multi-scale CNN with a graph-based recurrent attention model for subject-independent ERP detection
  publication-title: IEEE Trans Circuits Syst II Express Briefs
– ident: e_1_3_2_9_1
  doi: 10.1109/TCDS.2022.3175538
– ident: e_1_3_2_11_1
  doi: 10.1109/TAFFC.2018.2817622
– ident: e_1_3_2_20_1
  doi: 10.3389/fnins.2020.579469
– ident: e_1_3_2_7_1
  doi: 10.1109/LSP.2021.3095761
– start-page: 1442
  year: 2021
  ident: e_1_3_2_17_1
  article-title: Multi-channel pooling graph neural networks
  publication-title: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI)
– ident: e_1_3_2_25_1
  doi: 10.1109/JBHI.2020.2967128
– ident: e_1_3_2_23_1
  doi: 10.1088/1741-2552/abb7a7
– ident: e_1_3_2_24_1
  doi: 10.1109/TNSRE.2020.3048106
– ident: e_1_3_2_27_1
  doi: 10.1109/ICCV.2017.74
– ident: e_1_3_2_5_1
  doi: 10.1109/EMBC.2018.8512696
– ident: e_1_3_2_12_1
  doi: 10.1088/1741-2552/abce70
– ident: e_1_3_2_3_1
  doi: 10.1088/1741-2552/ac1610
– ident: e_1_3_2_22_1
  doi: 10.1002/hbm.23730
– ident: e_1_3_2_18_1
– ident: e_1_3_2_19_1
  doi: 10.1145/3289600.3290967
– ident: e_1_3_2_26_1
  doi: 10.1109/ACCESS.2022.3161489
– ident: e_1_3_2_21_1
  doi: 10.1088/1741-2552/aace8c
– ident: e_1_3_2_4_1
  doi: 10.1109/TNSRE.2020.2985996
– ident: e_1_3_2_15_1
  doi: 10.1109/EMBC46164.2021.9630194
– ident: e_1_3_2_13_1
  doi: 10.1016/j.ins.2024.120914
– ident: e_1_3_2_10_1
  doi: 10.1007/s11571-022-09890-3
– ident: e_1_3_2_2_1
  doi: 10.1016/j.tics.2021.04.003
– ident: e_1_3_2_6_1
  doi: 10.1016/j.jneumeth.2021.109346
– ident: e_1_3_2_16_1
  doi: 10.1109/EMBC48229.2022.9871984
SSID ssj0002876718
Score 2.3134716
Snippet Objectives The inter-subject variability remains a formidable challenge in electroencephalogram (EEG) signal processing. Existing event-related potential (ERP)...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms Brain–computer interface
dynamic graph neural network
electroencephalogram
event-related potential
subject-invariant representation
Title EEG-DGRN: dynamic graph representation network for subject-independent ERP detection
URI https://doaj.org/article/477e2523ead34b6d83c4e320511d3d8b
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7iyYuoU5y_yEG8ZWuTtGm8Te02BIeMDXYr-VVQsIp2By_-7b6k3ejNi5ceSint90Le9z1evofQNecahIZyhGluQKBYRiS1kigtIplJ4ym-77aYpdMlf1wlq86oL98T1tgDN8ANuRCOglqCP2ZcpzZjhjtGYS3FltlM-90Xcl5HTL2GkpFIYdfdHNnJoiEVAjZm3_kMWWlAvc-d9xnpJKOOZ39ILuMDtN-yQjxqvuYQ7bjqCPVGFSjit298g0OfZiiA99AizyfkYTKf3WLbjJPHwXUaB3_KzVmiCldNgzcGVoq_1trXW8jLduhtjfP5M7auDq1Y1TFajvPF_ZS0sxGIAQKSEqEdFU64xACB8lWLxDpXSgVISWWNYNqy0tEM1JBMTMa1KoUCNqZKBmmRGnaCdqv3yp0izGicGimSWGSWK5loECncKxXNJY1c1EeDDUjFR2OBUcSts-gG1cKjWrSo9tGdh3L7sHewDjcgrkUb1-KvuJ79x0vO0R7183qDMeMF2q0_1-4SSEStr8J6gevTT_4LmnjBUQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-DGRN%3A+dynamic+graph+representation+network+for+subject-independent+ERP+detection&rft.jtitle=Brain-apparatus+communication&rft.au=Jiabin+Zhu&rft.au=Xuanyu+Jin&rft.au=Yuhang+Ming&rft.au=Wanzeng+Kong&rft.date=2025-12-31&rft.pub=Taylor+%26+Francis+Group&rft.eissn=2770-6710&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1080%2F27706710.2024.2447576&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_477e2523ead34b6d83c4e320511d3d8b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2770-6710&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2770-6710&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2770-6710&client=summon